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Topological or deconfined phases are characterized by emengeakly fluctuating, gauge fields. In con-
densed matter settings they inevitably come coupled tdatiais that carry the corresponding gauge charges
which invalidate the standard diagnostic of deconfinemehe-Wilson loop. Inspired by a mapping between
symmetric sponges and the deconfined phase aZtgauge theory, we construct a diagnostic for deconfine-
ment that has the interpretation of a line tension. One ¢pexersion of this diagnostic turns out to be the
Fredenhagen-Marcu order parameter known to lattice geheists and we show that a different version is
best suited to condensed matter systems. We discuss geagoak of the diagnostic, use it to establish the
existence of finite temperature topological phaseabsin3 dimensions and show that multiplets of the diagnostic
are useful in settings with multiple phases suckl@$) gauge theories with chargematter. [Additionally we
present an exact reduction of the partition function of tméctcode in general dimensions to a well studied
problem.]

I. INTRODUCTION In the condensed matter setting, the gauge field is only
emergent anchecessarilycomes with higher energy excita-

There is currently much interest in condensed matter sydions that carry a gauge charge, making this a generically fa
tems that exhibit ordering captured by a gauge theory lackt@l flaw. The situation only gets worse at finite temperatures

ing a local order parameter. Such systems offer a contrast where such matter excitations must enter the statistiaal su

the classical broken symmetry paradigm built around the nol e thifd characterizati_on can continue o work in sictly
pological phases precisely Bt= 0 but lacks a clear mean-

tion of an order parameter introduced by Landau and thest? > b . .
phases said to be topological or deconfihéas they also ex- N9 beygnd that limit and outside that subset of deconfined
hibit quasiparticles with fractional quantum numbBerhese ~ Phases: o _ _ _

phases are of interest in the study of strongly correlatesiqu Al of this is an unsatisfactory state of affairs. As in Landa
tum systems—where the quantum Hall st3@sd resonating theory, it would be nice to have a fixed time diagnostic oper-
valence bond liquids® are the canonical examples. Their in- ator that one can compute when handed a ground state or a
terest has been further enhanced by Kifamvd Freedman’s ~ Gibbs state to decide whether it exhibits the ordering atara

proposal of utilizing their subset possessed of non-abeliateristic of a given topological phagéln this paper we report
braiding statistics for quasiparticles, for the constarciof ~ the construction of such a diagnostic which teases out the un

a quantum computer. derlying weakly fluctuating behavior of the gauge field. We
The theoretical description of such phases is in terms of 40 SO via a detour into the theory of sponge phases where our
gauge theory, possibly with low energy matter. In the sirsiple dlagnqsuc has the interpretation of a line tepsmn—p}gkm
cases the low-energy theory is a purely topological gauge th UP @ line of analysis begun by Huse and Leiblem while
ory such as Chern-Simons theory in the case of the quantuRck- Remarkably, this diagnostic turns out to be a space-
Hall state or the BF theory in the case of resonating valence!me generalILzanon of the so-called Fredenhagen-Marderor
bond liquid€. Indeed, the term topological phase dates fromParameteéf:known to lattice gauge theorists.
these early instances; absent a better standard term, Wwe wil In this paper we also begin the process of applying these
use it here to refer to all phases with an emergent gauge fielitleas to a wide class of systems. While the bulk of our pa-
The explosion of recent interest has come from the construgeer is concerned with th&, gauge theory with matter (or Ki-
tion of a wide variety of lattice models that realize a variet taev’s toric cod® with generic perturbations) we sketch the
of long wavelength theories including those with dynamicalgeneralization to different low energy gauge structuretiaf-
gauge fields?®. ing cases where it is necessary to use a multiplet of diagnos-

Inidealized models the existence of such phases is transpdics. Notably, we use the diagnostic to establish the satviv
ent for one can readily show that the gauge field: (a) exhibit§f topological phases to finite temperatureslin 31,
weak fluctuations and thus a perimeter law for the Wilson loop Turning to the contents of the paper, we begin in Sections
in ground states, (b) mediates a non-confining force betweeth and Il by reviewing the formulation of th&, gauge theory
its sources (“quarks”), and (c) [where the low energy theorywith Z, matter and its reformulation as a statistical mechan-
is purely topological] leads to a topology dependent groundcs of surfaces with edges. This leads us to the identifica-
state degeneracy. For more realistic Hamiltonians, unfort tion of the line tension diagnostic in Section IV and its eper
nately, this transparency is lost. The problem with the firstator formulations in Section V. In Section VI we discuss why
two characterizations on our list is that, as is well knovamir  condensed matter systems prefer a particular operatouform
the lattice gauge theory literature, they fail in the preseof  lation. Sections VII and VIII deal with applications of the
dynamical sources (“matter”) for the gauge field. ideas to finite temperature phases and more complex phase
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diagrams. The conclusion flags some open questions. Finallthat were shown to be smoothly connected by Fradkin and

two appendices establish some useful results on Kitaenits to Shenket®.

code: firstly, we obtain its partition function in generat di  How do we distinguish between the two phases? Unfor-

mension via a reduction to a classical pdgegauge theory; tunately, except along the ling/I'yy = 0, the Wilson loop

secondly, we demonstrate perturbative stability of itdtog- ~ W|C] does not readily detect the phase transition—it exhibits

ical ordet®’, and find it to persist to finite temperature only a perimeter laveverywhergand also al > 0). As previously

ford > 3, in accordance with Ref:[_|18]. remarked, the potential between two test charges is alsa not
Before proceeding, we should point out an important ansharp diagnostic due to the presence of dynamical matter.

tecedent to our work which also addressed the challenge of

exhibiting topological order away from the idealized mod-

els. Hastings and Wé# gave aT = 0 continuity construc- IIl. SURFACES, EDGES AND THE SYMMETRIC SPONGE

tion starting with idealized Hamiltonians that generates a

Hamiltonian—dependergauge field operator which exhibits

a perfect perimeter law (with zero coefficient) for the Wiiso

loop in deconfined phases. By contrast, our construction i

Hamiltonian—independent in the spirit of an order paramete

In order to get to our diagnostic, let us now reformulate the
Klamiltonian gauge theory considered above as the classical
statistical mechanics of a system of membranes. To do this
we first write down the path integral formulation with a dis-
cretized imaginary time. This is governed by the acifon

—SZKZH0|+JZG||_|TS7 (4)

P ledp seol

Il.  Z GAUGE THEORY WITH MATTER

Consider the Hamiltonian of thé& lattice gauge theory,

T z X z z X where theo; are the gauge fields living on the links, angd
H=K % |e|_a|p0| + FZG' +‘]Zo' Sgl Tt ZTS (1) the matter fields residing on the sites ofia- 1 dimensional
hypercubic lattice, withd > 2 so that we can discuss a de-
supplemented by the constraint that we restrict its action tconfined phase. In writing this spacetime symmetric form, we

“gauge invariant” states defined by have moved away from the anisotropic limit that is needed for
precise reproduction of the Hamiltonian problem but whigch i

Gs|W) = W) , Gs=T4 |_| o, (2)  notimportant for our purposes. The reader should also bear i
I:seol mind thatK andJ refer to different quantities, with different

units, in the Hamiltoniard)) and the actiori4). However, as

where the gaugeo{) and matterg) operators actin spin/2  heir physical import is very similar it is useful to keepghi
Hilbert spaces that live on the linksand sitess, respectively,  otation.

of a (hyper) cubi_c Iatti_ce id dimensions. The subscripss We next rewrite the partition function as:
| and p denote sites, links and plaquettelp andal are the
boundaries of the corresp(_)ndirjg o.bjects.. _ Z (KJ)= (Cosm)Np(Cosm)M % (5)
For ' = J = 0 our Hamiltonian is Igquwalent to Kitaev’'s
toric code as noted in the original papdn that case the de-
generate P ground statesN is the number of independent u(1+ tanhk |e|_a| o )]
non-contractible loops on the lattice) are easily constaic P
and exhibit a perfect “perimeter” law for the contractibldW \ynere Ny, are the number of plaquettes and links, respec-
son loop tively, in the lattice. Multiplying out the products in thegk-
WC] = ([109 =1 3) ets and performing the trace annihilates all terms_in whigh a
Ile_l ' 15,01 appears an odd number of times. Bot 0, this aIIovys
only for the presence of closed surfaces, a surface being de-

Consistent with this ground state description, one se¢stta fined as containing a given plaquefté the factor of[]c5, 01
excited states contain non-interacting charges, fred & ai-  appears in the sum. Switching on a non-zéaslows the sur-
bitrary locations in this particular model. The remainiregtp  faces to have free edges. Thus we have rewritten our gauge
of the excitation spectrum is described by purely gauge-excitheory as a statistical mechanics of surfaces with edges as
tations. These are vortices of the gauge field, or visonsg;lwhi promised. In this formulation each area element of the sur-

Troz

|_|(1+tanh]0| |_| Ts)|

| seol

are isolated plaquettes for whitd[C] = —1. Both charged face has a bare surface tension tenland each edge a bare
and gauge excitations are separated from the set of groudihe tension tani. The actual geometrical properties of the
states by a finite gap. different regimes and phases are determined by the renormal

The full T = 0 phase diagram of the Hamiltonidf) (has ization of these quantities due to the entropy of the susface
two distinct phases. The first is the deconfined phase that exand edges.
ists for small perturbations of the Kitaev point. (For a more The phase diagram of the problem is sketched in[Band
detailed analysis of the toric code phase diagram, inctydinincludes more structure than is significant for the gaugerthe
T > 0, see App.[Al) The remaining phase is the confined- as we explain below. We direct the reader’s attention to the
Higgs phase which takes its name from the limiting regiongfollowing features.
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FIG. 1: Schematic phase diagram of thegauge theory coupled B, matter [(4), interpreted in analogy to sponge phases (sée fExe
inscribed cartoons capture the behavior of the Huse-Leftdeseshod {6) and allow detection of an effective lineitens

Pure gauge theory:As already noted, fod = 0, the system beling is now problematic as inside and outside are not dis-
excludes edges. All surfaces are closed, which allows a coriinct. There continues to be an intuitive distinction in tee-
sistent definition of an inside and an outside. For sidathe  sion associated with surfaces between the two phasesssiillu
total surface area remains small, and the volume of theénsidtrated in the bottom panels in F[@. In the symmetric sponge

of the surfaces is tiny, whereas the outside fills most of spac phase, the Wilson loop on the right follows a perimeter law
In this regime there is a macroscopic surface tension wisich idespite the large area present, whereas on the left, a gerime

in one-to-one correspondence with an area law for the Wilsoitaw arises because dynamical matter allows the surface area
loop, as the reader can check by tracking the latter through o to be proportional to the perimeter of the loop by introdgcin
mapping. an edge that runs along it.

At a largerK = Kg, the inside of the surfaces percolates Regime with light dynamical matter: As the bare line ten-
as well. This, first, transition is purely geometrical andsth  sjon, tanfJ, is increased further, edges proliferate. Of most
does not produce thermodynamic or local operator singulaiinterest to us, this has the effect of terminating the symimet
ities, e.g. the surface tension is analytic across the boundponge phase and driving the system into the “sponge with
ary. In the language of membranes, the percolating phase ffee edges” which is the Higgs region of the gauge theory
called the asymmetric sponge, as inside an outside have uk the present formulation. This transition is most vivid at
equal volumes. The transition is dual to the one encounterel = «, where surfaces drop out and we are left with the sta-
in the Ising models i = 3, where the minority phase starts tistical mechanics of loops alone. In fact these loops tga-hi
percolating at a temperature below the thermodynaiic temperature expansion of the Ising model, with a vanishing

At K¢ > Kg, there is a thermodynamic transition which cor- line tension atl; signalling the onset of ferromagnetic order,
responds to deconfinement in the pure gauge theory. This & thermodynamic transition which separates the deconfined
signaled by the vanishing of the macroscopic surface tensio from the Higgs phas#

In the Wilson loop acquires a perimeter law, while for the The sponge with free edges is accessible, without crossing
sponge the inside and outside volumes become equal whenggnermodynamic phase transition, from both the asymmetric
the new, deconfined, phase is labeled a “symmetric sponge”sponge and the vesicles and disks regions, in keeping with
Regime with heavy dynamical matter2? Turning onJ  the continuity between the Higgs and confinement regions.
causes edges to appear. Even at sthallhere the bare line However, the appearance of the surfaces nonetheless varies
tension is large, edges have the qualitatively importaiecef drastically. Deep in the Higgs phase, long edges frame large
of causing the macroscopic surface tension to vanish whenairfaces. By contrast, in the ‘seaweed’ regime, edgesidire st
the Wilson loop exhibits a perimeter law for ayandJ > 0.  cheap and the tradeoff is between edge entropy and the cost of
However, the phase transition between the asymmetric antthe surfaces attached to the edges, leading to lines joiped b
symmetric sponges is not destroyed at srdalen if the la-  (lattice dependent) surfaces of close to minimal area.
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properties of surface and edges. Once this has been done, the
resulting ratio will either vanish as epAg) in the symmet-

ric sponge, or approach a constant. Indeed, one does not even
need to introduce a separate length sgalttogether. One can
instead decide to cut the Wilson loop in two. For a square loop
of side length_, as shown in Fid2, this yields two rectangular
loops of size_ /2 x L, one long side of which is open and now
takes over the role of the gap; agairt aeeds to be attached

to each open end. The resultis the line tension diagnosiic ra

~ Wipp(L)  (ts(Miec,, O1)Ts)
W(L) (Miec o)
where the curve§, , andC define the half-Wilson loojavy

and full Wilson loopW respectively. R(L) has the desired
asymptotic behavior:

R(L)

(7
FIG. 2: The line tension/Fredenhagen-Marcu diagnostibédsratio

of a half Wilson loop (numerator) to the square root of a Wilkmp.

Fat points denote matter insertions. On the left we give goarof

the dominant behavior in the confined phase and on the right th
dominant behavior in the deconfined phase.

lim . R(L) =0 deconfined phase
IV. THE HUSE-LEIBLER HORSESHOE lim_ o R(L) # 0 otherwise (8)

Before we work further withR, three comments are in or-

Having described the phase diagram ofZagauge theory rqer. First, along th& = o axis this ratio is simply the spin-

in terms of our system of surfaces with edges, let us now tur

to the task of distinguishing the symmetric sponge/decedfin spin correlgtion function of t_he Ising modellevglu.ated. hesiw
phase from all othgrs. Int%itivel)}j we needg qgantity Whichthe endpoints of the half Wilson loop and it distinguishess th

teases out whether the perimeter law of the Wilson loop i§W(t)| phase|§ as asier;]ei. OSet;:otnfd,tthls ?|?g?r§)st\|/(\:/{alls elaieng
fundamentally due to a vanishing surface tension, or isteg2cty On€ liNE—WheR =1, but foriunately the YWiison 10op

due the absence of a surface spanninanitl whether there itself is available exactly in that case. Third, we have &leelc
is an underlying large line tension. Somewhat non-intaltiv by Monte Carlo and in the small expansion, thak has the

this can be accomplished by simply defining an appropriatt?l"j“rnecj behavior.
line tension.

To this end consider the geometrical object inscribed in
Fig.[ It is a Wilson loop broken open, so that its total length
remains fixed but so that gap of sigepens up. To keep the
guantity gauge invariant, it is necessary to terminate fieno
strings by a matter term, so that the Huse-Leibler horsééhoe The line tension diagnostic introduced in the last section

V. OPERATOR FORMULATIONS AND THE
FREDENHAGEN-MARCU ORDER PARAMETER

is defined by the quantity can be oriented in an arbitrary direction for the Lorentaiiv
ant example studied thus far. To obtain an operator formula-
tion, we must pick a particular orientation. Here we conside
H(L,g)= <Ts < rJ 0I> T§> : (6)  three and gain some insight into the operation of the diagnos
leCy(s,) tic.

where the product is taken over the lings(s,s') constituting
the horseshoe betwesands'.

The basic point is that, if surfaces are cheap and edges
are expensive—the situation prevailing in the symmetric i . i ) ) _
sponge—the system will cover most of the horseshoe with a The S|mple_st _opt|0n is to orlent th_e variables in t_he ratio so
surface and then close the gap with an edge at a cost in fréBat, they all lie in the same _tln_1e slice of the path_ integral as
energy of exp—Ag) due to the tension of the line closing the ' Fig[B(@} Then the transcription to the Hamiltonian formu-
gap (red line in Figl). By contrast, if surfaces are expensive lation is straightforward and we obtain from the definition i
or/and edges are cheap which is the situation elsewhere in 3. (0
phase diagram, no such dependencg arises. As a practical

A. Equal time formulation

4 Z\~+Z
matter, to separate out the dependenceg tnom that on the R(L) = Wia(L) _ <G|Ts(|_||ec1/2 9)T5|C) 9)
linear size of the horseshde, we need to study this quantity W(L) (GIMiecofIG)
in the limit L > g > 1 and then check for an effective line
tensionA in the expectation value of the horseshoe. where|G) is the ground state. As written, @t =0, R(L)

An elegant alternative is to remove thelependence by di- clearly measures a property of the ground state wavefunctio
viding the horseshoe by the Wilson loop of same &izas the  but it is straightforward to use it a > 0 with thermal aver-
leadingL dependence of the two is set by the thermodynami@ges replacing ground state ones. Transcribing our previou
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analysisR(«) vanishes if the equilibrium gauge field fluctu-  (a) the gauge-noninvariant strirfg, €Cuy o{(—T/2) acts on
ations are weak and the matter is uncondensed but not other-  the ground state leading to a state with a modified con-
wise. This turns out to be the form of the diagnostic which straint ats ands'
can be used most generally for reasons that we explain later. (b) the system evolves/relaxes for an imaginary tife@
(c) the gauge-noninvariant producdty acts on the state
B. Fredenhagen-Marcu Order Parameter at the end of the last step and leads to a final gauge
invariant state
Now let us orient the operators so that they lie in a plane
containing the imaginary time axis with the endpoints of the
h"’l‘(lf W|I§on Ioo? at the same tlmﬁh(see W.h'crr‘] W€ " and (c) adds the matter needed to create a proper two spinon
:a e to be zero for convenience. Then we can write the 0pergs 1o “conversely, deep in the confined phase, (b) elingnate
Oor expression the string introduced by (a) in favor of fluxless charges at
Wi/, = (Gtéts I‘l of(—-T/2)|G) (10) Eggis;]\évhlch are then eliminated in (c) leaving the ground state
|€ng .

whereT = cL up to multiplication by a velocitg, here set to L
1,Csy is the linear path betweesands/, and /
L/2
0i(~T/2) = e HT/27 HT/2 (11) / /
and e is the transfer matrix for one step in the time
direction—uwith the implied meaning in the time continuum
limit. [In the process of passing to the Hamiltonian settivey

have, as usual, set = 1 along the temporal links.] (a) Equal time diagnostic
Similarly, we can write the denominator as

W=(G| [1 0i+T/2) [] 0d(-T/2[G).  (12)
leCey leCey
Now define,
|s$) = &% ] of(-T/2)|G) (13) I VT2
1€Csy : __________ :

Deep in the deconfined phase (a) and (b) leave an additional
electric flux string that meanders between the sitesd s

as the candidate two spinon state constructed from the droun - L —
state. Thus we see that (b) Fredenhagen-Marcu “Order Parameter”
Glss
R(L) = u (14)

ized two spinon state. In this form, our diagnostic was first
discovered by Fredenhagen and Mafet and they proved
that it does show the asymptotic behavi@y i the Z, gauge
theory with matter. In subsequent work they also considered
the equal time fornig).

It follows from our previous considerations that ~—L2—
(c) Spinon delocalization diagnostic

(sg|s9)
i.e. it is the overlap between the ground state and the nermal
1
1 1
1 1
1 1
|

¢ inthe deconfined phase the candidate two spinon state is
orthogonal to the ground state in the lilt =T — oo,
and has finite energy and thus there are free spinons ip|g. 3: Different operator formulations of the deconfineméiag-
the spectrum nostic [7). The blue curve and terminating points define tleais of

¢ in the confined-Higgs phase the candidate two spinoﬂgwoer;?;c:t;nd the green curve marks the needed completidinefo

state isnotorthogonal to the ground state and thus there
arenofree spinons in the spectrum

In this fashion we see that in this interpretatid{e) dis-

tinguishes between the phases based on the existence of free C. Spinon delocalization
spinons in the spectrum.
Finally, it is instructive to see how these limits work ditlgc The two interpretations provided above are sufficient for

in the Hamiltonian formalism. Consider the sequence our purposes in the rest of the paper, but some further ihsigh



can be gained by considering a third one: Now we orient théo matrix elements oH between gauge invariant states but
half Wilson loop so thas ands’ are separated by imaginary alsoto matrix elements oH involving gauge non-invariant

time T as shown in Fig3(c} states. Indeed our verbal explanation of the creation of the
With this choice, the numerator becomes the expectatiotwo spinon state referred specifically to imaginary time-evo
value, lution in the gauge non-invariant sector where the corstrai

was violated at two sites. For the specific choice of Hamilto-
Wi = (GIts(T/2) [] of(T/2)1s(=T/2) [] 0f(=T/2)|G)  nian [@) all is well—the detour into the gauge non-invariant
1€Cogy 1€Cos sector introduces no physics inconsistent with the proper o
_ _ o _(15) _eration of the diagnostic. Of course this had to be the case as
while the denominator is given by the same expression exhilye got this form working from a manifestly Lorentz invari-
ited previously. ) ant Euclidean path integral. We now show that this does not
~ To understand why the ratit »/ /W behaves differently haveto be the case by explicitly exhibiting an example with a
in the two phases consider the intermediate states prodyced soft constraint where the Fredenhagen-Marcu versidR(of
imaginary time evolution. In the deconfined phase fails to diagnose deconfinement. The example is somewhat
contrived but it is intended only to function as a cautionary
counter-example.
Consider modifying our starting, gauge theory Hamilto-
e W couples to a state with two widely separated defecian @ to H¢:
sites.

e W, couples to a state with one defect sitesaand a
delocalized spinon, while

U
Hi =H+—
f=H+

3 (Gs—1? =AY (Gs—1T*  (17)

Hence the ratio is controlled by intermediate states with di Z

ferent energies and scales as _
and set], ' — 0 for now. Now we daotimplement the con-

e (Edefectt-Espinon T straint ) on the Hilbert space, instead a suitably large value
(16)  ofU does this in the low energy sector. With that ordering of
energy scales, the ground state at smhatt U

e (EdefecttEdefec) T

and thus vanishes atlarge =T.

By contrast, in the confined phase, both operators coupleto | g) — (l—l }(Gs— 1)) [{o?=1))o | {t*=1})) (18)
eigenstates with localized spinons,safor Wy, and at both s 2
s,§ for W, whence the ratio tends to a constant. It follows
then, that in this version the diagnostic is sensitive toetkis-
tence of a delocalized spinon state in the deconfined phase.

has precisely the same form as that of the toric code. However

there is now a change of meaning, as microscopically both

the link and site variables are physical while in the torideo

the site variables can be gauged away. Yet, at low energies

Vl. FLUCTUATING CONSTRAINTS AND CHOICE OF in our model the same reduction takes plac_e and so it has as
OPERATOR FORMULATION many degrees of freedom and upon our choices of parameters

exhibits the same, but now emergefit,order.

Now consider the excitations of our model. The gauge in-

In a condensed ”.‘a“ef cqntext, a conszralnt such af tr\?ariant excitations presern@s = 1 at all sites and are visons
one encoded in E@ @ is not microscopic (or “fundamental”) with an energy B and spinons with an energy@. Note
but rather of emergent origin, that is to say it is a legacy of gy P oy K-

. i Lo 2 that their energies are independenhpfndeed, all gauge in-
ngﬁ\r/i%r;:l;?e)ﬁ;?hselrn gt]:teH;g]u"ttsc?g??H;—Peazogsitx;;ti;ﬁth variant states have (by construction) energies indepdmden
. L ' i ) gauge Inv A. The gauge non-invariant excitations involve violating th

physical” sector are associated with a large but finite gner int b : — _1 and al : .
penalty set by a scalé. To put it differently, in the context of constra}|né ]}/ Sett'n.@;s =-1, anzra ) gimg in th gpemeS_
gauge theory it is assumed that “unphysical” states aréyreal spinonic defects with enerdy + 2 w — 2\ obtained by set-

: ting ™ = —1 at a site and gauge defects with enegy- 2\
unphysical—they are forced on us by the challenge of han-, 7 . . , . z : .
dling the constraint—but in condensed matter setting they a obtained by acting with a stringj o extending from a given

certainly physical but are instead high energy states. site to infinity. Observe that the energies of the two defect

This distinction has an important consequence for the o ers_tates cross wheld > A > /2 even though the spectrum
) | PC q PEI5t the entire set of lower energy gauge invariant states 4s un
ator versions of our diagnostic, e.g. the Fredenhagen-Marc

version [[4). As noted in the discussion following its intro- changed. [For the Hamiltoniaff( the spinonic and gauge

s . . . defects have energyl' and O respectively. While there is
duction, it contains a two spinon state creation operatar th no explicit energy penalty for gauge non-invariant staties,
can be factored into two pieces,

separate requirement that the ground state d@esliminates
@ and l—l oi(~T/2) the degeneraqy that _vvould_be present otherwise.] _

In our previous discussion we argued that the action of
Mecy o{(—T/2) was to create a string stretching between
which are not individually gauge invariant, although their sitess ands. This works as long as the state with two gauge
combination is. Now the second piece is sensitive not onlydefects is the ground state in the sector with two defecs.site

|€CS§



Once the defects cross and the two spinonic defects becomehen the dynamical matter is heavy. AsTat 0, the basic
the ground state, this is no longer true. As a technical matteresult is that in this limit the behavior ¢¥(L) follows from
the crossing alone is not enough, we also need todwsn  that ofW(L) in the absence of dynamical matter. As the latter
to a small value so that imaginary time evolution conneas th exhibits a transition between perimeter and area depergdenc
two states. Once this is don&(w) # 0 even though we are R() transitions between vanishing and developing an expec-
clearly in the deconfined phase and the diagnostic failsién th tation value ofO(L%). In somewhat more detail, one can ex-
form. amine the Euclidean path integral, now finite in the (large)
However the diagnostic still works in its equal time form imaginary time direction at low temperatures much as in Sec-
so the lesson is that in general condensed matter settiags thion[llll As before, a large line-tension between any pair of
formulations presented in the previous section are noy full charges survives, and it continues to be preferable to mini-
equivalent: whereas the equal-time formulation (888) is  mize free edges at the expense of adding the (cheap) surface,
robust, the other pair of formulations (SBEBIVC) need not  leading to a vanishing dR().
be. At high temperaturesT — oo, it is more convenient to
work directly in the Hamiltonian formulation and the high-
temperature expansion. In this expansion, one obtains poly
VIl. FINITE TEMPERATURE TOPOLOGICAL ORDER IN nomials in powers off = 1/T upon expanding exp-BH).
d>3 Non-vanishing terms in the expectation values appearing in
Eq.[@ are only obtained if each unpaired, 1 is matched by
dhe polynomials. The cheapest (in powergpfvay of doing

We now return to our main development and consider the, "~ F ; )
use of our diagnostic to establish the finite temperatursgha IS iS t0 retrace the perimeter @f andW, ,. This leads to
the same leading power @fin the expectation value of each,

structure of theZ, gauge theory where contrasting answers" '~ : .
can be found even in the recent literadr#21 We begin by ~ Which thence cancel in the expressionieo). Consequently
considering thd@ > 0 physics of the toric codg,= I = 0 in R(e0) is non-zero at sufficiently high temperatures and we that

Eq.I It can be shown (see Append) that at this point in there is a phase transition between the high and low tempera-

d -+ 1 space-time dimensions the quantum partition function at!ré Phases.
all temperatures is proportional, up to a simple multiglica
analytic factor, to that of the purg, gauge theorywithout
matterdefined on a dimensional Euclidean lattice.

From what is known about the latter theory, one can im-
mediately read off that topological order will persist to fi-
nite temperature for atl > 3, but not below. Further we see
that, despite the presence of matter, the transition betiese Thus far our discussion has focused on the simplest case,
low temperature deconfined phase the the high temperatutgat of standard, gauge theory wittZ, matter where there
phase can be diagnosed by the Wilson loop which goes frorire two phases to distinguish—the deconfined phase and the
a perimeter law to an area law between the two phases. confined-Higgs phase. Our deconfinement diagnostic general

This physics has to do with the gauge excitations. Foizes straightforwardly to lattice gauge theories basedtbaro
d = 2, finite energy point-like visons appear at an exponengauge groups where there are similarly only two phases to
tially small but non-zero density at afy> 0 destroying the  distinguish, toZ,, U(1) and to Yang-Mills theories based on
deconfined phase. As the Wilson loop measures the averagg8@n-abelian groups. Indeed, the last named case was the pri-
parity of the enclosed vorticity, it acquires an area law as dnary spur to Fredenhagen and Marcu’s work. In all of these
result. caseR has the same structure with appropriate replacement

By contrast, this mechanism is not operative in higherof the matter and gauge fields. _
dimension because the gauge/magnetic excitations now ap- FOr example, a compaldt(1) gauge theory with charge=
pear in a higher-dimensional version—loopslis: 3—whose 1 matter is defined by a space time action analogouto (
characteristic siz&,ny, vanishes a$ — 0. As the Wilson loop . ;
now counts the parity of flux loops which link it, it is sengéi —S=K % Iel_dlpUI(l) +J|-s§zea| Uity +h.c., (19)
only to those withing, of its boundary, whence the perime- ”
ter law and the deconfined phase survive at sufficiently smallvhere theU; = exp(iA)) = U*, are nowU (1) valued gauge
temperatures. fields living on the links defined in the standard orientation

At higher temperatures there is a phase transition, e.g ifrom one sublattice to the other, and the= exp(ig) are the
d = 3 where the vortex loops unbind. The basic physics ofcorresponding matter fields residing on the sites. Unlilee th
vortex loops discussed above indicates that the finite tempeZ, theory, we now need to pay attention to the orientation of
ature deconfined phase should be stable beyond the Kitaearious link variables. The links in the second term are tra-
point ind > 3 as argued #18 However, once matter be- versed in the standard orientation while in the first term the
comes dynamical the Wilson loop exhibits a perimeter law atoops are taken anticlockwise withl ) = +1 if the link is tra-
anyT and other standard diagnostics fail as well. versed in, or opposite to, its standard orientation respaigt

Fortunately, our diagnostic continues to workTat- 0. At At zero temperature in spatial dimensidon> 3 this theory
small temperatures one can work perturbatively at sall exhibits both a confined and a deconfined pH4sme Figdl

VIIl. BEYOND 27,

A. Gauge fields with fundamental matter



Absent matter] = 0, the oriented Wilson loop Higgs, Z, deconfined
confined
Wi[C] = <|1Ur<|>> (20) |
le R, (@)# 0
. . - . W1 » ~eL
is capable of distinguishing between these two phases, ex- Ry (0)% 0 L2 J2
hibiting an area law in the former, and a perimeter law in 2 o
the latter, with logarithmic corrections signaling the Goub Wy~ e_L Ry (@) =0
interactiorf?. Wa~e Wi ~et
deconfined
© 0
Higgs 0 K ©

FIG. 5: Sketch of the phase diagram of thél) gauge theory with
charge two matter fields. Chargeline tension diagnosti®; and
Wilson loopWg are defined in EQ_23.

As our first example we consider the well known phase di-
agram of a single matter field of charge- 2. This contains,
as shown in Fig5, in addition to the deconfined phase of the
U(1) field, a Higgs phase which corresponds to the decon-
fined phase of the appropriafe gauge theory and a distinct
completely confined pha&® Due to the lack ofj = 1 matter,
we can make some progress using Wilson loops alone.

Of the three phases, twtJ (1) andZ, deconfined) exhibit
) ) ) a perimeter law ifn\y while one U (1) confined) exhibits an
~ This phase structure persists when matter with chargd  area law. The key point is that tige= 2 dynamical matter can-
is turned on. However, as in the case of fetheory above, not break up the confining string that stretches between two
the Wilson loop fails as a diagnostic in this setting. By anal testq = 1 sources in the confined phase. By contréstex-
ogy to Eq[7 we construct the appropriately generalized diag-hibits a perimeter law everywhere and distinguishing the tw

FIG. 4: Sketch of the phase diagram of thél) gauge theory with
charge one matter fields. The behaviour of the line tensiagrdistic
R; and Wilson loop/\; is indicated for each phase.

nostic ratio, deconfined phases now requires that we evaluate the diagnos-
(i U g Te) tic Rx. As this tests for the presence of doubly charged states
Ru(L) = Waya(L) _ s Mecy, Vi ts _ 1) in the spectrum, it vanisheslyin the fully deconfined phase.
VWI(L) \/<I_I|ch|”<|>> In terms of the nature of gauge-field fluctuations, these dis-

tinct behaviours can be seen most intuitively by gauge-gixin
As before the phases are distinguished by the asymptotic b& = 0- Then, deep in the deconfined phase, an appropriate

havior of Ry (L), projection of the state) |A) = 0) is a ground state. In contrast,
the gauge field fluctuates strongly in the confined phase, and
lim__.Ri(L) =0 deconfined phase the A range over the full intervdD, 2m).In the Higgs fluctua-
lim_ Ry (L) #0 otherwise (22) tions are restricted: hergdy = 0 or A; = Tt satisfy the second

term of [I9). By constructionR; is sensitive to the former, but

We now turn to the application of the diagnostic to casedhot the latter, fluctuations, and it can thus diagnose thgsiig

with more than one phase and to problems phrased in moonfinement transition. This state of affairs is summarired
standard condensed matter settings. Tablell

Phase Wi(L) Ro(L)
B. U(1) gauge theory with chargeq matter Deconfined Perimeter 0
Higgs Perimeter.%
Confined Area  L°

To obtain a richer phase structure we considé( &) gauge
theory coupled to matter fields that carry one or more higher
(non-fundamental) charges> 2. In this setting it is usefulto  tag E - Diagnostics fotU (1)
consider the set of chargpeperators

gauge theory with onlg = 2 matter

W (Mec, , U )1e) As a second example we consider the more generic and
Wgq(L) = <|1U|52|)); Rq(L) = vz 1) . (23)  complex situation where charges with bafh= 1 andq = 2
le (Miec Ufg|))> are present simultaneously. The number of parameters in the

Hamiltonian makes for a large phase diagram, and we restrict
whose structure indicates thaelectric flux quanta emanate ourselves to the instructive case wheredhel matter is very
from a given charge. heavy,i.e. very sparse. This then has the same physics of our



Higgs, Z, deconfined @ IX. CONCLUSION
confined
Ry (0)# 0 We have substantially met the challenge posed at the start of
this paper, that of finding a diagnostic for deconfinemert tha
J2 has the form of a ground state expectation value, i.e. wisich i
Ri2 @)* O a property of a single ground state of the system. Itis alse ni
Wiz~ et Ri2@)=0 to find that our reasoning, which comes from thinking about
Wiz~ et line and surface tensions in the statistical mechanics Bf su
deconfined " faces and edges, leads to an object discovered by lattigeegau
0 - theorists thinking about creating states with (non) deoeafi
K quarks.

_ _ The next steps are to apply this formulation to problems
FIG. 6: Sketch of the phase diagram of thel) gauge theory with  giher than those addressed or reviewed in this paper and two
charge two as well as heavy charge one matter fields. come to mind. The first is using it to detect spin liquids in
systems with Heisenberg symmetry where the gauge field in-
, volves valence bonds and there is a set of orthogonalitgsssu
last example, and thus the same phase diagram aSLFiie 1 contend with. The second is generalize the construotion t

new feature is that noWy obeys a perimeter law in all three ,5n-abelian topological phases captured by the models con-
phases so that we may no longer use it to test for the decoRycted by Levin and We8.

finement of charge-1 objects. The solution to this is to evalu
ateR; instead. The diagnostic behavior of the combination of

R; andRy is summarized in Tab[El X. ACKNOWLEDGEMENTS
Phase Ri(L) Ro(L) This work was supported in part by NSF grant No. DMR-
Deconfined 0 0 1006608 (SLS).

Higgs L° o

; 0 0
Confined L L Appendix A: Kitaev's toric code

TABLE II: Diagnostics forU (1) gauge theory witly = 1 andg = 2 . ) . . .
matter g (1) gaug y with a The model describing Kitaev’s toric code is obtained from

the Ising gauge Hamiltonian, E@, straightforwardly. First,
etl = J = 0. Secondly, replace the matter term proportional

We note that this combination manages to distinguish al 0w by utilizing the constraint, EG,

three phases, whereas g fail to do so.
These deconfined phases persist to finite temperatures in di- G=l=T1,= |_| oy (A1)

mensiond > 4. The known behavior in lower dimensions is I:scal

more complicated. Th¥ (1) deconfined phase is absent in

d=3atT > 0andind =2 even afl =0 while theZ, decon-

fined phase is present in both these cases. Th|s eomplexﬂy is —Hrc=K z |‘| g|2_|_ Y Z |‘| of. (A2)

correctly captured by our doublet of diagnostic ratios. P lcdp S I:scol

to obtain

which now acts in the subspace spanned solely by the link
degrees of freedom.
One can see that the model is special by noting that all
terms commute with all others. This allows the full spec-
The formalism developed above can be directly applied tarum to be readily obtained and one sees that the model ex-
two classes of Hamiltonians which arise naturally in discus hibits topological order. This is most easily done before
sions of quantum magnetism. The first are the “slave patticlegauge fixing, (EJAI), in the basis of eigenstates o]} and
or Schwinger boson/fermion Hamiltoni#ds*% Here the spin  {tX}. In this formulation, sites where = —1 are occupied
Hamiltonian of a quantum magnet is reformulated as a mattepy “charges” and links whereX = —1 carry “electric flux”:
gauge system with spinons coupled to a gauge field. Here 0@ = 1 is theZ, version of Gauss's law. The dual, magnetic,
construction oR(L) carries over pretty much directly. flux passing through loops is measured by the Wilson loops
The second class are quantum dimer me@&% now with ~ W[C] = [,cc o}
a Hilbert space expanded to include gapped, spin-carrying The ground states dfrc lack chargests = 1, Vs, and are
monomers to represent spindhsin this setting, the micro- characterized by flux expulsioft Eapolz =1 vp.
scopic gauge structure arises from the hard core dimer con- The complete lack of gauge field fluctuations, diagnosed by
straint and the Wilson loop is defined as a dimer rearrangethe Wilson loopW = 1, signals a deconfined phase. Consis-
ment on a loop that respects the hard core constfaimtc-  tent with this ground state signature, the excited statetago
cordingly we can again define our diagnostic. non-interacting charges, free to sit at arbitrary location

C. Gauge theories of quantum magnets
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1. Mapping to classicalZ, gauge theory andT > 0 phase local perturbatiolVv to the toric code, where locality now im-
transition plies that the range of variables coupled is strictly bouhde
say by a distanck. For example, we may reintroduce the two
We now turn to a computation of the partition function of terms in Eqlwhich we had set to zero on our way from the
Kitaev's model aff > 0. As gauge and matter sectors of the Zz gauge theory to the toric code, although the argument to
theory only interact via the constrai@s = 1, one can use the follow is completely general.

basis state${o;}) @ |{1s}) Whereo'lz/|{o'|}> =oy|{o}) and The easy part is to notice that the topologically distinct,
%|{ts}) = 1¢|{Ts}) to obtain degenerate ground states kg will not mix up to an order
L/b~ O(L) since they differ by the creation of a vortex loop
Z=2 -Zs (A3)  (or appropriate dimensional analog) that has to be created a
stretched across the system in as many applications of the pe
where turbation. The less obvious part is that the states remain de
_ K o generate in energy up to that order.
A= Glzﬂeﬁ Zoflieopd (A4) To see this, observe that the energy sldEgor two ground

states|Yo) = |G) (Eq.I8) and|y;) = @*|Yo) differing by the
is the partition function of the classical or discretized- Eu flux through a non-contractible loo@;c, are sums of terms of

clidean latticeZ, gauge theory il dimensions and the form
Zs= Z 6ﬂsr5,leﬁrmsts (AB) 0By = (Wo|VPV...|Wo) (A6)
Ts==x1 O0E1 = (Wo |(DXV PV... (DX| Wo) - (A7)

is the partition function of independent spins in a magnetiq_|ere Vv
field 'y up to a single, global, constraint that the number of
flipped spins (in gauge language: charges) be even. All th
singularities inZ thus are contained entirely 1 .

The finite temperature phase structur&pis well known.
Ind > 3 it exhibits two phases. The deconfined phase, at large"® . . .
BK, is characterized by a perimeter law for the Wilson loop at Now, we claim thabEo = 3, to o(L) in perturbation the-
large loop sizes. The confined phase, at siidllexhibits an ory. To see this, note that we can permute Grighrough the.
area law. By contrast, id — 2, 7, exhibits only a confined operator products &f s andPs to annihilate the other. This is

; ” ,
phase, but with a confinement scale (area law coeffici&nt) possml_e a) because™ commutes with both numerator ar_1d
that diverges exponentially & —s o, denominator oﬂ:’ and b) because any topologically equiv-
All of this ties in with our previous results on Ising gauge alentxdeformatmn of the non-contractible loop along which
theories: (i) Kitaev’'s model exhibits & > 0 continuation of the os act produces the same state. Thus atan orde_r below
the T — 0 topological phase id > 3 but not ind = 2. (i) L/b~ O(L) in perturbation theory, there is always a choice of

the presence of the topological phase can be detected by tﬂ.%op which avoids the locations of all the perturbing terms.
(spatial) Wilson loop exhibiting a perimeter law.

is the local perturbation, P =
(1= 3 W) (Wil) g5t (1= %3 [Wi){Wi)  projects onto  the
excited state manifold an@® = [,cc,. 0} inserts a flux by
operating on all links crossed by the non-contractible Joop

2. Stability of topological order under perturbations of the
toric code

It is often convenient to do calculations and point-of-
principle demonstrations for topological phases at a “&ita
point”, where terms generically presentin the Hamiltordem
set to vanish by hand, leaving behind a soluble model. This
has some obvious drawbacks—for instance, a “zero-law” for
the Wilson loopW = 1 = e %L is obviously somewhat non-
generic, like a vanishing rather than finite correlationgkn
in a disordered system, and any result thus obtained needs to
be supplemented at least by a discussion of its fate under per
turbations.

We now show that the deconfined phase is characterized
by a persistence of thé'2-fold topological degeneracy that
signals topological order, whetd,c is the number of inde-
pendent non-contractible loops. More precisely, it exkibi
cluster of states with splitting dd(e~") for a system of lin-
ear dimensior. which are separated from all other states by
a gap ofO(L%). To this end, we consider adding an arbitrary
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Thereis a spectral test—the deconfined phase has particles that
carry the charge of the deconfined gauge field and also charac-
teristically exhibit fractionalization of the microscapguantum
numbers. For example, in our workhorse example later ingiis

per we can ask if the Hamiltonian leads to isolable partialits

Z5 [10]. However, this test requires a fair amount of inforroati

and in the presence of bound states of the fractionalizeectdhj
even more so. Note also that fractionalized quantum nundrers
not quantized signatures of a deconfined pkase

1 Of the existing proposals for diagnosing topological pkaske

one which closest in spirit to such a prescription is the catiap
tion of an entanglement entropy, using a combination of aympr
ately defined reduced density matrices for a system subj¢cte
different partitionings: A. Kitaev, J. Preskill, Phys. Réett. 96,
110404 (2006); M. Levin and X.-G. Weihid. 110405.

“Heavy” refers to the large creation cosf, g, rather than a small
bandwidth,00 J, of the matter particle.

Note that there is no additional geometrical transition toe
edges at dy > Jc even in the self-dual cage= 3; rather, it will
show up as a transition in the appropriate dual variables.
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