
ar
X

iv
:1

01
1.

56
46

v1
  [

he
p-

ph
]  

25
 N

ov
 2

01
0

Nonperturbative gluon and ghost propagators in d = 3
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Abstract.
We study the nonperturbative gluon and ghost propagators ind = 3 Yang-Mills, using the Schwinger-Dyson equations

of the pinch technique. The use of the Schwinger mechanism leads to the dynamical generation of a gluon mass, which, in
turn, gives rise to an infrared finite gluon propagator and ghost dressing function. The propagators obtained are in verygood
agreement with the results ofSU(2) lattice simulations.
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INTRODUCTION

Even though QCD3 differs from QCD4 in several as-
pects, both theories share a crucial nonperturbative prop-
erty: they cure their infrared (IR) instabilities through the
dynamical generation of a gauge boson (gluon) mass,
without affecting the local gauge invariance, which re-
mains intact [1, 2]. The nonperturbative dynamics that
gives rise to the generation of such a mass can be
ultimately traced back to a subtle realization of the
Schwinger mechanism [3, 4]. The gluon mass generation
manifests itself at the level of the fundamental Green’s
functions of the theory in a very distinct way, giving rise
to an IR behavior that would be difficult to explain other-
wise. Specifically, in the Landau gauge, both ind = 3,4,
the gluon propagator and the ghost dressing function
reach a finite value in the deep IR [5, 6, 7, 8]. However,
the gluon propagator of QCD3 displays a local maximum
at relatively low momenta [9, 10], before reaching a finite
value atq = 0. This characteristic behavior is qualita-
tively different to what happens ind= 4, where the gluon
propagator is a monotonic function of the momentum in
the entire range between the IR and UV fixed points [5].

Given that the gluon mass generation is a purely non-
perturbative effect, it can be naturally treated within the
framework of the Schwinger-Dyson equations (SDE).
These complicated dynamical equations are best stud-
ied in a gauge-invariant framework based on the pinch
technique (PT) [1, 11, 12], and its profound correspon-
dence with the background field method (BFM) [13]. As
has been explained in detail in the recent literature [14],
this latter formalism allows for a gauge-invariant trunca-
tion of the SD series, in the sense that it preserves man-
ifestly, and at every step, the transversality of the gluon
self-energy.

In the present talk we report on a recent study of the
gluon and ghost propagators of pure Yang-Mills ind= 3,
using the SDEs of the PT-BFM formalism in the Landau

gauge [8] (for different approaches see, e.g.,[15, 16]).

GLUON MASS GENERATION IN
YANG-MILLS THEORIES

In order to understand the basic concept underlying the
Schwinger mechanism, let us consider the gluon propa-
gator (in the Landau gauge),

∆µν(q) =−iPµν(q)∆(q2) , (1)

where Pµν (q) = gµν − qµqν/q2. The scalar factor
∆(q2) is given by ∆−1(q2) = q2 + iΠ(q2), where
Πµν(q) = Pµν (q)Π(q2) is the gluon self-energy. One
usually defines the dimensionless vacuum polarization,
to be denoted byΠΠΠ(q2), asΠ(q2) = q2ΠΠΠ(q2), and thus

∆−1(q2) = q2[1+ iΠΠΠ(q2)] . (2)

As Schwinger pointed out long time ago [3], the gauge
invariance of a vector field does not necessarily imply
zero mass for the associated particle, if the current vector
coupling is sufficiently strong. According to Schwinger’s
fundamental observation, ifΠΠΠ(q2) acquires a pole at
zero momentum transfer, then the vector meson becomes
massive, even if the gauge symmetry forbids a mass at
the level of the fundamental Lagrangian. Indeed, it is
clear that if the vacuum polarizationΠΠΠ(q2) has a pole
at q2 = 0 with positive residuem2, i.e.,

ΠΠΠ(q2) = m2/q2, (3)

then (in Euclidean space)

∆−1(q2) = q2+m2. (4)

Thus, the vector meson becomes massive,∆−1(0) = m2,
even though it is massless in the absence of interactions
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(g = 0). There isno physical principle that would pre-
cludeΠΠΠ(q2) from acquiring such a pole, even in the ab-
sence of elementary scalar fields. In astrongly-coupled
theory, like nonperturbative Yang-Mills ind = 3,4, this
may happen for purely dynamical reasons, since strong
binding may generate zero-mass bound-state excita-
tions [4]. The latter actlike dynamical Nambu-Goldstone
bosons, in the sense that they are massless, composite,
and longitudinally coupled; but, at the same time, they
differ from Nambu-Goldstone bosons as far as their ori-
gin is concerned: they donot originate from the spon-
taneous breaking of any global symmetry [1]. In what
follows we will assume that the theory can indeed gen-
erate the required bound-state poles; the demonstration
of the existence of such bound states is a difficult dy-
namical problem, that must be addressed by means of
Bethe-Salpeter equations.

The Schwinger mechanism is incorporated into the
SDE of the gluon propagator through the form of the
nonperturbative three-gluon vertex (Fig.1). In fact, in
order for the gauge symmetry to be preserved, the three-
gluon vertex must satisfy the same Ward identity as in
the massless case, but now with massive, as opposed
to massless, gluon propagators on its rhs. The way this
crucial requirement is enforced is precisely through the
incorporation into the three-gluon vertex of the Nambu-
Goldstone (composite) massless excitations mentioned
above. To see how this works with a simple example, let
us consider the standard tree-level vertex

Γµαβ (q, p, r)= (q−p)β gµα +(p−r)µgαβ +(r−q)αgµβ ,
(5)

which satisfies the simple Ward identity

qµΓµαβ (q, p, r) = Pαβ (r)∆−1
0 (r)−Pαβ(p)∆−1

0 (p) (6)

where∆−1
0 (q) = q2 is the inverse of the tree-level prop-

agator. After the dynamical mass generation, the inverse
gluon propagator becomes, roughly speaking,

∆−1
m (q2) = q2

−m2(q2), (7)

and the new vertex,ΓΓΓm
µαβ (q, p, r) that must replace

Γµαβ (q, p, r) must still satisfy the Ward identity of (6),
but with ∆−1

0 → ∆−1
m on the rhs. This is accomplished if

ΓΓΓm
µαβ (q, p, r) = Γµαβ (q, p, r)+Vµαβ(q, p, r), (8)

= + + + · · ·

pole1
q2

FIGURE 1. Vertex with nonperturbative massless excitations
triggering the Schwinger mechanism.
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FIGURE 2. The SDEs for the various quantities involved.

whereVµαβ (q, p, r) contains the massless poles. A stan-
dard Ansatz forVµαβ (q, p, r) is [17]

Vµαβ (q, p, r) = m2(r)
qµ pα(q− p)ρ

2q2p2 Pρ
β (r)

−

[
m2(p)−m2(q)

] rβ

r2 Pµ
ρ (q)Pρ

α (p)

+ c.p. , (9)

It is easy to check that

qµVµαβ (q, p, r) = Pαβ (p)m
2(p)−Pαβ (r)m

2(r) , (10)

and cyclic permutations. Therefore, one has

qµΓm
µαβ (q, p, r) = Pαβ (r)∆−1

m (r)−Pαβ (p)∆−1
m (p) ,

(11)
as announced.

SDE ANALYSIS AND COMPARISON
WITH THE LATTICE

In the “one-loop dressed” approximation, the PT-BFM
gluon self-energy is given by the subset of diagrams
shown in Fig.2. As explained in detail in various works
(see, e.g., [14, 12], the resulting gluon self-energy is
manifestly transverse, due to the simple Ward identities
satisfied by the PT-BFM fully dressed vertices. In ad-
dition to the SDE of the gluon, we consider the corre-
sponding SDEs for (i) the ghost propagator, denoted by
D(p), (or its dressing function,F(p) , given byD(p) =
iF (p)/p2), and (ii) the auxiliary functionG(q), defined
as thegµν component of the functionHµν , shown in
Fig.2.G(q) enters into the important relation

∆(q) = [1+G(q)]2 ∆̂(q), (12)

relating the PT-BFM gluon propagator,̂∆(q), and the
conventional one,∆(q) (simulated on the lattice). The
closed expressions for all these SDEs have been given
in [8].

The way we proceed is the following. Instead of actu-
ally solving the system of coupled integral equation, we
follow an approximate procedure, which is operationally
less complicated, and appears to capture rather well the
underlying dynamics.
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FIGURE 3. Comparison with the lattice results of [9].

Specifically, we will assume that the PT-BFM gluon
propagator has the form

∆̂−1(q) = q2+m2+ Π̂m(q). (13)

where

(d−1)Π̂m(q) = [(a1)+ (a2)+ (a3)+ (a4)]
µ
µ . (14)

The functionΠ̂m(q) will be determined by calculating
the Feynman graphs given in Fig.2, using inside the cor-
responding integrals∆ → (q2+m2)−1, andD → 1/q2 In
order to maintain gauge invariance intact, ensuring that
qµΠ̂µν

m (q) = 0, we will use theΓΓΓm
µαβ (q, p, r) given in (8)

as the fully-dressed three-gluon vertex; inVm
µαβ (q, p, r)

we will use a constant (instead of a running) mass,m. As
for the ghost dressing function, we set up an approximate
version of the ghost SDE, andsolveit self-consistently
for the unknown functionF(p). As explained in [8], this
procedure allows for a very goodsimultaneousfit of the
available lattice data. The best possible fit we have found
is shown in Fig.3, furnishing the ratiom/2g2 = 0.15.

CONCLUSIONS

We have presented a nonperturbative study of the (Lan-
dau gauge) gluon and ghost propagator ford = 3 Yang-
Mills, using the “one-loop dressed” SDEs of the PT-
BFM formalism. One of the most powerful features of
this framework is that the transversality of the truncated
gluon self-energy is guaranteed, by virtue of the QED-
like Ward identities satisfied by the fully-dressed vertices
entering into the dynamical equations. The central dy-
namical ingredient of our analysis is the assumption that
the Schwinger mechanism is indeed realized ind = 3
Yang-Mills. The propagators obtained from these non-
perturbative equations agree rather well with the results
of SU(2) lattice simulations.
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