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The transverse charge density in the pion can be represented as a dispersion integral of the imag-
inary part of the pion form factor in the timelike region. This formulation incorporates information
from e+e− annihilation experiments and allows one to reconstruct the transverse density much
more accurately than from the spacelike pion form factor data alone. We calculate the transverse
density using an empirical parametrization of the timelike pion form factor and estimate that it is
determined to an accuracy of ∼ 10% at a distance b ∼ 0.1 fm, and significantly better at larger
distances. The density is found to be close to that obtained from a zero–width ρ meson pole over a
wide range and shows a pronounced rise at small distances. The resulting two–dimensional image of
the fast–moving pion can be interpreted in terms of its partonic structure in QCD. We argue that
the singular behavior of the charge density at the center requires a substantial presence of pointlike
configurations in the pion’s partonic wave function, which can be probed in other high–momentum
transfer processes.
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I. INTRODUCTION

Learning to describe the structure and interaction of
hadrons on the basis of QCD is one of the main objectives
of nuclear physics. An essential step in this program is
to understand the structure of the pion, a nearly mass-
less excitation of the QCD vacuum with pseudoscalar
quantum numbers. The pion plays a central role in nu-
clear physics as the carrier of the long–range force be-
tween nucleons and a harbinger of spontaneous symme-
try breaking. The importance of the pion has been rec-
ognized by intense experimental and theoretical activity
aimed at measuring its properties and understanding its
structure. The pion electromagnetic form factor Fπ(t)
was measured at spacelike momentum transfers through
pion–electron scattering [1, 2] and pion electroproduc-
tion on the nucleon [3–6]; new measurements in the re-
gion |t| ∼ few GeV2 are planned with the Jefferson Lab
12 GeV Upgrade [7]. In the timelike region the modu-
lus of the (complex) pion form factor, |Fπ(t)|, was deter-
mined in a series of e+e− experiments [8–12]; see Ref. [13]
for a compilation of the older data.

The concept of transverse densities [14], whose prop-
erties were explored in several recent works [15, 16], pro-
vides a model-independent way to relate the form factors
of hadrons to their fundamental quark/gluon structure in
QCD. Defined as the 2–dimensional Fourier transforms of
the elastic form factors, the transverse densities describe
the distribution of charge and magnetization in the plane
transverse to the direction of motion of a fast hadron; see
Ref. [17] for a review. They are closely related to the par-
ton picture of hadron structure in high–energy processes
and correspond to a reduction of the generalized par-
ton distributions (or GPDs) describing the distribution
of quarks/antiquarks with respect to longitudinal mo-

mentum and transverse position [18, 19]. It is therefore
natural to attempt to interpret the pion form factor data
in terms of the transverse charge density in the pion.
In particular, the density at small transverse distances
b ≪ 1 fm places constraints on the probability of point-
like configurations (or PLCs) in the pion — qq̄ configu-
rations in the partonic wave function of a transverse size
much smaller than the typical hadronic radius [20]. Such
configurations play an important role in high–momentum
transfer reactions involving pions, such as the pion tran-
sition form factor γ∗γ → π0 [21, 22] or pion production in
large–angle scattering processes [23]. They are essential
for the physics of the color transparency phenomenon
predicted by QCD [24, 25], which is studied in high–
energy pion dissociation on nuclear targets [26, 27] and
electromagnetic pion knockout [28, 29] and is closely re-
lated to the existence of factorization theorems for hard
meson production processes. The dynamical origin of
PLCs — whether they are generated through perturba-
tive QCD interactions with large–size configurations or
by non-perturbative mechanisms, remains a subject of
intense study.
The transverse charge density in the pion is defined

as the 2–dimensional Fourier transform of the spacelike
pion form factor,

ρπ(b) =

∞∫

0

dQ

2π
QJ0(Qb) Fπ(t = −Q2), (1)

where Fπ is regarded as a function of the invariant mo-
mentum transfer t. The function ρπ(b) gives the prob-
ability that charge is located at a transverse separa-
tion b from the transverse center of momentum, with∫
d2b ρπ(b) = 1. The definition Eq. (1) may in princi-

ple be used to calculate the charge density directly from

http://arxiv.org/abs/1011.1472v1


2

the spacelike form factor data. In the nucleon case,
where the spacelike form factors can be extracted di-
rectly from the measured eN elastic scattering cross sec-
tion and are known up to rather large momentum trans-
fers, this approach has been quite successful; see Ref. [30]
for an assessment of the uncertainties. In the pion case
the spacelike form factor at momentum transfers above
Q2 > 0.25GeV2 was extracted only indirectly in electro-
production experiments on the nucleonN(e, e′π)N ′, with
substantial model dependence, and is known only poorly
at higher Q2, rendering such a program difficult. How-
ever, for the pion one has another avenue for evaluating
the transverse density, based on a dispersion representa-
tion for the pion form factor. Noting that the singulari-
ties of Fπ(t) as an analytic function of t are confined to a
cut along the positive real axis starting at t = 4m2

π, the
form factor can be expressed as [31]

Fπ(t) =

∞∫

4m2
π

dt′

t′ − t+ i0

ImFπ(t
′)

π
. (2)

The asymptotic behavior expected from perturbative
QCD, Fπ(t) ∼ αs(t)/|t| for t → ∞, allows the use of
an unsubtracted dispersion relation [44]. Substitution of
Eq. (2) in Eq. (1) leads to the result [32]

ρπ(b) =

∞∫

4m2
π

dt

2π
K0(

√
tb)

ImFπ(t+ i0)

π
. (3)

This representation of the charge density as a dispersion
integral over the imaginary part (or spectral function) of
the timelike pion form factor has an interesting “filter-
ing” property. The exponential drop–off of the modified
Bessel function K0 at large arguments causes the inte-
grand of Eq. (3) to decrease exponentially at large t and
ensures that only values

√
t ∼ 1/b in the spectral func-

tion are effectively sampled at a given distance b. In
the nucleon case the timelike form factor is measurable
only at t > 4m2

N and Eq. (3) is not useful for calcu-
lating the transverse density from data (it is, however,
very useful for theoretical analysis; for example, the chi-
ral large–distance component of the nucleon charge den-
sity at b ∼ m−1

π can be obtained from the calculable
strength of the two–pion cut in the nucleon form factor
near threshold [32]). In the pion case the physical region
for the timelike form factor starts at t = 4m2

π, covering
the entire range of the dispersion integral, and Eq. (3)
becomes a practical method for calculating the charge
density at all values of b. High–quality e+e− annihila-
tion data exist for values of t up to ∼ 1GeV2, so that we
hope to be able to determine ρπ(b) accurately for values
of b at least down to values of b ∼ 1GeV−1 = 0.2 fm.
The imaginary part of the pion form factor ImFπ(t)

entering in the dispersion representation Eq. (3) is not
measured directly in annihilation experiments. The
e+e− → π+π− cross section is proportional to |Fπ(t)|2,

and model–dependent input is generally needed to de-
termine the phase. In the region of the ρ meson reso-
nance this problem was studied extensively long ago and
is under good theoretical control. The phase of the first
higher resonance ρ′ is strongly constrained by the dis-
persion integrals (sum rules) for the pion charge and the
measured charge radius. At larger values of t arguments
based on perturbative QCD and local duality provide
some guidance. Combined with the filtering property of
the dispersion integral Eq. (3), these constraints strongly
reduce the model dependence in the transverse density at
b >∼ 0.1 fm. Our estimates below show that the this way
of constructing ρπ(b) gives substantially more accurate
results than use of the spacelike pion form factor data
alone.
In this article we calculate the transverse charge den-

sity in the pion in the dispersion representation Eq. (3)
using an empirical parametrization of the timelike pion
form factor based on e+e− annihilation and spacelike
form factor data [33]. We find that the density is deter-
mined to an accuracy of ∼ 10% at transverse distances
b ∼ 0.1 fm, and substantially better at larger values. We
thus obtain a precise two–dimensional image of the fast–
moving pion, which can be interpreted in terms of its
partonic structure in QCD. In particular, the density
exhibits a pronounced rise at small b, as was observed
earlier — although with much lower precision — in an
analysis based on the spacelike pion form factor [16]. Us-
ing experimental information on the quark density in the
pion, we argue that such singular behavior of the charge
density cannot be explained by large–size, x → 1 config-
urations in the pion’s partonic wave function and must
therefore be attributed to PLCs. Our result thus places
constraints on the probability of PLCs in the pion, which
can be probed in other high momentum–transfer pro-
cesses involving pions.
The plan of this paper is as follows. In Sec. II we briefly

describe the main features of the pion form factor in
the timelike region and the elements of the parametriza-
tion of Ref. [33]. In Sec. III we calculate the transverse
charge density and investigate its uncertainties at small
distances. The implications for the pion’s partonic struc-
ture and the presence of PLCs are discussed in Sec. IV.
Section V discusses the possible role of chiral dynamics
in the pion transverse density at large distances. A sum-
mary and suggestions for further studies are presented in
Sec. VI.

II. TIMELIKE FORM FACTOR

PARAMETRIZATION

In the energy region
√
t <∼ 1GeV the measured pion

form factor |Fπ(t)|2 is dominated by the ρ meson res-
onance, with clearly visible effects of ρ–ω mixing (see
Ref. [33] for a summary of the data). Theoretical sup-
port for ρ dominance at the amplitude level comes from
the observation that the 2π channel accounts for most of
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the annihilation cross section, which allows one to relate
the pion form factor to the ππ scattering amplitude via
elastic unitarity. In this region the form factor is success-
fully described by the Gounaris–Sakurai (GS) amplitude
[34], which is derived from an effective range expansion
of the ππ phase shift and has the correct analytic struc-
ture. The neglect of certain off–shell terms ∝ (t − m2

ρ)
in the GS amplitude leads to a Breit–Wigner (BW) type
parametrization with energy–dependent width; this sim-
plified form also describes the |Fπ(t)|2 data in the region√
t <∼ 1GeV but does not respect the analytic properties

of the form factor (it has a spurious branch cut singularity
at t = 0). We shall employ the full GS parametrization
in our studies here.

Above the ρ region data for |Fπ(t)|2 exist up to ener-
gies

√
t <∼ 3GeV. Because of the many hadronic channels

in the total cross section, the phase of the form factor at
these energies is much more uncertain. In the region
of the first higher resonance ρ′ the phase is constrained
by the sum rules for the pion charge and the charge ra-
dius, which require partial compensation of the spectral
strength in the ρ meson region. At higher energies the-
oretical constraints come from the asymptotic behavior
predicted by perturbative QCD, which demands strong
cancellations between higher resonances in a resonance–
based description, as indeed found in dual resonance
models.

In the present study we use the timelike pion form
factor parametrization of Ref. [33], which describes the
high–energy region by a pattern of resonances consis-
tent with the QCD asymptotic behavior. The param-
eters were determined by a detailed analysis of the time-
like data up to

√
t <∼ 3GeV. The continuation of these

parametrizations to t < 0 also describes the spacelike
form factor in accordance with the data, including the
recent JLab data up to |t| = 2.45GeV2 [6], which ap-
peared after publication of Ref. [33].

A brief description of the elements of the parametriza-
tion of Ref. [33] is provided here; for details we refer to
the original article and references therein. The first four
ρ meson resonances are included as specific states with
masses up to 2.0GeV (ρ–ω mixing is taken into account
for the lowest resonance). These resonances are described
by the GS form, which incorporates the proper threshold
behavior of the widths and has the correct analytic prop-
erties [45]. In addition, an infinite series of higher excita-
tions is included via an ansatz [35] based on the dual reso-
nance model. Its continuation to the space-like region ex-
hibits a smooth behavior with a power–law asymptotics
as |t|1−β with β = 2.1 − 2.3. The imaginary part of the
form factor obtained with the GS parametrization [33] is
shown in Fig. 1a (solid line). One clearly sees the domi-
nance of the ρ meson pole in the region

√
t < 1GeV, and

the alternating sign of successive resonance contributions
at larger values of

√
t, as expected from theoretical con-

siderations.

To estimate the uncertainty in the imaginary part, we
have taken the quoted variances of the fit parameters of
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FIG. 1: (a) Solid line: The imaginary part of the pion form
factor obtained from the fit of Ref. [33] (GS parametrization),
as a function of

√
t. Shown here is the function

√
t ImFπ(t)/π,

which effectively enters in the dispersion integral over
√
t,

Eq. (3). Dotted lines: ±1σ error resulting from the uncorre-
lated uncertainties of the fit parameters. The threshold en-
ergy

√
t = 2mπ is indicated by the vertical line. (b) The

weight factor K0(
√
tb) in the dispersion representation of the

transverse charge density Eq. (3), as a function of
√
t, for sev-

eral values of b. Shown are the functions normalized to unity
at the threshold

√
t = 2mπ.

Ref. [33] and studied the statistical variation of the imag-
inary part, assuming uncorrelated errors. The resulting
±1σ error band is shown in Fig. 1a (dotted lines). The
variance in the ρ meson mass region is at the few per-
cent level. At energies above 1GeV it becomes substan-
tially larger, reaching close to 100% at

√
t = 2GeV. Note

that in this energy region our uncorrelated estimate likely
represents an upper bound on the uncertainty, as correla-
tions between the statistical fluctuations of the coupling
and width of the second resonance would considerably re-
duce the overall fluctuations of the imaginary part near√
t ∼ 1.4GeV. For energies above 3 GeV we cannot re-

liably estimate the relative uncertainty of the imaginary
part in this way, as the couplings of the resonances in this
region are dictated by the dual resonance model, and the
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data in this region are very poor. However, the imagi-
nary part in this region is expected to be very small and
contributes negligibly to the charge density at b > 0.1 fm
(see below), so that its relative uncertainty is not impor-
tant for our purposes. We emphasize that we use the
parametrization of Ref. [33] only as an effective repre-
sentation of ImFπ(t) in the energy range

√
t < 3GeV,

and that our conclusions do not depend on the particu-
lar

√
t → ∞ asymptotic behavior imposed by the dual

resonance model.

III. TRANSVERSE DENSITY AND ITS

UNCERTAINTY

We now use the timelike form factor parametrization
to evaluate the transverse charge density in the pion and
estimate its uncertainty. It is instructive to study first the
distribution of strength in the dispersion integral Eq. (3).
The imaginary part ImFπ(t) is weighted with the mod-
ified Bessel function K0(

√
tb), which exponentially sup-

presses energies
√
t ≫ 1/b. Fig. 1b shows this weight

factor as a function of
√
t for several values of b, normal-

ized to the same value at threshold
√
t = 2mπ, i.e., the

ratio

K0(
√
tb)/K0(2mπb). (4)

One sees that the effective distribution of strength in
√
t

strongly changes with the distance b. At b = 0.1 fm a
noticeable contribution to the dispersion integral comes
from the region

√
t > 1GeV, where the parametrization

of ImFπ(t) shows considerable uncertainty (see Fig. 1a).
At b = 0.5 fm these contributions are largely suppressed,
resulting in almost perfect “vector meson dominance” in
the dispersion integral. Finally, going to distances as
large as b ∼ 2 fm, one begins to suppress also the ρ mass
region and emphasizes the near–threshold region of the
form factor,

√
t− 2mπ ∼ fewmπ.

In order to quantify the accuracy of the calculated
transverse density we need to study the numerical con-
vergence of the dispersion integral at large values of

√
t.

Figure 2 shows the percentage deviation of ρπ(b) from
the full result as a function of a cutoff applied to the up-
per limit of the

√
t integral in Eq. (3) (here the integral is

evaluated with the central value of the GS parametriza-
tion as shown in Fig. 1). One sees that at b = 0.1 fm
the region

√
t > 3GeV accounts for only about ∼ 1% of

the total integral, meaning that even a drastic change of
ImFπ(t) in this region by a factor 2−3 would change the
density only by ∼ 2 − 3% [46]. The error in the density
is thus dominated by the mass region 1 <

√
t < 3GeV,

where we have estimated the uncertainty of ImFπ(t) in
Sec. II. With a ∼ 100% uncertainty at

√
t = 2GeV,

where the integral has converged to within ∼ 4% of its
value, we expect an uncertainty of the density of (at least)
∼ 4%. Surprisingly, even for much smaller distances the
region

√
t > 3GeV seems to contribute relatively little

to the dispersion integral; see the curve in Fig. 2 for
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FIG. 2: Percentage deviation from the full result for the dis-
persion integral Eq. (3), as a function of the upper limit
of

√
t, for b = 0.5 fm (solid line), 0.1 fm (dashed line) and

0.02 fm (dotted line). The integrand is evaluated using the
GS parametrization of Ref. [33].

b ∼ 0.02 fm. While the integral requires larger values of√
t to converge, the contribution from

√
t > 3GeV is still

only ∼ 2%, and the overall uncertainty can be estimated
from that of the 1 <

√
t < 3GeV. At larger distances

b ∼ 0.5 fm, however, the integral has fully converged al-
ready at

√
t ∼ 1GeV, and the overall uncertainty is dom-

inated by the low–energy region
√
t < 1GeV. In this

region the parameter errors in the fit are so small that
the model dependence of the parametrizations (details of
ρ–ω mixing, ρ line shape) can no longer be neglected in
establishing the overall error.

Given the dominance of energies
√
t < 3GeV in the

dispersion integral, we can evaluate the density with the
parametrization of Ref. [33] and estimate its uncertainty
from the parameter error band shown in Fig. 1 The result
is displayed in Fig. 3. The quoted 1σ error in ImFπ(t)
translates into an uncertainty of ρπ(b) of ±(1.5, 7, 13)%
at b = (0.5, 0.1, 0.02) fm. The density is thus determined
much more accurately, and down to much smaller dis-
tances, than from the spacelike pion form factor data
alone [16].

A welcome feature of the dispersion representation of
the charge density, Eq. (3), is that the kernel K0(

√
tb) is

a positive function. As a result, an upper or lower bound
on the spectral function ImFπ(t) directly provide a cor-
responding bound on ρπ(b), greatly simplifying the error
analysis. (A method to estimate the uncertainty of the
charge density as the Fourier transform of the spacelike
form factor was described in Ref. [30].)

An additional source of uncertainty in the charge den-
sity at small distances are recent data on the timelike
pion form factor at large values of t that were not in-
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FIG. 3: Transverse charge density in the pion, ρπ(b). Solid
line: Dispersion integral Eq.(3) evaluated with the GS form
factor parametrization [33] (see Fig. 1a). Dashed lines: 1σ er-
ror resulting from the quoted uncertainty of the parametriza-
tion (see Fig. 1a). Dotted line: Density resulting from a heavy
resonance with mass mR = 3.67GeV and width ΓR = 0.2mR,
providing a rough assessment of the impact of the CLEO time-
like form factor data [12] (details see text).

cluded in the fit of Ref. [33]. The CLEO measurement
[12] at

√
t = 3.67GeV reports a value of |Fπ | = 0.075±

0.008 (stat) ± 0.005(syst), much larger than the value
0.034 provided by the GS parametrization of Ref. [33].
We see no simple way to modify the parametrization to
account for this datum. Indeed, Ref. [33] argues that
increasing the absolute value of the form factor by a fac-
tor of ∼ 2 at large

√
t is not possible. In particular, the

article states that it is implausible for the form factor ob-
tained on the basis of a dual resonance parametrization
to reach values |Fπ(t)|2 ≥ 0.01 at

√
t = 2.5 − 3GeV (as

would correspond to the new datum, assuming power-
like t–dependence) without conflicting with the spacelike
data and especially with QCD predictions [47].
One possibility is that the error of the CLEO result is

larger than estimated in Ref. [12]. Another possibility is
that there is a new mechanism providing a strong cou-
pling to two pions at high energies. Here we only wish
to make a rough assessment of the potential impact of
this new datum on the transverse density. To this end,
let us assume the existence of an “additional” ππ res-
onance at

√
t = mR = 3.67GeV, described by the GS

form, whose coupling cR to the virtual photon is related
to the measured pion form factor as

|Fπ(mR)| = cRmR/ΓR. (5)

Taking the width ΓR to be ∼ 20% of the mass, as it
is for the ρ meson, we obtain a coupling cR = 0.015
from the CLEO measurement. Such an addition gives

10-4

10-3

10-2

10-1

100

101

 0  0.5  1  1.5  2

ρ π
(b

) 
 [

fm
-2

]

b  [fm]

Dispersion integral (GS)
Zero-width ρ

FIG. 4: Transverse charge density ρπ(b) in the pion. Solid
line: Dispersion integral Eq.(3) evaluated with the GS form
factor parametrization of Ref. [33]. Dashed line: Density from
zero–width ρ meson pole, Eq. (6).

a negligible contribution to the |Fπ(t)| at values of
√
t

for which most of the data entering in the parametriza-
tion [33] were taken; for example, it provides a ∼ 1%
contribution to |Fπ(t)| at

√
t = 1GeV. The “extra” con-

tribution to the charge density from such a resonance
would be +(0.04, 4, 16)% at b = (0.5, 0.1, 0.02) fm (see
Fig. 3). If we added this uncertainty to the one esti-
mated previously from the error of the parametrization
for

√
t < 1GeV, we would conclude that the density is

determined to (±1.5,+11− 7,+39− 16)% at the quoted
values of b. This is surely a conservative estimate, as at
least part of the uncertainty in the unmeasured high–t
region is already included in the parametrization error.
A larger value of the width of the hypothetical resonance
would lead to a proportionately larger contribution to
ρπ(b), but would have to be reconciled with the precise
data for |Fπ| in the mass region

√
t <∼ 1GeV. We con-

clude that the new CLEO data have only a modest im-
pact on the transverse density at distances ∼ 0.1 fm, but
may cause substantial modifications at smaller distances.
Figure 4 shows the transverse density obtained from

the dispersion integral on a logarithmic scale, which al-
lows one to see the exponential fall–off at larger distances.
For comparison we also show the density obtained from
a single resonance of zero width at the ρ meson mass mρ,
with a coupling chosen to ensure unit charge (i.e., the
vector meson dominance model)

ρπ(b)zero−width = (m2
ρ/2π)K0(mρb). (6)

One sees that the dispersion result is very close to the
zero–width ρ form for all distances 0.1 < b < 1 fm
and can be represented by the latter within the esti-
mated errors (at larger values of b the spectral strength
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FIG. 5: (Color online) Three–dimensional rendering of the
transverse charge density in the pion, as obtained from the
dispersion integral Eq.(3) evaluated with the GS form factor
parametrization of Ref. [33]; cf. Figs. 3 and 4.

near threshold becomes important; see Sec. V). What
is more, the dispersion result follows the zero–width ρ
curve down to much smaller distances, being only a few
percent smaller down to b = 0.01 fm. This shows that
there are very strong cancellations between the effective
poles parametrizing the high–mass continuum. As we
just demonstrated, there is considerable uncertainty in
the dispersion result for the density at such small dis-
tances. However, there is the intriguing possibility that
the density might effectively be described by vector me-
son dominance down to distances significantly smaller
than the inverse ρ meson mass, m−1

ρ = 0.25 fm.
In Fig. 5 we show a 3–dimensional rendering of the

transverse charge density, which conveys also the infor-
mation on the supporting area and thus gives an impres-
sion of the true physical shape of the fast–moving pion
as seen by an electromagnetic probe. Our dispersion ap-
proach provides a data–based image of the pion’s trans-
verse structure at small distances with unprecedented
precision. One clearly sees the strong rise of the trans-
verse density toward the center. This remarkable obser-
vation calls for a microscopic explanation in terms of the
pion’s partonic structure.

IV. IMPLICATIONS FOR PION PARTONIC

STRUCTURE

The results of our empirical study of the transverse
charge density have interesting implications for the par-

 0
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 0  0.5  1  1.5  2

P
π(

b)

b  [fm]

〈b2〉π
1/2

Dispersion integral (GS)
Zero-width  ρ

FIG. 6: Probability accumulation Eq. (7) in the transverse
density (cf. Figs. 3 and 4). Solid line: Dispersion integral
(GS parametrization). Dashed line: Zero–width ρmeson pole.
The arrow indicates the experimental RMS transverse charge
radius.

tonic structure of the pion in QCD. The transverse charge
density puts constraints on the possible distribution of
transverse sizes of configurations in the pion’s partonic
wave function. A useful quantity to consider is the inte-
gral of the transverse charge density up to a given dis-
tance,

P (b) ≡
∫

d2b Θ(b− b′) ρπ(b
′), (7)

which determines the cumulative probability for configu-
rations contributing to the transverse density at the dis-
tance b. The probability obtained from our dispersion
result for the charge density (cf. Figs. 3 and 4) is shown
in Fig. 6, together with that obtained from a zero–width
ρ meson pole (cf. Eq. 6),

P (b)zero−width = mρbK1(mρb). (8)

The probability reaches 1/2 at b = 0.33 fm, a value some-
what smaller than the root of the mean squared (RMS)

transverse radius, 〈b2〉1/2π = 0.53 fm. This is to be ex-
pected, as large–size configurations are counted with a
higher weight in the average of b2 than than the me-
dian. The RMS transverse radius calculated from our
dispersion integral for the charge density agrees very well
with the value extracted from the slope of the low–t
pion form factor measured in πe scattering experiments,
〈r2〉π = (3/2)〈b2〉π = 0.439± 0.008 fm2 [1, 2], as was al-
ready noted in the discussion of the fit to the timelike
form factor data in Ref. [33].
To understand how the transverse charge density is re-

lated to the partonic structure it is necessary to recall
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b / (1− )xr =
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x

FIG. 7: Transverse distances in a qq̄ configuration of the
pion’s partonic wave function: b is the distance between the
quark and the transverse center of momentum, r the distance
between the q and q̄.

the relationship between the coordinate b and the phys-
ical transverse size of configurations in the fast–moving
pion. The coordinate b measures the distance between a
constituent — say, a quark q — and the transverse cen-
ter of mass of the pion. If the quark carries longitudinal
momentum fraction x, and the remnant system R carries
1 − x, the transverse center of momentum of the pion is
at xrq + (1 − x)rR, where rq,R denotes the transverse
position of the quark and the center of momentum of the
remnant system. The transverse separation of the quark
from the remnant system is thus given by

r ≡ |rq − rR| = b/(1− x). (9)

Figure 7 illustrates this relation for a qq̄ configuration
in which the remnant system consists of a single anti-
quark. In the transverse charge density one considers
the charge–weighted density of constituents at a given b,
which is obtained as the average over configurations with
different x and physical size r in the partonic wave func-
tion. Equation (9) now implies that the charge density at
bmuch smaller than the typical hadronic sizeRhad ∼ 1 fm
can arise from two different classes of configurations:

I) Small physical size r ≪ Rhad and non–exceptional
values of x, i.e., not close to 1 (PLCs). One ex-
pects the elementary qq̄ configuration accounts for
a significant fraction of these configurations, as
the emission of gluons and creation of additional
qq̄ pairs are suppressed in small–size color–singlet
configurations. The existence of such PLCs is re-
quired by the non–zero value of the pion weak decay
matrix element, parametrized by the constant fπ,
where the axial current operator annihilates a qq̄
pair in a point in space [21].

II) Large physical size r ∼ Rhad and extreme momen-
tum fractions x ∼ 1 − b/Rhad (end–point configu-
rations). These are generally not just qq̄ configura-
tions, as soft gluon radiation is not suppressed in
large–size configurations. The probability of such
configurations determines the behavior of the par-
ton densities in the pion at large values of x.

As all analysis of partonic structure, the distinction be-
tween the two classes of configurations depends on the

resolution scale Q2. Standard leading–logQ2 evolution
degrades the parton momentum fractions and reduces the
probability of end–point configurations. The total charge
density resulting from the sum of all configurations is of
course scale–independent, being the matrix element of a
conserved current.
We can estimate the possible contribution of large–

size x → 1 configurations to the transverse density at
small b in a simple phenomenological model, using infor-
mation on the quark distribution in the pion at large x
extracted from fits to πN Drell–Yan data [36]. Our basic
assumption here is that the physical transverse size of
large–x configurations in the pion tends to a finite value
of the order of the typical hadronic size. Generalizing
the expression obtained from the overlap of light–cone
wave functions of individual configurations, we model
the x– and b–dependent charge density (i.e., the charge–
weighted quark GPD) arising from large–x configurations
as

ρπ(x, b)large−size = qπ(x)
f(r = b/(1− x))

(1− x)2
, (10)

where qπ(x) is the valence quark distribution in the pion
[48] and f(r) describes the distribution over physical
transverse sizes r, with a range of the order of the typ-
ical hadronic size, normalized such that

∫
d2r f(r) = 1;

Eq. (10) thus satisfies
∫
d2b ρπ(x, b) = qπ(x). The trans-

verse charge density ρπ(b) arising from large–size con-
figurations is then given by the integral of the density
Eq. (10) over x. In calculating this integral we impose
the physical requirement that the transverse size r of the
configuration be larger than some critical r0. This limits
the range of x in the integral to values x > 1−b/r0, where
it is assumed that b < r0. We thus consider the “con-
ditional” large–size contribution to the density defined
as

ρπ(b|r > r0) =

∫ 1

1−b/r0

dx ρπ(x, b)large−size. (11)

To evaluate this contribution to the charge density at
small b, we use the the parametrization of the pion quark
density of Ref. [37]. The size distribution f(r) we take to
be of Gaussian form, f(r) = exp(−r2/R2)/(πR2), where
the parameter R2 = 〈r2〉π defines the average squared
radius and is of the order of the typical hadronic size
∼ 1 fm2. For a loosely bound qq̄ state with 〈x〉π = 1/2
one would have 〈r2〉π = 〈b2/(1 − x)2〉π ≈ 4〈b2〉π; a nat-
ural choice is therefore R2 = 4〈b2〉π,exp = 1.16 fm2. Fig-
ure 8 shows the contribution to the charge density from
configurations with r > r0 = 0.2 fm estimated with this
model, for two values of Q2. One sees that it accounts
only for at most ∼ 20% of the total transverse density at
b = 0.1 fm, and even less at smaller distances. We thus
conclude that large–size configurations with x → 1 play
only a minor role in the pion transverse charge density at
small b, and that most of it can be attributed to PLCs.
The small–b behavior of the large–size contribution to

the charge density in our model can formally be related to
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FIG. 8: Dashed/dotted line: Contribution of large–size con-
figurations with r > r0 to the transverse charge density in the
pion, as estimated in the model defined by Eqs. (10)–(11), for
r0 = 0.2 and two values of Q2. Solid line: Density obtained
from the dispersion integral, cf. Fig. 3.

the power behavior of the quark distribution in the pion
for x → 1. In the limit of small b the integral in Eq. (11)
extends over a narrow range of x close to 1. If the quark
distribution vanishes as qπ(x) ∼ (1−x)β , one easily shows
that the density Eq. (11) scales as ρπ(b|r > r0) ∼ bβ−1

for b → 0. The change in the small–b behavior with Q2

seen in Fig. 8 reflects the effect of QCD evolution on
the exponent β. Note, however, that even in the low–
Q2 region where β < 1 the large–size contribution in
our model is substantially smaller than the total density
obtained from the dispersion integral.

In sum, our estimate shows that large–size x → 1 con-
figurations cannot account for the strong rise of the trans-
verse density at small b, and that it is therefore reason-
able to interpret the empirical density in terms of PLCs
in the pion’s partonic wave function. In qq̄ configura-
tions of small size, it is expected that the wave function
peaks at x = 1/2, which implies that the physical trans-
verse size of the most likely configurations is r ≈ 2b.
With the plausible assumption that the small–size con-
figurations in the pion are mostly qq̄, we would conclude
from Fig. 6 that there is a probability of 12% (29%) for
configurations with b < 0.1 fm (0.2 fm), and thus with
qq̄ separation r <∼ 0.2 fm (0.4 fm). In reality, some of
these small–size configurations are qq̄ + gluons or qqq̄q̄,
requiring a detailed model–dependent analysis. Even so,
our result for the charge density places strong constraints
on the pion’s partonic structure at small distances. The
study of dynamical models of PLCs in the pion and their
comparison with the empirical charge density will be the
subject of future work.

V. LONG–RANGE PION STRUCTURE AND

CHIRAL DYNAMICS

To complete our study of the empirical transverse
charge density in the pion we briefly want to comment
on the possible role of chiral dynamics at large transverse
distances. At b >∼ m−1

π = 1.5 fm the weighting factor

K0(
√
tb) in the dispersion integral Eq. (3) emphasizes the

near–threshold region
√
t− 2mπ ∼ few mπ (see Fig. 1b),

where the imaginary part of the form factor is governed
by chiral dynamics and calculable from first principles In
leading order of the chiral expansion, the imaginary part
near threshold results from the pion loop graph with the
ππ 4–point coupling and is given by [38–40]

π−1 ImFπ(t+ i0) =
(t− 4m2

π)
3/2

6(4πfπ)2
√
t
. (12)

Substitution of this result in Eq. (3) allows one to de-
rive the leading exp(−2mπb) asymptotic behavior of the
pion charge density at large distances; see Ref. [32] for
details. Numerical analysis shows that the contribution
from Eq. (12) to the charge density is negligible compared
to the non–chiral density resulting from

√
t ∼ mρ for all

but the largest distances, reaching only ∼ 30% of the dis-
persion result at b = 2 fm. In the nucleon isovector form
factor the chiral component of the charge density was
found to become comparable to the non–chiral density
at distances b ∼ 1.7 fm [32]; the reason for its diminished
role in the pion charge density is that the triangle graph
involving the πN Yukawa coupling (see Fig. 1 of [32]),
which gave the main contribution in the nucleon case, is
absent for the pion. Account of higher–order chiral cor-
rections does not substantially change the magnitude of
the chiral component [40]. We conclude that the trans-
verse charge density in the pion is dominated by the ρ
meson mass region for all distances of practical relevance,
b < 2 fm.

VI. SUMMARY AND DISCUSSION

This paper shows how the pion form factor in the time-
like region can be used to determine the transverse charge
density. The timelike data greatly augment the mea-
ger information available from spacelike pion form factor
measurements, in particular in the region of high momen-
tum transfers |t| > 1GeV2 conjugate to short transverse
distances. Given the energy reach of the timelike form
factor data, and the theoretical uncertainties involved
in separating the real and imaginary parts, we estimate
that ρπ(b) is determined to an accuracy of ∼ 10% at
b = 0.1 fm, and substantially better at larger distances.
The transverse density obtained from the full dispersion
integral turns out to be surprisingly close to that ob-
tained from a single zero–width ρ meson pole over a wide
range. The empirical transverse density shows a strong
rise at small distances, which points to a substantial pres-
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ence of PLCs in the pion’s partonic wave function and
puts strong constraints on the pion GPD.
In the work reported here we limited ourselves to a phe-

nomenological analysis of the transverse density based
on an existing parametrization of the timelike pion form
factor data. Our results suggest several directions for
further studies, both theoretical and empirical.
The striking similarity of the empirical transverse den-

sity to the simple vector meson dominance model over a
wide region of b should have a dynamical explanation.
Possible approaches to address this question are local
quark–hadron duality or the dual resonance picture of
QCD in the large–Nc limit.
The strong rise of the pion’s transverse charge density

at small distances calls for an explanation in terms of
dynamical models of the pion’s partonic structure. The
key question is whether the required PLCs in the pion
could be explained as the result of perturbative QCD
interactions with large–size configurations, or whether
non-perturbative interactions play an essential role. Of
particular interest for addressing this question are mod-
els which implement the non–perturbative short–distance
scale associated with the spontaneous breaking of chiral
symmetry in QCD such as the instanton vacuum model,
which is known to give a reasonable description of the
spacelike pion form factor at intermediate momentum
transfers Q2 ∼ few GeV2 [41, 42].
The dispersion result for the transverse charge den-

sity at distances b ∼ 0.1 fm depends sensitively on the
phase of the pion form factor in the region of the lowest
excited ρ states,

√
t = 1 − 3GeV. While the alternat-

ing sign of the coupling of successive resonances is sug-
gested by theoretical considerations, it would be worth-
while to attempt independent experimental tests of this
key assumption. This could be done through coherent
photo– or electroproduction of two pions on nuclear tar-
gets, which can be analyzed in the spirit of the gener-

alized vector meson dominance model; see Ref. [43] and
references therein. Such measurements become feasible
with the 12 GeV Upgrade of Jefferson Lab.

The recent CLEO data [12], which are difficult to ex-
plain in the dual resonance framework commonly used to
parametrize the high–energy region of the pion form fac-
tor, may have a significant effect on the charge density at
distances b < 0.1 fm. Confirmation of this experimental
result and more data in the energy region

√
t = 3−4GeV

would certainly be welcome. It would be interesting to
explore ways to include these data in a dispersion analy-
sis with more general parametrizations of the imaginary
part.

The new application of the timelike pion form factor
described here once more underscores the importance of
analyticity in relating observables measured in different
kinematic regions. It would be helpful if phenomeno-
logical parametrizations of the form factors such as [33]
employed a framework which strictly respects analyticity,
e.g. by using analytic functions like the GS form, or by
parametrizing only the spectral strength on the physical
cut and generating the real part by a dispersion integral.
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