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Pure SU(3) glue theories exhibit a deconfining phase transition at a nonzero temperature, Tc.
Using lattice measurements of the pressure, we develop a simple matrix model to describe the
transition region, when T ≥ Tc. This model, which involves three parameters, is used to compute
the behavior of the ’t Hooft loop. There is a Higgs phase in this region, where off diagonal color
modes are heavy, and diagonal modes are light. Lattice measurements of the latter suggests that
the transition region is narrow, extending only to about ∼ 1.2Tc. This is in stark contrast to lattice
measurements of the renormalized Polyakov loop, which indicates a much wider width. The possible
implications for the differences in heavy ion collisions between RHIC and the LHC are discussed.

PACS numbers: 12.38.Mh,12.38.Gc,25.75.Nq

Heavy ion collisions at the Relativistic Heavy Ion Col-
lider (RHIC) have demonstrated a rich variety of unex-
pected behavior [1]. Notably, in peripheral collisions the
elliptical flow can only be described by nearly ideal hy-
drodynamics, with a very small ratio between the shear
viscosity, η, and the entropy density, s. The differences
between collisions at RHIC, and those which will soon be
observed soon at the Large Hadron Collider (LHC), will
be especially interesting: does the nearly ideal hydrody-
namic behavior, observed at RHIC, persist at the much
higher energies of the LHC?

One approach to deconfinement exploits the analogy
to N = 4 supersymmetric gauge theories: using the
AdS/CFT correspondence, such theories are computable
analytically in the limit of infinite coupling, for an infinite
number of colors [2]. By introducing a potential for the
dilation field, the behavior of the entropy density near
the deconfining phase transition, at a temperature Tc,
can be fit from measurements on the lattice [3–6]. While
the entropy density, s, decreases strongly as T → T+

c

because it is related to Hawking radiation, in AdS/CFT
models the ratio η/s remains completely independent of
temperature. This suggests that like RHIC, that colli-
sions at the LHC should also be described by nearly ideal
hydrodynamics; see, also, Ref. [7].

In this work we consider a very different approach to
the deconfining phase transition. It assumes that the

coupling is moderate even down to the transition tem-
perature, Tc [8]. We use an elementary matrix model,
involving three parameters, to parametrize the behav-
ior of the deconfining phase transition. A version of
this model with one parameter was first proposed by
Meisinger, Miller, and Ogilvie [9]. Similar models arise
for theories in which one (or more) spatial directions are
of femtoscale size [10–13].

The parameters of the model are fixed from lattice
measurements of the pressure [14–17]. It then predicts
how the ’t Hooft loop [18–22] changes with temperature
near Tc, which we compare to the results of lattice simu-
lations [23]. Further, the model predicts that for a range
of temperatures above Tc, there is a Higgs phase, where
correlation functions of electric fields are a mixture of
heavy and light modes, from fields which are off diago-
nal, and diagonal, in color, respectively. This may help to
understand the results of lattice simulations [15, 24–26],
which are otherwise somewhat puzzling.

The most direct prediction of our model is for the ex-
pectation value of the Polyakov loop. For the pure glue
SU(3) theory, lattice simulations find that the (renormal-
ized) Polyakov loop vanishes below Tc, jumps to ∼ 0.4
at T+

c , and then rises with T , until it is approximately
constant above ∼ 4.0Tc [27–29]. This represents confine-
ment below Tc, a complete Quark Gluon Plasma (QGP)
at high temperature, and a “semi”-QGP in between [30–
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33]. Physically, there is no ionization of color in the con-
fined phase, total ionization in the complete QGP, and
only partial ionization in the semi-QGP [33]. (While we
discuss a purely gluonic plasma, we adopt the common
term QGP.)

The principal thrust of this paper is that from indirect
measurements on the lattice, we suggest that the width
of the semi-QGP is much narrower than indicated by
present results for the renormalized Polyakov loop: not
up to ∼ 4.0Tc, but only ∼ 1.2Tc. We do not understand
this discrepancy in detail, but suggest a possible reason
later. This discrepancy is the reason why, having fit the
parameters of our model from the pressure, we compute
both the ’t Hooft loop and gluon masses.

While we treat the pure glue theory, our model can
be extended to QCD, with dynamical quarks [17]. It is
reasonable to assume that in QCD, the semi-QGP is like
that of the pure glue theory, relatively narrow. We thus
conclude by discussing the possible phenomenological im-
plications of our results for heavy ion collisions.

How confinement arises in our model can be under-
stood by analogy. Consider a bosonic field with a chem-
ical potential µ; now take µ to be imaginary, defining
µ = 2πT i q. For a particle of energy E, the Bose-Einstein
statistical distribution function is

n(E, q) =
1

eE/T−2πiq − 1
(1)

As a function of q, n(E, q) is clearly a periodic function
of q, invariant under q → q + 1. Thus we can choose to
define q to lie within the range from − 1

2 to + 1
2 .

Now assume that we integrate over q, with a distri-
bution which is flat in q. Expand for large energy, so
that the first term is the Boltzmann statistical distribu-
tion function. Given the assumed distribution in q, the
integral of this term vanishes,

e−E/T
∫ +1/2

−1/2

e2πiq dq = 0 . (2)

Indeed, we can expand the Bose-Einstein distribution
function term by term in powers of Boltzmann factors,
e−E/T+2πiq [13]; doing so, the integral over each and ev-
ery term obviously vanishes. The same is true for the
Fermi-Dirac distribution function as well.

Thus a flat distribution in q represents the confined
phase. To represent a phase with partial deconfinement,
one integrates over a limited region, say q : −q0 → +q0,
with q0 <

1
2 . Complete deconfinement occurs when one

integrates over a distribution which is a delta-function in
q.

This example appears somewhat artificial. For a given
q, the statistical distribution functions are complex val-
ued, and so, only integrals over q can possibly represent
physical quantities. Indeed, the grand canonical ensem-
ble is characterized by a fixed value for the chemical po-
tential, and not by an integral over µ’s.

Nevertheless, precisely this mechanism arises for the
deconfining phase transition in a SU(N) gauge theory.

Consider the expansion about a background field for the
time-like component of the vector potential,(

Acl0
)
ab

=
2πT

g
qa δ

ab ; (3)

a and b are colors indices, running from 1 . . . N . For
nonzero qa’s, this background field acts like an imaginary
chemical potential for the diagonal elements of the gauge
group. Integration over the qa’s arises from imposing
Gauss’ law for those elements of the gauge group [19].

This background field generates a non-trivial expecta-
tion for the Polyakov loop, `, which is the color trace of
the thermal Wilson line, L:

` =
1

N
trL ; L = P exp

(
ig

∫ 1/T

0

A0 dτ

)
; (4)

P represents path ordering, T is the temperature, and τ
the imaginary time, τ : 0→ 1/T .

Since the gauge potential A0 is an element of SU(N),∑N
a=1 qa = 0, modulo one, so there are N−1 independent

qa’s. At infinite N , the qa’s form a continuum, and the
example of Eq. (1) is exact; see, e.g., computations on
a femtosphere at N = ∞ [13]. For two colors, we can
choose the eigenvalues to be q1 = −q2; for three, q1 =
−q2, and q3 = 0.

In the presence of the background field of Eq. (3), a
potential for the qa’s is generated at one loop order [18–
22],

Vpt(qa) =
2π2T 4

3

N∑
a,b=1

q2
ab (1− |qab|)2− (N2−1)

π2T 4

45
.

(5)
where qab = qa − qb, defined modulo one. The minimum
is at qa = 0, where −Vpt(0) is the pressure for an ideal
gas of gluons.

The potential Vpt(qa) enters in computations of the ’t
Hooft loop. It is useful to consider deconfinement as a
type of spin system. A pure SU(N) gauge theory has
N degenerate vacua, where the thermal Wilson line L
equals one of the N roots of unity,

L = e2πij/N 1 , (6)

j = 0 . . . (N − 1). The usual vacuum, with j = 0 and
L = 1, corresponds to all qa = 0. A Z(N) vacua with
j = 1 and L = e2πi/N1 corresponds to N −1 qa’s = 1/N ,
and the remaining element = −1 + 1/N .

At high temperature in the complete QGP, the the-
ory lies in one spin state, which we can choose to be
j = 0. One can compute tunneling between two degen-
erate vacua by constructing a box which is long in one
spatial direction, with j = 0 at one end, and j = 1 at
the other. An interface between the two ordered states
forms in the center of the box, with the interface tension
between the two computable semi-classically, using the
potential Vpt(qa) [18–22]. This interface is equivalent to
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a ’t Hooft loop which wraps around the center of the box
[20].

As the temperature decreases and T approaches Tc,
domains with j 6= 0 form and grow in size. They become
increasingly probable, until at T−c and below, as a spin
system the vacuum is completely disordered, a sum over
many spin domains.

We want to add terms to the effective potential which
model the transition to deconfinement. We could add
perturbative corrections to Vpt(qa), which have been
computed to∼ g3 [21], but invariably they give qa = 0 (or
a Z(N) equivalent state) as the vacuum. With a com-
plete theory, such as the monopole model of Liao and
Shuryak [7], this potential could be computed directly.

We adopt a more modest approach, attempting to
guess the form of the non-perturbative potential. We fit
the coefficients which enter to lattice results for the pres-
sure, and then use it to compute other quantities. The
advantage of our approach is that we can compute quan-
tities not just in, but near thermal equilibrium. Such
quantities, like the shear viscosity [33], are much harder
to extract on the lattice.

Since the Polyakov loop is an order parameter for de-
confinement, a natural guess is that the non-perturbative
potential involves Z(N) invariant elements of the Lie
group. The first such term is the adjoint loop [12, 30–35].
Instead, following the authors of Ref. [9], and computa-
tions of the ’t Hooft loop [18–22], we write a potential
which is a polynomial in the qa’s.

There are several symmetries which any potential of
the qa’s must satisfy. It must be periodic in each qa,
with qa → qa + 1. It must also be invariant under Z(N)
transformations, where N−1 of the qa’s shift by 1/N , and
the last element, by −1 + 1/N . Lastly, if we interchange
the ordering of the qa’s, we can change qab → qba =
−qab. These symmetries can be satisfied by constructing
a potential as a function of qab(1− qab).

We can still form an infinite number of terms by tying
together the color indices in different ways; see, e.g., the
examples at two [21] and three [13] loop order. We adopt
the simplest approach, and take terms like those which
arise at one loop order, Eq. (5), which involve a sum over
one qab:

Vnon(qa) = T 2 T 2
c

N∑
a,b=1

(c1 |qab|(1− |qab|)

+c2 q
2
ab (1− |qab|)2

+ c3

)
. (7)

The potential of Ref. [9] involves one term, ∼ c1. We
introduce two more: that ∼ c2, which is proportional to
the perturbative term in Eq. (5), and c3, which is just
a constant. We take all of the non-perturbative terms
to be ∼ T 2, since lattice simulations indicate that in the
pure glue theory, the leading corrections to terms ∼ T 4

are ∼ T 2 [9, 10, 32, 36].

When the qa’s develop an expectation value, this rep-
resents symmetry breaking for an adjoint scalar field, A0,
coupled to an SU(N) gauge field, the Ai’s [32]. As an
adjoint scalar, though, there is no strict order parameter
which distinguishes between the symmetric and broken
phases. Thus there need not be a phase transition in go-
ing from the symmetric phase, the complete QGP, to the
“broken” phase, the semi-QGP.

If there were such a phase transition, it would repre-
sent a second transition, above Tc, separate from that
for deconfinement. While possible, in a pure SU(N)
gauge theory lattice simulations only find evidence for
one phase transition, at Tc [14–17]. To avoid a phase
transition between the complete and semi-QGP, it is es-
sential that the non-perturbative potential has a term
∼ c1. Assume that the effective potential only involved
terms such as ∼ qnab(1 − qab)n for n ≥ 2. For small qa,
these are of quadratic or higher order in the qa’s, and of
necessity, there would then be a phase transition when
the qa’s developed a nonzero expectation value, of either
first or second order. For small qa, the term ∼ c1 is lin-
ear in the qa’s, and ensures that there is no such phase
transition. Instead, even for high temperature, there is
always a small but non-zero expectation value for the
qa’s, < qa >∼ 1/T 2.

(We remark that effective theories on the lattice ex-
hibit phases with broken symmetry [37]. The necessity
of such a broken phase near Tc does not seem to have
been appreciated previously, though.)

To determine the parameters of the model we compare
to lattice measurements of the pressure. For three colors,
this is illustrated in Fig. (1); for two colors, in Fig. (2). If
p(T ) is the pressure, and e(T ) the energy density, then a
more sensitive test of the fit is also to plot the interaction
measure, ∆ = e− 3p. Thus in each figure we plot p/T 4,
e/T 4, and ∆/T 4, both from the lattice, from Ref. ([14])
for two colors, and from Ref. ([15]) for three colors.

The parameters of the fit are

c1 = − .41488 ; c2 = − 5.45957 ; c3 = 0.21954 . (8)

for three colors, and

c1 = − 0.30267 ; c2 = − − 5.97440 ; c3 = 0.18341 . (9)
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FIG. 1: Comparison of lattice results for SU(3) pure gauge
to the model, for the pressure, energy density, and interaction
measure.
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for two colors.
Our model appears to involve three parameters, but

this is misleading. One parameter fixes the critical tem-
perature, Tc. A second is chosen so that the pressure
vanishes at Tc. Thus we really have only one free param-
eter, which is tuned to fit the interaction measure. The
model of Ref. ([9]) involves one parameter, c1, which
then defines Tc; the pressure in that model is negative
at Tc. In our model, for two colors the energy density is
negative within ∼ 1% of Tc; this could be ameliorated by
adding an additional parameter.

Given the effective Lagrangian, it is then straightfor-
ward to compute the ’t Hooft loop. In the complete QGP,
the potential includes only the perturbative potential,
Vpt(qa), Eq. (5); in the semi-QGP, it is a sum of this and
the non-perturbative potential, Vnon(qa).

For two colors, as q2 = −q1 there is only one indepen-
dent direction, and it is direct to compute the tunneling
path, and its associated action, analytically. The result
for the ’t Hooft loop is

σ(T ) =
4π2T 2

3
√

6g2(T )
ξ(g2)

(1− (Tc/T )2)3/2

1− 0.908 (Tc/T )2
, (10)

where

ξ(g2) = 1− 0.16459 g2(T ) .

The factors involving Tc/T are special to the semi-QGP,
so that as T � Tc, the result reduces to that in the
complete QGP [18]. The function ξ(g2) is the correction
∼ g2 in the complete QGP; in plotting, we take g2(2πT )
[8]. The ’t Hooft loop vanishes at Tc, as expected for a
second order phase transition.

For three colors, in the semi-QGP the vacua is along λ3

(using the Gell-Mann notation), while the path for the
’t Hooft loop depends upon a change in λ8. The path
was determined numerically, and lies along both λ3 and
λ8. The action of the tunneling path was also determined
numerically, and the result for the ’t Hooft loop for three
colors is illustrated in Fig. (3). (For N = 2, we take
Tc/ΛM̄S = 1.31; for N = 3, 1.14. For the same value of
Tc/ΛM̄S = 1.31, the results unexpectedly coincide.)
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FIG. 2: Comparison of lattice results for SU(2) pure gauge
theory to the model, for the pressure, energy density, and
interaction measure.

Including ξ(g2), the semi-classical computation of the
’t Hooft loop in the complete QGP agrees with lattice
simulations above ∼ 4.0Tc; below that temperature, they
agree with the result in the semi-QGP [23]. To obtain
agreement, however, it is necessary to include the correc-
tion ξ(g2); this is computed in the complete QGP, which
is incorrect. Two things are required to compute ξ(g2) in
the semi-QGP. First, the potential for constant qa needs
to be computed to two loop order, expanding about the
full potential, Vpt(qa) + Vnon(qa). Second, corrections to
one loop order need to be computed for the kinetic term.
In the complete QGP this brings in new functions, the
ψ(qa) [18]. Other functions could arise in the semi-QGP.
For now, we defer these involved computations; since the
corrections ∼ g2 are large, ∼ 50%, our results should be
considered as tentative.

Besides the ’t Hooft loop, which is an interface ten-
sion for an order-order interface at T ≥ Tc, the interface
tension for the order-disorder interface, at Tc, is also com-
putable in our model. This only exists for a first order
transition; for three colors,

σdis = 0.0258012
T 2
c√
g2

. (11)

It is necessary to compute the corrections ∼ g2 before
comparing to lattice data, though.

The parameters for three colors, Eq. (8), and two col-
ors, Eq. (9), are similar; the difference is commensurate
with a dependence on ∼ 1/N2, with the coefficient of
order one. We have then assumed that the parameters
for three colors are close to those for higher N . We find
reasonable agreement for the interaction measure to lat-
tice results [16]. When N ≥ 4, there is more than one
’t Hooft loop. Lattice simulations find that they obey
Casimir scaling to good approximation [23]. We have not
checked this explicitly, but suspect that in our model, ’t
Hooft loops respect Casimir scaling.
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FIG. 3: The ’t Hooft loop for SU(3) pure gauge theory: lattice
data from Ref. [23], and GKA, Giovannangeli and Korthals
Altes, Ref. [21], the semi-classical computation in the com-
plete QGP, including corrections of ∼ g2. In our model we
show results for two and three colors, assuming that the cor-
rections of ∼ g2 are identical in the complete and semi-QGP;
see text.
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The most novel prediction of our model is that there
is a Higgs effect in the semi-QGP. This was noted first
in Ref. [32], and in theories at a femtoscale [12]. To
understand it, consider the quantum fluctuations about
the background field of Eq. (3):

〈
(Aqu0 )ab (~x) (Aqu0 )ba (0)

〉
∼
∫

d3p

(2π)3
ei~p·~x

+∞∑
n=−∞

∆00

(12)
where ∆00 is the quantum propagator

∆00 =
e−ip0τ

(~p )2 + p2
0 +m2

D(q)
; p0 = 2πT (n+ qa − qb) .

(13)
The shift in the energy, p0 = 2πTn→ 2πT (n+qa−qb), is
because we are expanding about a background field. The
background field Acl0 acts upon quantum fluctuations like
an adjoint Higgs field. Because the field is diagonal in
color, Eq. (3), diagonal fields do not feel the background
field. Thus for diagonal fields, the only mass they develop
is the Debye mass, mD. This is of order ∼ gT times a
function of the qa’s [33]. In contrast, off diagonal fields
have non-trivial commutators with a diagonal field, and
so they develop “masses” which are large, ∼ 2πT (n +
qa − qb).

We illustrate this in Fig. (4) for three colors. The
masses of the two diagonal gluons are equal, and decrease
as T → T+

c . There are two types of off-diagonal gluons:
four with |a − b| = 1, and two with |a − b| = 2. The
splitting of the masses is evident only close to Tc, for
T < 1.1Tc.

We do not plot lattice data, because it is somewhat
contradictory. Lattice measurements of a gauge invari-
ant quantity, the two point function between Polyakov
loops, shows that the associated mass goes down [15]. In
contrast, the two point function of gluons indicate that
the (gauge dependent) mass increases as T → T+

c [26].
The static, spatial gluon fields, the Ai, also undergo a

Higgs effect. This also happens in a monopole gas [7].
We have not discussed the most obvious application of

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1  1.2  1.4  1.6  1.8  2

m
 / 

gT

T / TC

a=b
|a-b|=1
|a-b|=2

FIG. 4: Gluon masses, mab/(gT ), for SU(3) pure gauge the-
ory: diagonal gluons, with a = b, are light; while there are
two off diagonal gluons with heavy masses, for |a− b| = 1 and
|a− b| = 2.

our model: the computation of the Polyakov loop. We
plot this quantity, and the lattice results, for three colors
in Fig. (5). A direct comparison of the two is somewhat
misleading. We have not computed perturbative correc-
tions to the Polyakov loop, which enter at ∼ g3 [38].
This contribution is positive, and will increase the re-
sult. Nevertheless, while the two coincide at Tc — which
is presumably coincidence — they immediately diverge
from one another. From Fig. (5), in our model the loop
quickly goes up to a constant value by ∼ 1.2Tc; this is
very different from lattice measurements, for which it is
not constant until a much higher temperature, ∼ 4.0Tc
[27–29].

Our computations show that determining the width
of the semi-QGP depends sensitively upon the quantity
considered. Even for purely thermodynamic quantities,
Figs. (1) and (2), p/T 4 and ∆/T 4 are not constant until
temperatures ∼ 3.0Tc; in contrast, e/T 4 is nearly con-
stant above ∼ 1.5Tc. The ’t Hooft loop in Fig. (3) is like
the pressure, and shows deviations from the complete
QGP up to ∼ 4.0Tc. The Higgs effect, Fig. (4), most
closely follows the results for the Polyakov loop in our
model, and shows no significant splitting above ∼ 1.2Tc.

With this qualification, we define the width of the semi-
QGP from the behavior of the Polyakov loop. We com-
ment that a similar rapid growth in the Polyakov loop
is found in solutions of the Schwinger-Dyson equations
[39]. Our results do not coincide numerically, though.

Why does the value of the Polyakov loop, computed
from our model, differ so significantly from lattice mea-
surements of the (renormalized) Polyakov loop? There is
an ambiguity associated with the renormalized Polyakov
loop, from the zero point energy. In Ref. [33] we ar-
gued that perturbatively, the zero point energy vanishes
for a straight Polyakov loop. This argument fails for a
“smeared” loop (see, e.g., the appendix of Ref. [28]). If
so, then the effects of smearing must be very dramatic.

It is worth emphasizing that the rapid growth of the
Polyakov loop in our model is not an accident of the
particular values of Eqs. (8) and (9), but dictated by the
peak in the interaction measure above Tc. To understand
this, consider a model which involves only the Polyakov

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3

T / T
C

l(T)
Latt. l(T)

FIG. 5: The Polyakov loop for a SU(3) pure gauge theory
from lattice simulations [29] and in our model.
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loop of Eq. (4),

Veff (`) =

(
−b2

2
|`|2 +

1

4
(|`|2)2

)
b4 T

4 ; (14)

see, e.g., Eq. (2) of Ref. [31], and Polyakov Nambu-
Jona-Lasino (PNJL) models [34]. For three colors, the
Z(3) symmetry also allows a cubic term, ∼ `3 + (`∗)3,
but its addition would only complicate the algebra, and
not our qualitative conclusion. There is no cubic term
for two colors.

The minimum of the potential is `0 =
√
b2, which we

choose to be real. As it is related to the pressure of
an ideal gas of gluons, we assume that the coefficient b4
is independent of the temperature, and that only b2, or
equivalently `0, depends upon T . The pressure and the
interaction measure are then

p

pideal
= `40 ;

e− 3 p

4 pideal
= `30 T

∂ `0
∂ T

. (15)

Consider first high temperature, where the expectation
value of the loop is near one. Assuming that `0 − 1 ∼
−(Tc/T )2 + . . ., then from Eq. (15), p/pideal−1 ∼ 4(`0−
1) + . . ., while e/eideal − 1 ∼ (4/3)(`0 − 1) + . . .. That
is, differences from ideal gas behavior are greatest for
the pressure and the interaction measure, and smallest
for the energy density. This agrees with results from the
lattice: above Tc, e/T

4 quickly shoots up to a nearly
constant value, while p/T 4 is not nearly constant until a
much higher temperature [14–17].

Now consider the region near Tc. The lattice data, for
two [14], three [15], and four or more [16] colors, show
a sharp peak in the interaction measure just above Tc.
From Eq. (15), this must correspond to rapid change in
`0. This is similar to what we find in our matrix model,
Fig. (5). Moreover, in the loop model

√
b2 in Eq. (14) is

proportional to the mass for the ` field. Since
√
b2 = `0,

then, a rapid increase in ` implies the same for the mass
of `. This is similar to the mass of the diagonal modes in
the matrix model, Fig. (4).

There are significant differences between Polyakov loop
and matrix models, though. In Ref. [31] and Polyakov
loop models [34], in order to fit the pressure the temper-
ature dependence of b2 must have a complicated form.
For our matrix model, though, the coefficients are just
∼ T 4, Eq. (5), and ∼ T 2, Eq. (7). In a mean field
theory such as this, simplicity is a virtue. Second, the
splitting of gluon masses near Tc is special to a matrix
model, as a Higgs effect for the adjoint scalar A0 field.
(See, e.g., the loop model of Ref. [10], where the split-
ting of masses does not occur.) Notably, moving up from
Tc, the masses of the off-diagonal modes decrease, while
those of the diagonal modes increase, Fig. (4).

Our analysis is a preliminary first step. In deriv-
ing our results, we balance the perturbative potential,
Vpt(qa), against the non-perturbative potential, Vnon(qa).
In powers of g2, the perturbative potential is of order one,
so implicitly we have assumed that the non-perturbative

is as well. Since the non-perturbative potential repre-
sents a resummation of effects to all orders, this is a
strong assumption. Nevertheless, it allows us to envis-
age computing to higher order in g2. Corrections at least
to order ∼ g2 and ∼ g3 are needed in order to make
a serious comparison to lattice data. This also requires
precise lattice data, close to the continuum limit, not just
for the pressure, but also for the ’t Hooft loop and gluon
masses.

There are several formal questions raised by our analy-
sis. The parameters of effective theories can be computed
from lattice simulations [35]; doing so for elements of the
Lie algebra, instead of for elements of the Lie group, may
be useful. It is also necessary to extend the analysis of
Hard Thermal Loops in the complete QGP to the semi-
QGP. This is equivalent to understanding the analytic
continuation of the thermal Wilson line from imaginary
to real time.

To compare with QCD it is necessary to include the ef-
fects of dynamical quarks. It will be especially interesting
to see if, upon adding the effects of quarks to the pertur-
bative potential, Vpt(qa), whether the thermodynamics
[17], and the Debye mass, are reproduced using the same
parameters for the non-perturbative potential, Vnon(qa),
in the pure glue theory. (With dynamical quarks, the
’t Hooft loop does not exist as an order parameter.) If
need be, one could adjust the parameters of the non-
perturbative potential to depend upon the presence of
dynamical quarks, but this would be inelegant.

Without detailed computation, we assume that a nar-
row width for the semi-QGP in the pure glue theory im-
plies the same for QCD. We thus conclude with some
speculations for the phenomenology of heavy ion colli-
sions.

If RHIC probes to some temperature in the QGP, then
LHC may probe to a temperature approximately ∼ 50%
higher. If the AdS/CFT correspondence holds for QCD,
then results at the LHC must mimic those at RHIC. With
the present analysis, the picture is rather more compli-
cated.

We assume, for the sake of argument, that RHIC
probes only to a temperature in the semi-QGP, very near
Tc. Then the LHC begins at a temperature well in the
complete QGP. Any conclusions are tempered by the fact
that even if the LHC starts at a higher temperature, as
it cools it must traverse through the semi-QGP.

In the semi-QGP, the ratio of η/s decreases as the
square of the Polyakov loop as T → T+

c ; this is true both
in the pure glue theory, and with dynamical quarks [33].
Conversely, then, η/s increases as the temperature goes
up from Tc. This is in sharp contrast to models based
upon the AdS/CFT correspondence, where η/s is con-
stant [3–5]. Unfortunately, a computation beyond lead-
ing logarithmic order is required to compute the precise
dependence of η/s with temperature.

If the shear viscosity increases strongly from Tc, and
the system is in thermal equilibrium, then an increased
shear viscosity should lead to an increase in particle mul-
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tiplicity, and a decrease in the elliptical flow, over the
results expected from a (nearly) ideal gas. If the shear
viscosity increases significantly, though, a hydrodynamic
description could easily break down.

It is also possible that the temperature dependence
of η/s is weak; if so, then the particle multiplicity and
elliptical flow at LHC should be similar to that expected
by an extrapolation from the results at RHIC. There are
then other ways to probe the effects of the semi-QGP.

Consider, for example, energy loss, which is controlled
by a parameter q̂. In the complete QGP, q̂ ∼ T 3, or
equivalently, the entropy density, s. In kinetic theory,
q̂/s and s/η are each proportional to a cross section,
so one expects that a minimum in η/s corresponds to
a maximum in the energy loss, q̂/s [7, 40]. Following the
methods of Ref. [33], the energy loss of a quark can be
computed in the semi-QGP; as T → T+

c , it vanishes lin-
early in the Polyakov loop. Thus in the semi-QGP, both
η/s and q̂ decrease as T → T+

c ; the difference from Refs.
[7, 40] is because the kinetic theory for the semi-QGP is
in the presence of a background A0 field. As the tem-
perature increases from Tc, then, excluding the obvious
dependence upon the entropy, the energy loss is larger
in the complete QGP than in the semi-QGP. As with
the shear viscosity, determining the precise dependence
upon temperature requires computation beyond leading
logarithmic order.

There is also a qualitatively new phenomenon in the
semi-QGP: besides energy loss, the propagation of a col-
ored field is suppressed by the background A0 field [33].
This suppression is universal, independent of the mass or
momentum of the colored field. A complete analysis need

incorporate this universal suppression as well as energy
loss.

Lastly, we note that given the modified propagator of
the semi-QGP, Eq. (13), there are also significant modi-
fications to the heavy quark potential [41]. This can also
be compared to lattice data, which we defer for now.

In the end, our speculations will soon be rendered moot
by the wealth of results which will flow from heavy ion
collisions at the LHC. The present approach is based
upon constructing an effective theory from the results
of lattice simulations; not just of the pressure, but quan-
tities such as the ’t Hooft loop and screening masses.
This can then be tested against predictions from the
AdS/CFT correspondence [2–6] and other models [7].
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[8] M. Laine and Y. Schröder, Jour. High Energy Phys.
0503, 067 (2005) [arXiv:hep-ph/0503061]; P. Giovan-
nangeli, Nucl. Phys. B 738, 23 (2006) [arXiv:hep-
ph/0506318].

[9] P. N. Meisinger, T. R. Miller and M. C. Ogilvie, Phys.
Rev. D 65, 034009 (2002) [arXiv:hep-ph/0108009].

[10] P. N. Meisinger, M. C. Ogilvie and T. R. Miller, Phys.
Lett. B 585, 149 (2004) [arXiv:hep-ph/0312272].

[11] P. N. Meisinger and M. C. Ogilvie, Phys. Rev. D
65, 056013 (2002) [arXiv:hep-ph/0108026]; J. C. My-
ers and M. C. Ogilvie, ibid. 77, 125030 (2008)
[arXiv:0707.1869]; P. N. Meisinger and M. C. Ogilvie,
ibid. 81, 025012 (2010) [arXiv:0905.3577]; M. C. Ogilvie,
[arXiv:1010.1942].

[12] M. Unsal, Phys. Rev. Lett. 100, 032005 (2008)
[arXiv:0708.1772]; M. Unsal and L. G. Yaffe, Phys. Rev.
D 78, 065035 (2008); [arXiv:0803.0344]; D. Simic and
M. Unsal, [arXiv:1010.5515].

[13] B. Sundborg, Nucl. Phys. B 573, 349 (2000) [arXiv:hep-
th/9908001]; O. Aharony, J. Marsano, S. Minwalla,
K. Papadodimas and M. Van Raamsdonk, Adv. Theor.

http://arXiv.org/abs/0807.3033
http://arXiv.org/abs/0901.4355
http://arXiv.org/abs/0905.2433
http://arXiv.org/abs/0704.0240
http://arXiv.org/abs/0901.0935
http://arXiv.org/abs/0804.0434
http://arXiv.org/abs/0804.0899
http://arXiv.org/abs/0812.0792
http://arXiv.org/abs/0903.2859
http://arXiv.org/abs/0803.3214
http://arXiv.org/abs/0805.0956
http://arXiv.org/abs/0911.2114
http://arXiv.org/abs/1009.2953
http://arXiv.org/abs/1009.4639
http://arXiv.org/abs/0807.1038
http://arXiv.org/abs/0906.4099
http://arXiv.org/abs/1009.2286
http://arXiv.org/abs/0911.4775
http://arXiv.org/abs/hep-ph/0611131
http://arXiv.org/abs/0804.0255
http://arXiv.org/abs/0810.4116
http://arXiv.org/abs/0804.4890
http://arXiv.org/abs/hep-ph/0503061
http://arXiv.org/abs/hep-ph/0506318
http://arXiv.org/abs/hep-ph/0506318
http://arXiv.org/abs/hep-ph/0108009
http://arXiv.org/abs/hep-ph/0312272
http://arXiv.org/abs/hep-ph/0108026
http://arXiv.org/abs/0707.1869
http://arXiv.org/abs/0905.3577
http://arXiv.org/abs/1010.1942
http://arXiv.org/abs/0708.1772
http://arXiv.org/abs/0803.0344
http://arXiv.org/abs/1010.5515
http://arXiv.org/abs/hep-th/9908001
http://arXiv.org/abs/hep-th/9908001


8

Math. Phys. 8, 603 (2004) [arXiv:hep-th/0310285]; Phys.
Rev. D 71, 125018 (2005) [arXiv:hep-th/0502149].

[14] J. Engels, J. Fingberg, K. Redlich et al., Z. Phys. C 42,
341 (1989).

[15] G. Boyd, J. Engels, F. Karsch et al., Nucl. Phys. B 469,
419 (1996) [arXiv:hep-lat/9602007].

[16] M. Panero, Phys. Rev. Lett. 103, 232001 (2009)
[arXiv:0907.3719].

[17] C. DeTar and U. M. Heller, Eur. Phys. J. A 41, 405
(2009) [arXiv:0905.2949]; M. Cheng et al., Phys. Rev. D
81, 054504 (2010) [arXiv:0911.2215]; S. Borsanyi et al.,
[arXiv:1007.2580].

[18] T. Bhattacharya, A. Gocksch, C. P. Korthals Altes
and R. D. Pisarski, Phys. Rev. Lett. 66, 998 (1991);
Nucl. Phys. B 383, 497 (1992) [arXiv:hep-ph/9205231];
C. P. Korthals Altes, ibid. 420, 637 (1994) [arXiv:hep-
th/9310195].

[19] A. Gocksch and R. D. Pisarski, Nucl. Phys. B 402, 657
(1993) [arXiv:hep-ph/9302233].

[20] C. P. Korthals Altes, A. Kovner and M. A. Stephanov,
Phys. Lett. B 469, 205 (1999) [arXiv:hep-ph/9909516];
C. P. Korthals Altes and A. Kovner, Phys. Rev. D 62,
096008 (2000) [arXiv:hep-ph/0004052].

[21] P. Giovannangeli and C. P. Korthals Altes, Nucl. Phys.
B 608, 203 (2001) [arXiv:hep-ph/0102022]; ibid. 721,
1 (2005) [arXiv:hep-ph/0212298]; ibid. 721, 25 (2005)
[arXiv:hep-ph/0412322].

[22] A. Vuorinen and L.G. Yaffe, Phys. Rev. D 74,
025011 (2006) [arXiv:hep-ph/0604100]; Ph. de Forcrand,
A. Kurkela and A. Vuorinen, ibid. 77, 125014 (2008)
[arXiv:0801.1566]. C. P. K. Altes, Nucl. Phys. A 820,
219C (2009) [arXiv:0810.3325].

[23] P. de Forcrand and D. Noth, Phys. Rev. D 72, 114501
(2005) [arXiv:hep-lat/0506005]; P. de Forcrand, B. Lu-
cini and D. Noth, PoS LAT2005, 323 (2006) [arXiv:hep-
lat/0510081].

[24] O. Kaczmarek, F. Karsch, E. Laermann and M. Lut-
gemeier, Phys. Rev. D 62, 034021 (2000) [arXiv:hep-
lat/9908010]; O. Kaczmarek, F. Karsch, F. Zantow and
P. Petreczky, ibid. 70, 074505 (2004) [Erratum-ibid. 72,
059903 (2005)] [arXiv:hep-lat/0406036]; Y. Maezawa et
al. [WHOT-QCD Collaboration], ibid. 81, 091501 (2010)
[arXiv:1003.1361].

[25] S. Digal, S. Fortunato and P. Petreczky, Phys. Rev. D
68, 034008 (2003) [arXiv:hep-lat/0304017].

[26] A. Cucchieri, F. Karsch and P. Petreczky, Phys.
Rev. D 64, 036001 (2001) [arXiv:hep-lat/0103009];
O. Kaczmarek and F. Zantow, ibid. 71, 114510 (2005);
[arXiv:hep-lat/0503017].

[27] O. Kaczmarek, F. Karsch, P. Petreczky et al., Phys. Lett.
B 543, 41 (2002) [arXiv:hep-lat/0207002]; P. Petreczky
and K. Petrov, ibid. 70, 054503 (2004) [arXiv:hep-
lat/0405009]; O. Kaczmarek, F. Karsch, F. Zantow and
P. Petreczky, Phys. Rev. D 70, 074505 (2004) [Erratum-
ibid. 72, 059903 (2005)] [arXiv:hep-lat/0406036].

[28] A. Dumitru, Y. Hatta, J. Lenaghan, K. Orginos, and R.
D. Pisarski, Phys. Rev. D 70, 034511 (2004) [arXiv:hep-
th/0311223].
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