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We use two fundamental theoretical frameworks to study the finite-size (shell) properties of the uni-
tary gas in a periodic box: ) an ab initio QuantumMonte Carlo (qmc) calculation for boxes containing
 to  particles provides a precise and complete characterization of these finite-size effects, and )
a new Density Functional Theory (dft) fully encapsulates these effects. The dft predicts vanishing
shell structure for systems comprising more than  particles, and allows us to extrapolate the qmc

results to the thermodynamic limit, providing the tightest bound to date on the ground-state energy
of the unitary gas: ξS ≤ 0.383(1). We also apply the new functional to few-particle harmonically
trapped systems, comparing with previous calculations.

PACS numbers: ..-d, ..Mb, ..E-, ..Ss, ..Cn, ..Hh, ..-n

T
he fermion many-body problem plays a funda-

mental role in a vast array of physical systems, from
dilute gases of cold atoms, to nuclear physics in nu-

clei and neutron stars. The universal character of this
problem – each system is governed by a similar micro-
scopic theory, coupled with direct experimental access
in cold atoms – has led to an explosion of recent interest
(see Refs. [, ] for a review). Despite this broad applica-
bility, we are far from fully understanding even the sim-
plest system: the “unitary gas” comprising equal num-
bers of two fermionic species interacting with a resonant
s-wave interaction of infinite scattering length a → ∞.
Lacking any scale beyond the total density n+ = na + nb,
the unitary gas eschews perturbative expansion and re-
quires experimental measurement or accurate numeri-
cal simulation for a quantitative description – the latter
is presently more precise. Simulation is costly, however,
and typical Quantum Monte Carlo (qmc) calculations
can access at most a few hundred particles. Density
Functional Theory (dft) provides a complementary ap-
proach through which one may extrapolate these results
to large systems beyond the reach of direct simulation.

In this Letter, we present the most precise qmc cal-
culations to date of the unitary gas in a periodic box,
studying from  to  particles, and thereby provid-
ing a benchmark for many-body theories. We use this
to calibrate a local dft, then use this dft to study the
finite-size effects (“shell” effects in nuclear physics), and
extrapolate the qmc results to the thermodynamic limit.
We provide the most precise bound to date of the univer-
sal Bertch parameter [] ξS = E/EFG ≤ 0.383(1). (EFG =
3/5n+EF is the energy density of a free Fermi gas with
the same total density n+ = k3F /(3π

2), and EF = ~2k2F /(2m)
is the Fermi energy.) We also explore the finite-size prop-
erties of the dft – a crucial element in the program to cal-
culate properties of finite nuclei with a universal dft [].
We find that a carefully crafted local dft can capture
the finite-size effects in these systems, even down to 

particles, without the need for particle number projec-
tion or similar complications. We limit our discussion to
strictly symmetric systems (na = nb), leaving odd-even
staggering and quasiparticle dispersions to future work:
both break the na = nb symmetry, introducing a new
dimensionless variable to the functional characterizing
the asymmetry. We thus only extract accurately the ther-
modynamic energy parameter ξS .

The qmc results presented here are directly applica-
ble to cold 6Li or 40K atoms, and constrain dilute neu-
tron matter in neutron stars []; likewise, the general
dft approach has myriads of applications throughout
cold-atom and nuclear physics (see Ref. [] for a review).
Our calculation of ξS is consistent with previous results,
but an order of magnitude more precise. Qmc meth-
ods using either continuum [, –] or lattice formula-
tions [] compute ξS ≈ 0.40 − 0.44 with an uncertainty
no better than the last digit. Experimental groups found
qualitative agreement [], which led to precision mea-
surements: notably with Duke [] and Paris [] quot-
ing 0.39(2) and 0.41(1) respectively.

Dft is an in principle exact approach, widely used
in quantum chemistry to describe normal (i.e., non-
superfluid) systems, and holding promise for describing
nuclear systems [, ]. It has recently been extended
to describe the unitary gas [, –]: We build upon
one such approach called the Superfluid Local Density
Approximation (slda). In its original formulation, the
slda contained three parameters that were constrained
by qmc calculations of the continuum state. This form
was then validated with qmc calculations in a harmonic
trap [, ] (see also Fig. ). The agreement formedium
to large systems indicates that corrections to the dft in
the form of density gradients are small, however, the ex-
act nature of the ∼% disagreements for small systems
was not known. Here we focus on translationally invari-
ant systems in a periodic box to isolate the non-gradient
finite-size effects. In particular, we find that the inclu-
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FIG. . (color online) Ground-state energy-density ξ = E/EFG
of N+ fermions in a periodic cubic box at the unitary limit.
The circles with error bars are the result of using a quadratic
least-squares extrapolation to zero effective range of our new
qmc results. The solid curve is the best fit slda dft. The
light dotted curve is the functional considered in [] with
α = 0.69. For comparison, we have plotted the previous best
estimate ξS = 0.40(1) (red square) and the current estimate
ξS = 0.383(1) below it to the far right of the figure.

sion of an anomalous density is crucial: functionals at-
tempting to model the superfluid by adding only gra-
dient or kinetic corrections [, ] are unable to even
qualitatively characterize the finite-size effects.
Our qmc results are based on a Diffusion Monte Carlo

approach that projects out the excited-state contribu-
tions from a variational starting wave function, provid-
ing an upper bound for the energy. We take the wave
function to have a Jastrow-bcs form, as first discussed in
Ref. [], but implement a more efficient procedure for
variationally optimizing its parameters. We thereby ob-
tain a substantially lower bound on the energy than any
previously reported qmc calculation.

Our qmc approach simulates the Hamiltonian:

H =
~2

2m













−

N+
∑

k=1

∇2k − 4v0µ
2
∑

i,j ′

sech2(µrij ′ )













, ()

with an inter-species interaction of the modified Pöschl-
Teller type (off-resonance intra-species interactions are
neglected). We tune the s-wave scattering length to in-
finity by setting v0 = 1: the effective range becomes
re = 2/µ. To extrapolate to the zero-range limit, we sim-
ulate at µ/kF ∈ {12.5,24,36,48,60}. These lead to con-
siderably shorter ranges (0.03 < kFre < 0.16) than previ-
ously cited in the literature; a careful examination of ad-
ditional ranges kFre < 0.35 for the N+ = 40 and N+ = 66
reveals that a three-parameter quadratic model in re is
necessary and sufficient to extrapolate our data with-
out a systematic bias: larger ranges require higher order.
The extrapolated energies are shown in Fig. .

The energies exhibit definite finite-size (shell) effects
for N+ . 50, but are essentially featureless for larger
N+. This lack of structure is confirmed by the best fit
dft (discussed below) and disagrees with the results pre-
sented in Ref. []. The values of ξ for N+ > 50 are dis-
tributed about the best fit value ξS ≈ 0.383(1), and rep-
resent the lowest variational bounds to date. Part of the
decrease from previous results is due to the careful ex-
trapolation to zero effective range: the best fit quadratic
is concave down, implying that linear extrapolations sys-
tematically overestimate ξS . The remainder is due to the
improved optimization of the variational wave function.
To model the finite-size effects we turn to a local dft

for the unitary Fermi gas that generalizes the slda origi-
nally presented in Ref. []. In addition to the total den-
sity n+, the slda includes both a kinetic density τ+ and
an anomalous density ν. (The + index signifies the sum
of the contributions coming from the two components a
and b.) These are expressed in terms of the Bogoliubov
quasiparticle wave functions un(r) and vn(r):

τ+ = 2
∑

n

|∇vn|
2, n+ = 2

∑

n

|vn|
2, ν =

∑

n

unv
∗
n.

The original -parameter slda functional has the form

Eslda =
~2

m

(

α

2
τ+ + β

3

10
(3π2)2/3n5/3+

)

+ gν†ν, ()

where α is the inverse effectivemass; β is the self-energy;
and γ , which controls the pairing, enters through the

regularized coupling g = 1/(n1/3+ /γ − Λ/α) where Λ →
∞ is a momentum cutoff that we take to infinity (see
Ref. [] for details). Using the equations for homoge-
neous matter in the thermodynamic limit, one can nu-
merically replace the parameters β and γ with the more
physically relevant quantities ξS and η = ∆/EF , where ∆
is the pairing gap.
In principle, the dft can be expressed in terms of only

the density n+ and its gradients. Local formulations
of this type are referred to as Extended Thomas-Fermi
(etf) functionals and have been considered in Refs. [].
Since the ground state in a periodic box is homogeneous,
the gradient terms vanish, and the functional takes the
form Eetf(n+) = ξSEFG. The simplest form thus exhibits
no shell effects and is in contradiction with the qmc re-
sults. This deficiency can be rectified by introducing
an explicit dependence on the “dimensionless parame-
ter N+”, but such a functional has no predictive power:
each finite-size system must be independently fit.
Reference [] considered adding the kinetic density

τ+ and effective mass α. This produces shell structure,
but without an anomalous density the effects are much
too large: the best fit to the qmc results drives α → 0
reproducing the flat etf results, indicating that the shell
structure of this dft has essentially no correlation with
the shell structure exhibited by the qmc. Furthermore,





such a functional can not even qualitatively reproduce
the quasiparticle dispersion relationship, an attractive
feature of the slda.
The best fit to the three-parameter slda functional ()

is α = 1.26(2), ξS = 0.3826(5), and η = 0.87(2). This is
shown in Fig.  and fits the  qmc points from N+ = 4
to N+ = 130 with a reduced chi squared χ2

r = 0.7, in-
dicating complete consistency. Although quite remark-
able, this fit is not completely satisfactory: ) It does
not fit the exact energy for the two-particle box ξ2 =
−1.5641 · · · , and ) the best fit gap parameter η and in-
verse effective mass α are inconsistent with the values
η = 0.50(5) and α = 1.09(2) obtained from the N+ = 66
qmc quasiparticle dispersion relation [, ], and the
values η = 0.45(5) [] and η = 0.44(3) [] extracted
from experimental data.
Some of these deficiencies can be remedied by con-

sidering a generalization of the slda. As noted in
Ref. [], the following combination of divergent kinetic
and anomalous densities is finite:

K =
~2τ+
2m

+
g

α
ν†ν =

~2τ+
2m

+
ν†ν

αn1/3+ /γ −Λ
. ()

The lack of scales in the unitary Fermi gas thus dictates
that the functional have the form:

E(K,n+) = ξ(Q) EFG(n+), Q = K/EFG(n+), ()

where Q is dimensionless. The regularization condition
may also depend on Q through a function γ(Q). The
original slda is linear ξ(Q) = αQ + β: thus, the shell
structure of Q(N+) for the slda functional is the same
as that of ξS (N+). One can show that if ξ(N+) is mono-
tonic, then any functional form can be fit with free-
dom to spare. On one hand, this allows us to mod-
ify the functional to additionally fit the exact N+ = 2
point ξ2 = −1.5641 . . . ; on the other hand, it also means
that the functional is not fully constrained for values
of Q corresponding to N+ < 6. The function ξ(N+) is
not monotonic for N+ > 6, however, and, in principle,
two branches are sufficient to uniquely determine the
functional. For example, requiring that ξ = ξS at both
N+ ≈ 6.2(2) and N+ =∞ fixes the ratio of the thermody-
namic parameters η/α = 0.69(2), in agreement with the
best fit slda functional discussed above.
In practice, the errors and the discreteness in N+ still

leave room for flexibility in the functional form. This al-
lows us to address the issue of η not matching the quasi-
particle dispersion relationship, and we have found sev-
eral generalized functional forms with χ2

r ≈ 1.5 while
constraining η = 0.50. The constraint η/α = 0.69(2)
must still be preserved, however, so we cannot simulta-
neously describe both the gap and the effective mass as
currently displayed by the quasiparticle dispersion rela-
tionship present in []. This is consistent with the tra-
ditional interpretation of a dftwhere the single-particle
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FIG. . Relative change (in %) in the ground-state energy of
the unitary Fermi gas in a harmonic trap from the qmc results
taken from Ref. [] (upper red dots) for even systems of N+
from  to . We have also included preliminary results from
Ref. [] (green pluses) for an interaction with a comparable ef-
fective range. These new results significantly lower the energy,
suggesting that the wavefunctions in Ref. [] were not fully
optimized. The zero-range extrapolation has not yet been per-
formed, but given the results in the present paper, we expect
this to lower the energies by a few percent.

states are simply a mathematical tool. Nevertheless, it
has been shown perturbatively that an appropriate func-
tional form can reproduce the quasi-particle properties
at the Fermi surface [], which is certainly a desirable
property for a dft. Further generalizations to the func-
tional, such as including non-locality or additional den-
sities, might restore this feature, but we leave this anal-
ysis until high-precision odd-even staggering and quasi-
particle dispersions are published.
It is quite non-trivial that the simple functional form

of Eq. () can fully capture all finite-size effects above
N+ = 4 to high precision. In particular, we note that no
particle-number projection is required. This technique
is quite ill-defined in the dft framework, but neverthe-
less often considered necessary in the nuclear physics
context []. Our results suggest that improved func-
tionals should be able to intrinsically capture these ef-
fects in a self-consistent manner, possibly requiring ad-
ditional local densities in the same spirit as ν.
To finish, we compare the best fit slda functional with

the qmc results of Ref. [] for harmonically trapped sys-
tems in Fig. . We see that the dft still over-estimates
the energy for small systems, but that it systematically
produces lower energies for large systems. This is con-
sistent with the fact that the wavefunctions used in
Ref. [] have not been as carefully optimized as in the
present work, nor have the results been extrapolated
to zero effective range. To emphasize this, we have in-
cluded a few preliminary points from Ref. [] using
optimized wavefunctions of a slightly larger range to
show that, indeed, improved wavefunctions yield signif-
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icantly lower energies. Even with the improved wave-
function, the dft predicts slightly lower energies for
larger systems: this is fully consistent with a simple esti-
mate of the extrapolation to zero effective range, but we
leave this discussion until a careful zero-range extrapo-
lation is published.
We also leave to future work a detailed analysis of the

remaining deviations for small systems, but point out
that these are likely due to two effects. One is the form
of the functional ξ(Q) for the small values of Q seen in
the cores of the traps, and for the large values of Q seen
in the tails of the traps. These regions of the functional
are largely unconstrained by our boxed results which –
with the exception of the single N = 2 point at negative
Q – explore only the region from −% to +% of the
thermodynamic value. The remaining corrections are
likely due to gradient terms in the functional that vanish
in homogeneous systems.
To summarize, we present the most precise Quantum

Monte Carlo calculations to date of a symmetric uni-
tary Fermi gas in a periodic box comprising  to 
particle. By carefully characterizing and extrapolating
these results to zero effective range, we have completely
mapped out the finite-size (shell) corrections. These re-
sults are used to analyze the structure of a Density Func-
tional Theory for the symmetric unitary gas, and it is
shown that the simplest three-parameter form of Eq. ()
fully accounts for all shell effects to within the statistical
errors of the qmc results without the need for particle-
number projection; a more complicated form, however,
is required to capture both the finite-size effects and the
quasiparticle dispersions. The dft predicts that there
are no significant shell corrections beyond  particles,
and the qmc confirms this, allowing us to extract a pre-
cise upper bound on the universal equation of state
ξS ≤ 0.383(1): an order of magnitude improvement in
precision over previous bounds and the lowest bound of
any variational method to date. The functional in its lat-
est form is well constrained, but leads to slight disagree-
ments with qmc predictions for harmonic traps. Remov-
ing those (both at the qmc and the dft level) promises to
be a fruitful direction of future research.
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