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Topological or deconfined phases are characterized by emergent, weakly fluctuating, gauge fields. In con-
densed matter settings they inevitably come coupled to excitations that carry the corresponding gauge charges
which invalidate the standard diagnostic of deconfinement—the Wilson loop. Inspired by a mapping between
symmetric sponges and the deconfined phase of theZ2 gauge theory, we construct a diagnostic for deconfine-
ment that has the interpretation of a line tension. One operator version of this diagnostic turns out to be the
Fredenhagen-Marcu order parameter known to lattice gauge theorists and we show that a different version is
best suited to condensed matter systems. We discuss generalizations of the diagnostic, use it to establish the
existence of finite temperature topological phases ind≥ 3 dimensions and show that multiplets of the diagnostic
are useful in settings with multiple phases such asU(1) gauge theories with chargeq matter. [Additionally we
present an exact reduction of the partition function of the toric code in general dimensions to a well studied
problem.]

I. INTRODUCTION

There is currently much interest in condensed matter sys-
tems that exhibit ordering captured by a gauge theory lack-
ing a local order parameter. Such systems offer a contrast to
the classical broken symmetry paradigm built around the no-
tion of an order parameter introduced by Landau and these
phases said to be topological or deconfined1,7 as they also ex-
hibit quasiparticles with fractional quantum numbers2. These
phases are of interest in the study of strongly correlated quan-
tum systems—where the quantum Hall states3 and resonating
valence bond liquids4,5 are the canonical examples. Their in-
terest has been further enhanced by Kitaev6 and Freedman’s7

proposal of utilizing their subset possessed of non-abelian
braiding statistics for quasiparticles, for the construction of
a quantum computer.

The theoretical description of such phases is in terms of a
gauge theory, possibly with low energy matter. In the simplest
cases the low-energy theory is a purely topological gauge the-
ory such as Chern-Simons theory in the case of the quantum
Hall states3 or the BF theory in the case of resonating valence
bond liquids8. Indeed, the term topological phase dates from
these early instances; absent a better standard term, we will
use it here to refer to all phases with an emergent gauge field.
The explosion of recent interest has come from the construc-
tion of a wide variety of lattice models that realize a variety
of long wavelength theories including those with dynamical
gauge fields1,9.

In idealized models the existence of such phases is transpar-
ent for one can readily show that the gauge field: (a) exhibits
weak fluctuations and thus a perimeter law for the Wilson loop
in ground states, (b) mediates a non-confining force between
its sources (“quarks”), and (c) [where the low energy theory
is purely topological] leads to a topology dependent ground
state degeneracy. For more realistic Hamiltonians, unfortu-
nately, this transparency is lost. The problem with the first
two characterizations on our list is that, as is well known from
the lattice gauge theory literature, they fail in the presence of
dynamical sources (“matter”) for the gauge field.

In the condensed matter setting, the gauge field is only
emergent andnecessarilycomes with higher energy excita-
tions that carry a gauge charge, making this a generically fa-
tal flaw. The situation only gets worse at finite temperatures
where such matter excitations must enter the statistical sum.
The third characterization can continue to work in strictly
topological phases precisely atT = 0 but lacks a clear mean-
ing beyond that limit and outside that subset of deconfined
phases.30

All of this is an unsatisfactory state of affairs. As in Landau
theory, it would be nice to have a fixed time diagnostic oper-
ator that one can compute when handed a ground state or a
Gibbs state to decide whether it exhibits the ordering charac-
teristic of a given topological phase.31 In this paper we report
the construction of such a diagnostic which teases out the un-
derlying weakly fluctuating behavior of the gauge field. We
do so via a detour into the theory of sponge phases where our
diagnostic has the interpretation of a line tension—picking
up a line of analysis begun by Huse and Leibler12 a while
back. Remarkably, this diagnostic turns out to be a space-
time generalization of the so-called Fredenhagen-Marcu order
parameter13,14known to lattice gauge theorists.

In this paper we also begin the process of applying these
ideas to a wide class of systems. While the bulk of our pa-
per is concerned with theZ2 gauge theory with matter (or Ki-
taev’s toric code6 with generic perturbations) we sketch the
generalization to different low energy gauge structures includ-
ing cases where it is necessary to use a multiplet of diagnos-
tics. Notably, we use the diagnostic to establish the survival
of topological phases to finite temperatures ind ≥ 315.

Turning to the contents of the paper, we begin in Sections
II and III by reviewing the formulation of theZ2 gauge theory
with Z2 matter and its reformulation as a statistical mechan-
ics of surfaces with edges. This leads us to the identifica-
tion of the line tension diagnostic in Section IV and its oper-
ator formulations in Section V. In Section VI we discuss why
condensed matter systems prefer a particular operator formu-
lation. Sections VII and VIII deal with applications of the
ideas to finite temperature phases and more complex phase
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diagrams. The conclusion flags some open questions. Finally,
two appendices establish some useful results on Kitaev’s toric
code: firstly, we obtain its partition function in general di-
mension via a reduction to a classical pureZ2 gauge theory;
secondly, we demonstrate perturbative stability of its topolog-
ical order16,17, and find it to persist to finite temperature only
for d ≥ 3, in accordance with Ref. [18].

Before proceeding, we should point out an important an-
tecedent to our work which also addressed the challenge of
exhibiting topological order away from the idealized mod-
els. Hastings and Wen19 gave aT = 0 continuity construc-
tion starting with idealized Hamiltonians that generates a
Hamiltonian–dependentgauge field operator which exhibits
a perfect perimeter law (with zero coefficient) for the Wilson
loop in deconfined phases. By contrast, our construction is
Hamiltonian–independent in the spirit of an order parameter.

II. Z2 GAUGE THEORY WITH MATTER

Consider the Hamiltonian of theZ2 lattice gauge theory,

−H = K ∑
p

∏
l∈∂p

σz
l +Γ∑

l

σx
l + J∑

l

σz
l ∏

s∈∂l

τz
s+ΓM ∑

s
τx

s (1)

supplemented by the constraint that we restrict its action to
“gauge invariant” states defined by

Gs|ψ〉= |ψ〉 , Gs = τx
s ∏

l :s∈∂l

σx
l , (2)

where the gauge (σi
l ) and matter (τi

s) operators act in spin 1/2
Hilbert spaces that live on the linksl and sitess, respectively,
of a (hyper) cubic lattice ind dimensions. The subscriptss,
l and p denote sites, links and plaquettes.∂p and∂l are the
boundaries of the corresponding objects.

For Γ = J = 0 our Hamiltonian is equivalent to Kitaev’s
toric code as noted in the original paper.6 In that case the de-
generate 2Nnc ground states (Nnc is the number of independent
non-contractible loops on the lattice) are easily constructed
and exhibit a perfect “perimeter” law for the contractible Wil-
son loop

W[C] = 〈∏
l∈C

σz
l 〉= 1 (3)

Consistent with this ground state description, one sees that the
excited states contain non-interacting charges, free to sit at ar-
bitrary locations in this particular model. The remaining part
of the excitation spectrum is described by purely gauge exci-
tations. These are vortices of the gauge field, or visons, which
are isolated plaquettes for whichW[C] = −1. Both charged
and gauge excitations are separated from the set of ground
states by a finite gap.

The full T = 0 phase diagram of the Hamiltonian (1) has
two distinct phases. The first is the deconfined phase that ex-
ists for small perturbations of the Kitaev point. (For a more
detailed analysis of the toric code phase diagram, including
T > 0, see App.A.) The remaining phase is the confined-
Higgs phase which takes its name from the limiting regions

that were shown to be smoothly connected by Fradkin and
Shenker10.

How do we distinguish between the two phases? Unfor-
tunately, except along the lineJ/ΓM = 0, the Wilson loop
W[C] does not readily detect the phase transition—it exhibits
a perimeter laweverywhere(and also atT > 0). As previously
remarked, the potential between two test charges is also nota
sharp diagnostic due to the presence of dynamical matter.

III. SURFACES, EDGES AND THE SYMMETRIC SPONGE

In order to get to our diagnostic, let us now reformulate the
Hamiltonian gauge theory considered above as the classical
statistical mechanics of a system of membranes. To do this
we first write down the path integral formulation with a dis-
cretized imaginary time. This is governed by the action20:

−S= K ∑
p

∏
l∈∂p

σl + J∑
l

σl ∏
s∈∂l

τs , (4)

where theσl are the gauge fields living on the links, andτs
the matter fields residing on the sites of ad+1 dimensional
hypercubic lattice, withd ≥ 2 so that we can discuss a de-
confined phase. In writing this spacetime symmetric form, we
have moved away from the anisotropic limit that is needed for
precise reproduction of the Hamiltonian problem but which is
not important for our purposes. The reader should also bear in
mind thatK andJ refer to different quantities, with different
units, in the Hamiltonian (1) and the action (4). However, as
their physical import is very similar it is useful to keep this
notation.

We next rewrite the partition function as:

Z (K,J) = (coshK)Np(coshJ)Nl × (5)

Trσ,τ

[

∏
p
(1+ tanhK ∏

l∈∂p

σl )

][

∏
l

(1+ tanhJσl ∏
s∈∂l

τs)

]

,

whereNp,l are the number of plaquettes and links, respec-
tively, in the lattice. Multiplying out the products in the brack-
ets and performing the trace annihilates all terms in which any
τs,σl appears an odd number of times. ForJ = 0, this allows
only for the presence of closed surfaces, a surface being de-
fined as containing a given plaquettep if the factor of∏l∈∂p σl
appears in the sum. Switching on a non-zeroJ allows the sur-
faces to have free edges. Thus we have rewritten our gauge
theory as a statistical mechanics of surfaces with edges as
promised. In this formulation each area element of the sur-
face has a bare surface tension tanhK, and each edge a bare
line tension tanhJ. The actual geometrical properties of the
different regimes and phases are determined by the renormal-
ization of these quantities due to the entropy of the surfaces
and edges.

The phase diagram of the problem is sketched in Fig.1 and
includes more structure than is significant for the gauge theory
as we explain below. We direct the reader’s attention to the
following features.
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FIG. 1: Schematic phase diagram of theZ2 gauge theory coupled toZ2 matter (4), interpreted in analogy to sponge phases (see text). The
inscribed cartoons capture the behavior of the Huse-Leibler horseshoe (6) and allow detection of an effective line tension.

Pure gauge theory:As already noted, forJ = 0, the system
excludes edges. All surfaces are closed, which allows a con-
sistent definition of an inside and an outside. For smallK, the
total surface area remains small, and the volume of the inside
of the surfaces is tiny, whereas the outside fills most of space.
In this regime there is a macroscopic surface tension which is
in one-to-one correspondence with an area law for the Wilson
loop, as the reader can check by tracking the latter through our
mapping.

At a largerK = Kg, the inside of the surfaces percolates
as well. This, first, transition is purely geometrical and thus
does not produce thermodynamic or local operator singular-
ities, e.g. the surface tension is analytic across the bound-
ary. In the language of membranes, the percolating phase is
called the asymmetric sponge, as inside an outside have un-
equal volumes. The transition is dual to the one encountered
in the Ising models ind = 3, where the minority phase starts
percolating at a temperature below the thermodynamicTc.

At Kc > Kg, there is a thermodynamic transition which cor-
responds to deconfinement in the pure gauge theory. This is
signaled by the vanishing of the macroscopic surface tension:
In the Wilson loop acquires a perimeter law, while for the
sponge the inside and outside volumes become equal whence
the new, deconfined, phase is labeled a “symmetric sponge”.

Regime with heavy dynamical matter:32 Turning on J
causes edges to appear. Even at smallJ, where the bare line
tension is large, edges have the qualitatively important effect
of causing the macroscopic surface tension to vanish whence
the Wilson loop exhibits a perimeter law for anyK andJ > 0.
However, the phase transition between the asymmetric and
symmetric sponges is not destroyed at smallJ even if the la-

beling is now problematic as inside and outside are not dis-
tinct. There continues to be an intuitive distinction in theten-
sion associated with surfaces between the two phases as illus-
trated in the bottom panels in Fig.2. In the symmetric sponge
phase, the Wilson loop on the right follows a perimeter law
despite the large area present, whereas on the left, a perimeter
law arises because dynamical matter allows the surface area
to be proportional to the perimeter of the loop by introducing
an edge that runs along it.

Regime with light dynamical matter: As the bare line ten-
sion, tanhJ, is increased further, edges proliferate. Of most
interest to us, this has the effect of terminating the symmetric
sponge phase and driving the system into the “sponge with
free edges” which is the Higgs region of the gauge theory
in the present formulation. This transition is most vivid at
K = ∞, where surfaces drop out and we are left with the sta-
tistical mechanics of loops alone. In fact these loops the high-
temperature expansion of the Ising model, with a vanishing
line tension atJc signalling the onset of ferromagnetic order,
a thermodynamic transition which separates the deconfined
from the Higgs phase.33

The sponge with free edges is accessible, without crossing
a thermodynamic phase transition, from both the asymmetric
sponge and the vesicles and disks regions, in keeping with
the continuity between the Higgs and confinement regions.
However, the appearance of the surfaces nonetheless varies
drastically. Deep in the Higgs phase, long edges frame large
surfaces. By contrast, in the ‘seaweed’ regime, edges are still
cheap and the tradeoff is between edge entropy and the cost of
the surfaces attached to the edges, leading to lines joined by
(lattice dependent) surfaces of close to minimal area.
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FIG. 2: The line tension/Fredenhagen-Marcu diagnostic is the ratio
of a half Wilson loop (numerator) to the square root of a Wilson loop.
Fat points denote matter insertions. On the left we give a cartoon of
the dominant behavior in the confined phase and on the right the
dominant behavior in the deconfined phase.

IV. THE HUSE-LEIBLER HORSESHOE

Having described the phase diagram of theZ2 gauge theory
in terms of our system of surfaces with edges, let us now turn
to the task of distinguishing the symmetric sponge/deconfined
phase from all others. Intuitively, we need a quantity which
teases out whether the perimeter law of the Wilson loop is
fundamentally due to a vanishing surface tension, or instead
due the absence of a surface spanning itand whether there
is an underlying large line tension. Somewhat non-intuitively
this can be accomplished by simply defining an appropriate
line tension.

To this end consider the geometrical object inscribed in
Fig. 1. It is a Wilson loop broken open, so that its total length
remains fixed but so that gap of sizeg opens up. To keep the
quantity gauge invariant, it is necessary to terminate the open
strings by a matter term, so that the Huse-Leibler horseshoe12

is defined by the quantity

H(L,g) =

〈

τs

(

∏
l∈CH (s,s′)

σl

)

τs′

〉

, (6)

where the product is taken over the linksCH(s,s′) constituting
the horseshoe betweensands′.

The basic point is that, if surfaces are cheap and edges
are expensive—the situation prevailing in the symmetric
sponge—the system will cover most of the horseshoe with a
surface and then close the gap with an edge at a cost in free
energy of exp(−λg) due to the tension of the line closing the
gap (red line in Fig.1). By contrast, if surfaces are expensive
or/and edges are cheap which is the situation elsewhere in the
phase diagram, no such dependence ong arises. As a practical
matter, to separate out the dependence ong from that on the
linear size of the horseshoe,L, we need to study this quantity
in the limit L ≫ g ≫ 1 and then check for an effective line
tensionλ in the expectation value of the horseshoe.

An elegant alternative is to remove theL-dependence by di-
viding the horseshoe by the Wilson loop of same sizeL, as the
leadingL dependence of the two is set by the thermodynamic

properties of surface and edges. Once this has been done, the
resulting ratio will either vanish as exp(−λg) in the symmet-
ric sponge, or approach a constant. Indeed, one does not even
need to introduce a separate length scaleg altogether. One can
instead decide to cut the Wilson loop in two. For a square loop
of side lengthL, as shown in Fig.2, this yields two rectangular
loops of sizeL/2×L, one long side of which is open and now
takes over the role of the gap; again, aτ needs to be attached
to each open end. The result is the line tension diagnostic ratio

R(L) =
W1/2(L)
√

W(L)
=

〈τs(∏l∈C1/2
σl )τs′〉

√

〈∏l∈C σl 〉
(7)

where the curvesC1/2 andC define the half-Wilson loopW1/2
and full Wilson loopW respectively. R(L) has the desired
asymptotic behavior:

limL→∞ R(L) = 0 deconfined phase

limL→∞ R(L) 6= 0 otherwise. (8)

Before we work further withR, three comments are in or-
der. First, along theK = ∞ axis this ratio is simply the spin-
spin correlation function of the Ising model evaluated between
the endpoints of the half Wilson loop and it distinguishes the
two phases as asserted. Second, this diagnostic fails alongex-
actly one line—whenJ = 0, but fortunately the Wilson loop
itself is available exactly in that case. Third, we have checked
by Monte Carlo and in the smallJ expansion, thatR has the
claimed behavior.

V. OPERATOR FORMULATIONS AND THE
FREDENHAGEN-MARCU ORDER PARAMETER

The line tension diagnostic introduced in the last section
can be oriented in an arbitrary direction for the Lorentz invari-
ant example studied thus far. To obtain an operator formula-
tion, we must pick a particular orientation. Here we consider
three and gain some insight into the operation of the diagnos-
tic.

A. Equal time formulation

The simplest option is to orient the variables in the ratio so
that they all lie in the same time slice of the path integral as
in Fig. 3(a). Then the transcription to the Hamiltonian formu-
lation is straightforward and we obtain from the definition in
Eq. (7):

R(L)≡
W1/2(L)
√

W(L)
=

〈G|τz
s(∏l∈C1/2

σz
l )τ

z
s′ |G〉

√

〈G|∏l∈C σz
l |G〉

, (9)

where |G〉 is the ground state. As written, atT = 0, R(L)
clearly measures a property of the ground state wavefunction
but it is straightforward to use it atT > 0 with thermal aver-
ages replacing ground state ones. Transcribing our previous
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analysis,R(∞) vanishes if the equilibrium gauge field fluctu-
ations are weak and the matter is uncondensed but not other-
wise. This turns out to be the form of the diagnostic which
can be used most generally for reasons that we explain later.

B. Fredenhagen-Marcu Order Parameter

Now let us orient the operators so that they lie in a plane
containing the imaginary time axis with the endpoints of the
half Wilson loop at the same time (see Fig.3(b)) which we
take to be zero for convenience. Then we can write the opera-
tor expression

W1/2 = 〈G|τz
sτ

z
s′ ∏

l∈Css′
σz

l (−T/2)|G〉 (10)

whereT = cL up to multiplication by a velocityc, here set to
1,Cs,s′ is the linear path betweensands′, and

σz
l (−T/2) = e−HT/2σz

l e
−HT/2 (11)

and e−H is the transfer matrix for one step in the time
direction—with the implied meaning in the time continuum
limit. [In the process of passing to the Hamiltonian settingwe
have, as usual, setσz = 1 along the temporal links.]

Similarly, we can write the denominator as

W = 〈G| ∏
l∈Css′

σz
l (+T/2) ∏

l∈Css′
σz

l (−T/2)|G〉 . (12)

Now define,

|ss′〉= τz
sτ

z
s′ ∏

l∈Css′
σz

l (−T/2)|G〉 (13)

as the candidate two spinon state constructed from the ground
state. Thus we see that

R(L) =
〈G|ss′〉
√

〈ss′|ss′〉
(14)

i.e. it is the overlap between the ground state and the normal-
ized two spinon state. In this form, our diagnostic was first
discovered by Fredenhagen and Marcu13,14 and they proved
that it does show the asymptotic behavior (8) in theZ2 gauge
theory with matter. In subsequent work they also considered
the equal time form (9).

It follows from our previous considerations that

• in the deconfined phase the candidate two spinon state is
orthogonal to the ground state in the limitcL= T → ∞,
and has finite energy and thus there are free spinons in
the spectrum

• in the confined-Higgs phase the candidate two spinon
state isnotorthogonal to the ground state and thus there
areno free spinons in the spectrum

In this fashion we see that in this interpretation,R(∞) dis-
tinguishes between the phases based on the existence of free
spinons in the spectrum.

Finally, it is instructive to see how these limits work directly
in the Hamiltonian formalism. Consider the sequence

(a) the gauge-noninvariant string∏l∈Css′
σz

l (−T/2) acts on
the ground state leading to a state with a modified con-
straint atsands′

(b) the system evolves/relaxes for an imaginary timeT/2

(c) the gauge-noninvariant productτz
sτ

z
s′ acts on the state

at the end of the last step and leads to a final gauge
invariant state

Deep in the deconfined phase (a) and (b) leave an additional
electric flux string that meanders between the sitess and s′

and (c) adds the matter needed to create a proper two spinon
state. Conversely, deep in the confined phase, (b) eliminates
the string introduced by (a) in favor of fluxless charges ats
ands′ which are then eliminated in (c) leaving the ground state
behind.

L

L/2

(a) Equal time diagnostic

T/2

L
(b) Fredenhagen-Marcu “Order Parameter”

L/2

T

(c) Spinon delocalization diagnostic

FIG. 3: Different operator formulations of the deconfinement diag-
nostic (7). The blue curve and terminating points define the locus of
numerator and the green curve marks the needed completion for the
denominator.

C. Spinon delocalization

The two interpretations provided above are sufficient for
our purposes in the rest of the paper, but some further insight
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can be gained by considering a third one: Now we orient the
half Wilson loop so thats ands′ are separated by imaginary
timeT as shown in Fig.3(c).

With this choice, the numerator becomes the expectation
value,

W1/2= 〈G|τz
s(T/2) ∏

l∈C0s′
σz

l (T/2)τz
s(−T/2) ∏

l∈C0s

σz
l (−T/2)|G〉

(15)
while the denominator is given by the same expression exhib-
ited previously.

To understand why the ratioW1/2/
√

W behaves differently
in the two phases consider the intermediate states producedby
imaginary time evolution. In the deconfined phase

• W1/2 couples to a state with one defect site ats′ and a
delocalized spinon, while

• W couples to a state with two widely separated defect
sites.

Hence the ratio is controlled by intermediate states with dif-
ferent energies and scales as

e−(Edefect+Espinon)T

√
e−(Edefect+Edefect)T

(16)

and thus vanishes at largecL= T.
By contrast, in the confined phase, both operators couple to

eigenstates with localized spinons, ats′ for W1/2 and at both
s,s′ for W, whence the ratio tends to a constant. It follows
then, that in this version the diagnostic is sensitive to theexis-
tence of a delocalized spinon state in the deconfined phase.

VI. FLUCTUATING CONSTRAINTS AND CHOICE OF
OPERATOR FORMULATION

In a condensed matter context, a constraint such as the
one encoded in Eq.2 is not microscopic (or “fundamental”)
but rather of emergent origin, that is to say it is a legacy of
higher energy terms in the Hamiltonian. The constraint is thus
not inviolable—rather, states outside the “gauge invariant” or
“physical” sector are associated with a large but finite energy
penalty set by a scaleU . To put it differently, in the context of
gauge theory it is assumed that “unphysical” states are really
unphysical—they are forced on us by the challenge of han-
dling the constraint—but in condensed matter setting they are
certainly physical but are instead high energy states.

This distinction has an important consequence for the oper-
ator versions of our diagnostic, e.g. the Fredenhagen-Marcu
version (14). As noted in the discussion following its intro-
duction, it contains a two spinon state creation operator that
can be factored into two pieces,

τz
sτ

z
s′ and ∏

l∈Css′
σz

l (−T/2)

which are not individually gauge invariant, although their
combination is. Now the second piece is sensitive not only

to matrix elements ofH between gauge invariant states but
also to matrix elements ofH involving gauge non-invariant
states. Indeed our verbal explanation of the creation of the
two spinon state referred specifically to imaginary time evo-
lution in the gauge non-invariant sector where the constraint
was violated at two sites. For the specific choice of Hamilto-
nian (1) all is well—the detour into the gauge non-invariant
sector introduces no physics inconsistent with the proper op-
eration of the diagnostic. Of course this had to be the case as
we got this form working from a manifestly Lorentz invari-
ant Euclidean path integral. We now show that this does not
haveto be the case by explicitly exhibiting an example with a
soft constraint where the Fredenhagen-Marcu version ofR(L)
fails to diagnose deconfinement. The example is somewhat
contrived but it is intended only to function as a cautionary
counter-example.

Consider modifying our startingZ2 gauge theory Hamilto-
nian (1) to H f :

H f = H +
U
2 ∑

s
(Gs−1)2−λ∑

s
(Gs−1)τx (17)

and setJ, Γ → 0 for now. Now we donot implement the con-
straint (2) on the Hilbert space, instead a suitably large value
of U does this in the low energy sector. With that ordering of
energy scales, the ground state at smallλ ≪U

| G〉=
(

∏
s

1
2
(Gs−1)

)

| {σz = 1}〉⊗ | {τx = 1}〉 (18)

has precisely the same form as that of the toric code. However,
there is now a change of meaning, as microscopically both
the link and site variables are physical while in the toric code
the site variables can be gauged away. Yet, at low energies
in our model the same reduction takes place and so it has as
many degrees of freedom and upon our choices of parameters
exhibits the same, but now emergent,Z2 order.

Now consider the excitations of our model. The gauge in-
variant excitations preserveGs = 1 at all sites and are visons
with an energy 2K and spinons with an energy 2ΓM. Note
that their energies are independent ofλ; indeed, all gauge in-
variant states have (by construction) energies independent of
λ. The gauge non-invariant excitations involve violating the
constraint by settingGs = −1, and also come in two species:
spinonic defects with energyU +2ΓM −2λ obtained by set-
ting τx = −1 at a site and gauge defects with energyU +2λ
obtained by acting with a string∏σz

l extending from a given
site to infinity. Observe that the energies of the two defect
states cross whenU ≫ λ > ΓM/2 even though the spectrum
of the entire set of lower energy gauge invariant states is un-
changed. [For the Hamiltonian (1) the spinonic and gauge
defects have energy 2ΓM and 0 respectively. While there is
no explicit energy penalty for gauge non-invariant states,the
separate requirement that the ground state obey (2) eliminates
the degeneracy that would be present otherwise.]

In our previous discussion we argued that the action of
∏l∈Css′

σz
l (−T/2) was to create a string stretching between

sitess ands′. This works as long as the state with two gauge
defects is the ground state in the sector with two defect sites.
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Once the defects cross and the two spinonic defects become
the ground state, this is no longer true. As a technical matter,
the crossing alone is not enough, we also need to turnJ on
to a small value so that imaginary time evolution connects the
two states. Once this is done,R(∞) 6= 0 even though we are
clearly in the deconfined phase and the diagnostic fails in this
form.

However the diagnostic still works in its equal time form
so the lesson is that in general condensed matter settings the
formulations presented in the previous section are not fully
equivalent: whereas the equal–time formulation (Sec.V A) is
robust, the other pair of formulations (Sec.V B,V C) need not
be.

VII. FINITE TEMPERATURE TOPOLOGICAL ORDER IN
d ≥ 3

We now return to our main development and consider the
use of our diagnostic to establish the finite temperature phase
structure of theZ2 gauge theory where contrasting answers
can be found even in the recent literature15,18,21. We begin by
considering theT > 0 physics of the toric code,J = Γ = 0 in
Eq. 1. It can be shown (see AppendixA) that at this point in
d+1 space-time dimensions the quantum partition function at
all temperatures is proportional, up to a simple multiplicative
analytic factor, to that of the pureZ2 gauge theorywithout
matterdefined on ad dimensional Euclidean lattice.

From what is known about the latter theory, one can im-
mediately read off that topological order will persist to fi-
nite temperature for alld ≥ 3, but not below. Further we see
that, despite the presence of matter, the transition between the
low temperature deconfined phase the the high temperature
phase can be diagnosed by the Wilson loop which goes from
a perimeter law to an area law between the two phases.

This physics has to do with the gauge excitations. For
d = 2, finite energy point-like visons appear at an exponen-
tially small but non-zero density at anyT > 0 destroying the
deconfined phase. As the Wilson loop measures the averaged
parity of the enclosed vorticity, it acquires an area law as a
result.

By contrast, this mechanism is not operative in higher
dimension because the gauge/magnetic excitations now ap-
pear in a higher-dimensional version—loops ind= 3—whose
characteristic size,ξm, vanishes asT → 0. As the Wilson loop
now counts the parity of flux loops which link it, it is sensitive
only to those withinξm of its boundary, whence the perime-
ter law and the deconfined phase survive at sufficiently small
temperatures.

At higher temperatures there is a phase transition, e.g in
d = 3 where the vortex loops unbind. The basic physics of
vortex loops discussed above indicates that the finite temper-
ature deconfined phase should be stable beyond the Kitaev
point in d ≥ 3 as argued in15,18. However, once matter be-
comes dynamical the Wilson loop exhibits a perimeter law at
anyT and other standard diagnostics fail as well.

Fortunately, our diagnostic continues to work atT > 0. At
small temperatures one can work perturbatively at smallJ,

when the dynamical matter is heavy. As atT = 0, the basic
result is that in this limit the behavior ofR(L) follows from
that ofW(L) in the absence of dynamical matter. As the latter
exhibits a transition between perimeter and area dependence,
R(∞) transitions between vanishing and developing an expec-
tation value ofO(L0). In somewhat more detail, one can ex-
amine the Euclidean path integral, now finite in the (large)
imaginary time direction at low temperatures much as in Sec-
tion III . As before, a large line-tension between any pair of
charges survives, and it continues to be preferable to mini-
mize free edges at the expense of adding the (cheap) surface,
leading to a vanishing ofR(∞).

At high temperatures,T → ∞, it is more convenient to
work directly in the Hamiltonian formulation and the high-
temperature expansion. In this expansion, one obtains poly-
nomials in powers ofβ = 1/T upon expanding exp(−βH).
Non-vanishing terms in the expectation values appearing in
Eq. 7 are only obtained if each unpairedσz,τz is matched by
the polynomials. The cheapest (in powers ofβ) way of doing
this is to retrace the perimeter ofW andW1/2. This leads to
the same leading power ofβ in the expectation value of each,
which thence cancel in the expression forR(∞). Consequently
R(∞) is non-zero at sufficiently high temperatures and we that
there is a phase transition between the high and low tempera-
ture phases.

VIII. BEYOND Z2

A. Gauge fields with fundamental matter

Thus far our discussion has focused on the simplest case,
that of standardZ2 gauge theory withZ2 matter where there
are two phases to distinguish—the deconfined phase and the
confined-Higgs phase. Our deconfinement diagnostic general-
izes straightforwardly to lattice gauge theories based on other
gauge groups where there are similarly only two phases to
distinguish, toZn, U(1) and to Yang-Mills theories based on
non-abelian groups. Indeed, the last named case was the pri-
mary spur to Fredenhagen and Marcu’s work. In all of these
casesR has the same structure with appropriate replacement
of the matter and gauge fields.

For example, a compactU(1) gauge theory with chargeq=
1 matter is defined by a space time action analogous to (4)

−S= K ∑
p

∏
l∈∂p

Ul̃(l)+ J ∑
l ;s,s′∈∂l

τsUl τs′ +h.c. , (19)

where theUl = exp(iAl ) = U∗
−l are nowU(1) valued gauge

fields living on the links defined in the standard orientation
from one sublattice to the other, and theτs = exp(iφs) are the
corresponding matter fields residing on the sites. Unlike the
Z2 theory, we now need to pay attention to the orientation of
various link variables. The links in the second term are tra-
versed in the standard orientation while in the first term the
loops are taken anticlockwise with̃l(l) =±l if the link is tra-
versed in, or opposite to, its standard orientation respectively.

At zero temperature in spatial dimensiond ≥ 3 this theory
exhibits both a confined and a deconfined phase,10 see Fig.4.
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Absent matter,J = 0, the oriented Wilson loop

W1[C] = 〈∏
l∈C

Ul̃(l)〉 (20)

is capable of distinguishing between these two phases, ex-
hibiting an area law in the former, and a perimeter law in
the latter, with logarithmic corrections signaling the Coulomb
interaction20.

1
−LW  ~ e

8 ≠R  (   )    01

W  ~ e−L
R  (   ) = 0

1

1 8

Higgs

confined

deconfined

80
0

8

K

J

FIG. 4: Sketch of the phase diagram of theU(1) gauge theory with
charge one matter fields. The behaviour of the line tension diagnostic
R1 and Wilson loopW1 is indicated for each phase.

This phase structure persists when matter with chargeq= 1
is turned on. However, as in the case of theZ2 theory above,
the Wilson loop fails as a diagnostic in this setting. By anal-
ogy to Eq.7, we construct the appropriately generalized diag-
nostic ratio,

R1(L) =
W1/2(L)
√

W(L)
=

〈τ†
s(∏l∈C1/2

Ul̃(l)τs′〉
√

〈∏l∈CUl̃(l)〉
. (21)

As before the phases are distinguished by the asymptotic be-
havior ofR1(L),

limL→∞ R1(L) = 0 deconfined phase

limL→∞ R1(L) 6= 0 otherwise. (22)

We now turn to the application of the diagnostic to cases
with more than one phase and to problems phrased in more
standard condensed matter settings.

B. U(1) gauge theory with chargeq matter

To obtain a richer phase structure we consider aU(1) gauge
theory coupled to matter fields that carry one or more higher
(non-fundamental) chargesq≥ 2. In this setting it is useful to
consider the set of charge-q operators

Wq(L) = 〈∏
l∈C

Uq
l̃(l)

〉; Rq(L) =
〈τ†

s(∏l∈C1/2
Uq

l̃(l)
)τs′〉

√

〈∏l∈CUq
l̃(l)

)〉
. (23)

whose structure indicates thatq electric flux quanta emanate
from a given charge.

2R   (   )    08 ≠
W     ~ e1,2

−L

2R   (   )    0≠8

1W  ~ e
2−L

W  ~ e−L
2

2R   (   ) = 08

1,2W     ~ e−L

80
0

8

K

J

confined

2

deconfined

Z   deconfinedHiggs, 2

FIG. 5: Sketch of the phase diagram of theU(1) gauge theory with
charge two matter fields. Charge-q line tension diagnosticRq and
Wilson loopWq are defined in Eq. 23.

As our first example we consider the well known phase di-
agram of a single matter field of chargeq= 2. This contains,
as shown in Fig.5, in addition to the deconfined phase of the
U(1) field, a Higgs phase which corresponds to the decon-
fined phase of the appropriateZ2 gauge theory and a distinct
completely confined phase10. Due to the lack ofq= 1 matter,
we can make some progress using Wilson loops alone.

Of the three phases, two (U(1) andZ2 deconfined) exhibit
a perimeter law inW1 while one (U(1) confined) exhibits an
area law. The key point is that theq= 2 dynamical matter can-
not break up the confining string that stretches between two
testq= 1 sources in the confined phase. By contrast,W2 ex-
hibits a perimeter law everywhere and distinguishing the two
deconfined phases now requires that we evaluate the diagnos-
tic R2. As this tests for the presence of doubly charged states
in the spectrum, it vanishesonly in the fully deconfined phase.

In terms of the nature of gauge-field fluctuations, these dis-
tinct behaviours can be seen most intuitively by gauge-fixing
φs ≡ 0. Then, deep in the deconfined phase, an appropriate
projection of the state⊗l |Al = 0〉 is a ground state. In contrast,
the gauge field fluctuates strongly in the confined phase, and
theAl range over the full interval[0,2π).In the Higgs fluctua-
tions are restricted: here,Al = 0 or Al = π satisfy the second
term of (19). By construction,R2 is sensitive to the former, but
not the latter, fluctuations, and it can thus diagnose the Higgs-
confinement transition. This state of affairs is summarizedin
TableI.

Phase W1(L) R2(L)

Deconfined Perimeter 0

Higgs PerimeterL0

Confined Area L0

TABLE I: Diagnostics forU(1) gauge theory with onlyq= 2 matter

As a second example we consider the more generic and
complex situation where charges with bothq = 1 andq = 2
are present simultaneously. The number of parameters in the
Hamiltonian makes for a large phase diagram, and we restrict
ourselves to the instructive case where theq= 1 matter is very
heavy,i.e. very sparse. This then has the same physics of our
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1,2W     ~ e−L
R     (   ) = 01,2 8
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−L
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FIG. 6: Sketch of the phase diagram of theU(1) gauge theory with
charge two as well as heavy charge one matter fields.

last example, and thus the same phase diagram as Fig.5. The
new feature is that nowW1 obeys a perimeter law in all three
phases so that we may no longer use it to test for the decon-
finement of charge-1 objects. The solution to this is to evalu-
ateR1 instead. The diagnostic behavior of the combination of
R1 andR2 is summarized in TableII .

Phase R1(L) R2(L)

Deconfined 0 0

Higgs L0 0

Confined L0 L0

TABLE II: Diagnostics forU(1) gauge theory withq= 1 andq= 2
matter

We note that this combination manages to distinguish all
three phases, whereas theW1,2 fail to do so.

These deconfined phases persist to finite temperatures in di-
mensiond ≥ 4. The known behavior in lower dimensions is
more complicated. TheU(1) deconfined phase is absent in
d = 3 atT > 0 and ind = 2 even atT = 0 while theZ2 decon-
fined phase is present in both these cases. This complexity is
correctly captured by our doublet of diagnostic ratios.

C. Gauge theories of quantum magnets

The formalism developed above can be directly applied to
two classes of Hamiltonians which arise naturally in discus-
sions of quantum magnetism. The first are the “slave particle”
or Schwinger boson/fermion Hamiltonians22–24. Here the spin
Hamiltonian of a quantum magnet is reformulated as a matter
gauge system with spinons coupled to a gauge field. Here our
construction ofR(L) carries over pretty much directly.

The second class are quantum dimer models25,26, now with
a Hilbert space expanded to include gapped, spin-carrying
monomers to represent spinons27. In this setting, the micro-
scopic gauge structure arises from the hard core dimer con-
straint and the Wilson loop is defined as a dimer rearrange-
ment on a loop that respects the hard core constraint28. Ac-
cordingly we can again define our diagnostic.

IX. CONCLUSION

We have substantially met the challenge posed at the start of
this paper, that of finding a diagnostic for deconfinement that
has the form of a ground state expectation value, i.e. which is
a property of a single ground state of the system. It is also nice
to find that our reasoning, which comes from thinking about
line and surface tensions in the statistical mechanics of sur-
faces and edges, leads to an object discovered by lattice gauge
theorists thinking about creating states with (non) deconfined
quarks.

The next steps are to apply this formulation to problems
other than those addressed or reviewed in this paper and two
come to mind. The first is using it to detect spin liquids in
systems with Heisenberg symmetry where the gauge field in-
volves valence bonds and there is a set of orthogonality issues
to contend with. The second is generalize the construction to
non-abelian topological phases captured by the models con-
structed by Levin and Wen29.
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Appendix A: Kitaev’s toric code

The model describing Kitaev’s toric code is obtained from
the Ising gauge Hamiltonian, Eq.1, straightforwardly. First,
setΓ = J = 0. Secondly, replace the matter term proportional
to ΓM by utilizing the constraint, Eq.2,

Gs ≡ 1=⇒ τx
s ≡ ∏

l :s∈∂l

σx
l (A1)

to obtain

−HTC = K ∑
p

∏
l∈∂p

σz
l +ΓM ∑

s
∏

l :s∈∂l

σx
l . (A2)

which now acts in the subspace spanned solely by the link
degrees of freedom.

One can see that the model is special by noting that all
terms commute with all others. This allows the full spec-
trum to be readily obtained and one sees that the model ex-
hibits topological order. This is most easily done before
gauge fixing, (Eq.A1), in the basis of eigenstates of{σx

l } and
{τx

s}. In this formulation, sites whereτx
s = −1 are occupied

by “charges” and links whereσx
l = −1 carry “electric flux”:

Gs = 1 is theZ2 version of Gauss’s law. The dual, magnetic,
flux passing through loopsC is measured by the Wilson loops
W[C] = ∏l∈C σz

l .
The ground states ofHTC lack charges,τx

s = 1, ∀s, and are
characterized by flux expulsion,∏l∈∂p σz

l = 1, ∀p.
The complete lack of gauge field fluctuations, diagnosed by

the Wilson loopW = 1, signals a deconfined phase. Consis-
tent with this ground state signature, the excited states contain
non-interacting charges, free to sit at arbitrary locations.
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1. Mapping to classicalZ2 gauge theory andT > 0 phase
transition

We now turn to a computation of the partition function of
Kitaev’s model atT > 0. As gauge and matter sectors of the
theory only interact via the constraint,Gs≡ 1, one can use the
basis states|{σl}〉⊗ |{τs}〉 whereσz

l ′ |{σl}〉 = σl ′ |{σl}〉 and
τx

s′ |{τs}〉= τs′ |{τs}〉 to obtain

Z = ZL ·ZS (A3)

where

ZL = ∑
σl=±1

eβK ∑p∏l∈∂pσl (A4)

is the partition function of the classical or discretized Eu-
clidean latticeZ2 gauge theory ind dimensions and

ZS= ∑
τs=±1

δΠsτs,1eβΓm∑sτs (A5)

is the partition function of independent spins in a magnetic
field Γm up to a single, global, constraint that the number of
flipped spins (in gauge language: charges) be even. All the
singularities inZ thus are contained entirely inZL.

The finite temperature phase structure ofZL is well known.
In d≥ 3 it exhibits two phases. The deconfined phase, at large
βK, is characterized by a perimeter law for the Wilson loop at
large loop sizes. The confined phase, at smallβK, exhibits an
area law. By contrast, ind = 2, ZL exhibits only a confined
phase, but with a confinement scale (area law coefficient)A0
that diverges exponentially asβK → ∞.

All of this ties in with our previous results on Ising gauge
theories: (i) Kitaev’s model exhibits aT > 0 continuation of
the T = 0 topological phase ind ≥ 3 but not ind = 2. (ii)
the presence of the topological phase can be detected by the
(spatial) Wilson loop exhibiting a perimeter law.

2. Stability of topological order under perturbations of the
toric code

It is often convenient to do calculations and point-of-
principle demonstrations for topological phases at a “Kitaev
point”, where terms generically present in the Hamiltonianare
set to vanish by hand, leaving behind a soluble model. This
has some obvious drawbacks—for instance, a “zero-law” for
the Wilson loop,W ≡ 1= e−0·L is obviously somewhat non-
generic, like a vanishing rather than finite correlation length
in a disordered system, and any result thus obtained needs to
be supplemented at least by a discussion of its fate under per-
turbations.

We now show that the deconfined phase is characterized
by a persistence of the 2Nnc-fold topological degeneracy that
signals topological order, whereNnc is the number of inde-
pendent non-contractible loops. More precisely, it exhibits a
cluster of states with splitting ofO(e−L) for a system of lin-
ear dimensionL which are separated from all other states by
a gap ofO(L0). To this end, we consider adding an arbitrary

local perturbationV to the toric code, where locality now im-
plies that the range of variables coupled is strictly bounded,
say by a distanceb. For example, we may reintroduce the two
terms in Eq.1 which we had set to zero on our way from the
Z2 gauge theory to the toric code, although the argument to
follow is completely general.

The easy part is to notice that the topologically distinct,
degenerate ground states ofH0 will not mix up to an order
L/b∼ O(L) since they differ by the creation of a vortex loop
(or appropriate dimensional analog) that has to be created and
stretched across the system in as many applications of the per-
turbation. The less obvious part is that the states remain de-
generate in energy up to that order.

To see this, observe that the energy shiftsδE for two ground
states,|ψ0〉= |G〉 (Eq. 18) and|ψ1〉=Φx|ψ0〉 differing by the
flux through a non-contractible loop,Cnc, are sums of terms of
the form

δE0 = 〈ψ0 |VPV. . . |ψ0〉 (A6)

δE1 = 〈ψ0 |ΦxVPV. . .Φx|ψ0〉 . (A7)

Here V is the local perturbation, P =
(1−∑i |ψi〉〈ψi |) 1

E0−H0
(1−∑i |ψi〉〈ψi |) projects onto the

excited state manifold andΦx = ∏ℓ∈Cnc σx
ℓ inserts a flux by

operating on all links crossed by the non-contractible loop,
Cnc.

Now, we claim thatδE0 = δE1 to o(L) in perturbation the-
ory. To see this, note that we can permute oneΦx through the
operator products ofVs andPs to annihilate the other. This is
possible a) becauseΦx commutes with both numerator and
denominator ofP and b) because any topologically equiv-
alent deformation of the non-contractible loop along which
the σxs act produces the same state. Thus at an order below
L/b∼ O(L) in perturbation theory, there is always a choice of
loop which avoids the locations of all the perturbing terms.



11

1 X. G. Wen,Quantum Field Theory of Many Body Systems, Oxford
(2004).

2 R. Rajaraman,arXiv:cond-mat/0103366.
3 X. G. Wen, Q. Niu, Phys. Rev. B41, 9377 (1990).
4 P. W. Anderson, Science235, 1196 (1987).
5 R. Moessner, S. L. Sondhi, Phys. Rev. Lett.86, 1881 (2001).
6 A. Yu. Kitaev, Annals of Physics303, 2 (2003).
7 C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. D. Sarma, Rev.

Mod. Phys.80, 1083 (2008).
8 T. H. Hansson, V. Oganesyan, S. L. Sondhi, Annals of Physics

313, 497 (2004).
9 C. L. Henley, Annu. Rev. Condens. Matter Phys.1, 179 (2010).

10 E. Fradkin, S. H. Shenker, Phys. Rev. D19, 3682 (1979).
11 R. Moessner, S. L. Sondhi, Phys. Rev. Lett.105, 166401 (2010).
12 D. A. Huse, S. Leibler, Phys. Rev. Lett.66, 437 (1991).
13 K. Fredenhagen, M. Marcu, Phys. Rev. Lett.56, 223 (1986).
14 K. Fredenhagen, M. Marcu, Nucl. Phys. Proc. Suppl.4, 352

(1988).
15 T. Senthil, M. P. A. Fisher, Phys. Rev. B62, 7850 (2000).
16 S. Bravyi, M. Hastings, S. Michalakis,arXiv:1001.0344.
17 S. Trebst, P. Werner, M. Troyer, K. Shtengel, C. Nayak, Phys.

Rev. Lett.98, 070602 (2007).
18 C. Castelnovo, C. Chamon, Phys. Rev. B78, 155120 (2008).
19 M. B. Hastings, X.-G. Wen, Phys. Rev. B72, 045141 (2005).
20 J. B. Kogut, Rev. Mod. Phys.51, 659 (1979).
21 L. Genovese, F. Gliozzi, A. Rago, C. Torrero, Nucl. Phys. Proc.

Suppl.119, 894 (2003).
22 P. Coleman, Phys. Rev. B29, 3035 (1984).
23 G. Baskaran, Z. Zou, P. W. Anderson, Solid State Communica-

tions63, 973 (1987).

24 D. P. Arovas and A. Auerbach, Phys. Rev. B38, 316 (1988).
25 R. Moessner, K. Raman, arxiv.org:0809.3051.
26 D. S. Rokhsar, S. A. Kivelson, Phys. Rev. Lett.61, 2376 (1988).
27 L. Balents, L. Bartosch, A. Burkov, S. Sachdev, K. Sengupta,

Phys. Rev. B71, 144509 (2005).
28 R. Moessner, S. L. Sondhi, E. Fradkin, Phys. Rev. B65, 024504

(2001).
29 M. A. Levin, X.-G. Wen, Phys. Rev. B71 045110 (2005).
30 Thereis a spectral test—the deconfined phase has particles that

carry the charge of the deconfined gauge field and also charac-
teristically exhibit fractionalization of the microscopic quantum
numbers. For example, in our workhorse example later in thispa-
per we can ask if the Hamiltonian leads to isolable particleswith
Z2 [10]. However, this test requires a fair amount of information
and in the presence of bound states of the fractionalized objects
even more so. Note also that fractionalized quantum numbersare
not quantized signatures of a deconfined phase11.

31 Of the existing proposals for diagnosing topological phases, the
one which closest in spirit to such a prescription is the computa-
tion of an entanglement entropy, using a combination of appropri-
ately defined reduced density matrices for a system subjected to
different partitionings: A. Kitaev, J. Preskill, Phys. Rev. Lett. 96,
110404 (2006); M. Levin and X.-G. Wen,ibid. 110405.

32 “Heavy” refers to the large creation cost, 2Γm, rather than a small
bandwidth,∝ J, of the matter particle.

33 Note that there is no additional geometrical transition forthe
edges at aJg > Jc even in the self-dual cased = 3; rather, it will
show up as a transition in the appropriate dual variables.

http://arxiv.org/abs/cond-mat/0103366
http://arxiv.org/abs/1001.0344

