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Abstract.

We study the nonperturbative gluon and ghost propagatods=83 Yang-Mills, using the Schwinger-Dyson equations
of the pinch technique. The use of the Schwinger mechaniagsl® the dynamical generation of a gluon mass, which, in
turn, gives rise to an infrared finite gluon propagator anasgldressing function. The propagators obtained are in geogd
agreement with the results 8fJ(2) lattice simulations.
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INTRODUCTION gauge [8] (for different approaches see, e.g.,[15, 16]).

Even though QCB differs from QCDL, in several as-

pects, both theories share a crucial nonperturbative prop- GLUON MASS GENERATION IN

erty: they cure their infrared (IR) instabilities througet YANG-MILLSTHEORIES

dynamical generation of a gauge boson (gluon) mass,

without affecting the local gauge invariance, which re-|n order to understand the basic concept underlying the

mains intact [1, 2]. The nonperturbative dynamics thatschwinger mechanism, let us consider the gluon propa-
gives rise to the generation of such a mass can bggator (in the Landau gauge),

ultimately traced back to a subtle realization of the
Schwinger mechanism [3, 4]. The gluon mass generation Ay () = =Py (Q)A(G?), (1)
manifests itself at the level of the fundamental Green'’s
functions of the theory in a very distinct way, giving rise where Ry (q) = guv — qudv/9?. The scalar factor
to an IR behavior that would be difficult to explain other- A(g?) is given by A~Y(¢?) = ¢ + iM(g?), where
wise. Specifically, in the Landau gauge, botfdis- 3,4, My, (q) = Puv(q)n(qz) is the gluon self-energy. One
the gluon propagator and the ghost dressing functiomsually defines the dimensionless vacuum polarization,
reach a finite value in the deep IR [5, 6, 7, 8]. However,to be denoted bfl(g?), asM(g?) = g?M(g?), and thus
the gluon propagator of QGalisplays a local maximum
at relatively low momenta [9, 10], before reaching a finite A Y(?) = g?[1+iN(g?)). (2)
value atq = 0. This characteristic behavior is qualita- ) ) )
tively different to what happens ih= 4, where the gluon AS Schwinger pointed out long time ago [3], the gauge
propagator is a monotonic function of the momentum ininvariance of a vector f!eld does_ not _necessarlly imply
the entire range between the IR and UV fixed points [5].Z€r0 mass for th(_e associated partlcle,_ if the curre_ntvector

Given that the gluon mass generation is a purely non¢oupling is sufficiently strong. According to Schwinger’s
perturbative effect, it can be naturally treated within thefundamental observation, M(g*) acquires a pole at
framework of the Schwinger-Dyson equations (SDE).Z€M0 momentumtransfer, then the vectormgson becomes
These complicated dynamical equations are best studnassive, even if the gauge symmetry forbids a mass at
ied in a gauge-invariant framework based on the pincihe level of the fundamental I__ag_ranghzam. Indeed, it is
technique (PT) [1, 11, 12], and its profound correspon-clear that if the vacuum polarizatidi(q) has a pole
dence with the background field method (BFM) [13]. As 8td” = 0 with positive residuer, i.e.,
has been explained in detail in the recent literature [14],
this latter formalism allows for a gauge-invariant trunca- n(qz) - mz/qz’ ®)
_tion of the SD series, in the sense that it preserves mang ., (in Euclidean space)
ifestly, and at every step, the transversality of the gluon
self-energy. A Y(P) = P+ P (4)

In the present talk we report on a recent study of the
gluon and ghost propagators of pure Yang-Millglis 3,  Thus, the vector meson becomes masgivé(0) = n?,
using the SDEs of the PT-BFM formalism in the Landau even though it is massless in the absence of interactions
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(g = 0). There isno physical principle that would pre- Mi& O s
cludeN(g?) from acquiring such a pole, even in the ab- % , m P anRAAAD
sence of elementary scalar fields. Isteongly-coupled ’ L
theory, like nonperturbative Yang-Mills id = 3,4, this , B gm“% P M
may happen for purely dynamical reasons, since strong Smone e
binding may generate zero-mass bound-state excita-

tions [4]. The latter adtke dynamical Nambu-Goldstone  FIGURE 2. The SDEs for the various quantities involved.
bosons, in the sense that they are massless, composite,

andlongitudinally coupledbut, at the same time, they

differ from Nambu-Goldstone bosons as far as their Ori'wherevuaﬁ(q, p,r) contains the massless poles. A stan-
gin is concerned: they dnot originate from the spon- gard Ansatz fON (0, P.1) is [17]

taneous breaking of any global symmetry [1]. In what

follows we will assume that the theory can indeed gen- QuPa(d—P)p pP

erate the required bound-state poles; the demonstrationvﬂ"ﬁ(q’ pr) = (r) 292p2 B (r)

of the existence of such bound states is a difficult dy- s u 0
namical problem, that must be addressed by means of — [m(p) —nP(q)] 2 Fp (@) Pa (p)
Bethe-Salpeter equations. + cp., 9)

The Schwinger mechanism is incorporated into the
SDE of the gluon propagator through the form of theltis easy to check that
nonperturbative three-gluon vertex (Fig.1). In fact, in
order for the gauge symmetry to be preserved, the three- 0*Vuap(a, P.1) = Pag(P)NP(P) — Pyp(r)mP(r), (10)
gluon vertex must satisfy the same Ward identity as in, 4 cyclic permutations. Therefore, one has
the massless case, but now with massive, as opposed
to massless, gluon propagators on its rhs. The way this g“T}},5(q,p,r) = Pag (DAL (1) — Pap(P)Ant(p),
crucial requirement is enforced is precisely through the (12)
incorporation into the three-gluon vertex of the Nambu-as announced.
Goldstone (composite) massless excitations mentioned
above. To see how this works with a simple example, let

us consider the standard tree-level vertex SDE ANALYSISAND COMPARISON
g (0 P.1) = (A P)pGua + (P—1)uGap+ (r —Dalup WITH THE LATTICE

5
which satisfies the simple Ward identity In the “one-loop dressed” approximation, the PT-BFM

U 1 . gluon self-energy is given by the subset of diagrams
AT uap(d, 1) = Pap(r)Bo (1) —Pag(P)d(P) (6)  shown in Fig.2. As explained in detail in various works
(see, e.g., [14, 12], the resulting gluon self-energy is
@anifestly transverse, due to the simple Ward identities
satisfied by the PT-BFM fully dressed vertices. In ad-
dition to the SDE of the gluon, we consider the corre-
ALL(GP) = g7 — mP(g?), (7)  sponding SDEs for (i) the ghost propagator, denoted by
D(p), (or its dressing functiorf; (p) , given byD(p) =

and the new vertexI"" -(g,p,r) that must replace . > . 4 ;
L HaB DT . . iF (p)/p?), and (ii) the auxiliary functiorG(q), defined
[ uap(d, p,r) must still satisfy the Ward identity of (6), ¢ thegyy component of the functioi,y, shown in

r/,r?aﬁ(qa par) = ruaﬁ(qv pvr)+V[JC{B(qa par)a (8)

whereAal(q) = ¢ is the inverse of the tree-level prop-
agator. After the dynamical mass generation, the invers
gluon propagator becomes, roughly speaking,

m

A(q) = [1+ G(a)* Aa), (12)

relating the PT-BFM gluon propagaths(q), and the

conventional one/(q) (simulated on the lattice). The
_ . N i closed expressions for all these SDEs have been given
in [8].
-— l) pole
q-
IS

The way we proceed is the following. Instead of actu-
ally solving the system of coupled integral equation, we
follow an approximate procedure, which is operationally

FIGURE 1. Vertexwith nonperturbative massless excitations less complicated, and appears to capture rather well the
triggering the Schwinger mechanism. underlying dynamics.
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FIGURE 3. Comparison with the lattice results of [9].

Specifically, we will assume that the PT-BFM gluon  Acknowledgments: | thank the QCHS-IX organizers

propagator has the form for their kind hospitality. This research is supported by
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DY) = o + P+ Mm(q). (13)  FPA2008-02878, and the Fundacién General of the UV..
where
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