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ABSTRACT
A new approach to the cosmological recombination problem ispresented, which completes
our previous analysis on the effects of two-photon processes during the epoch of cosmolog-
ical hydrogen recombination, accounting forns-1s andnd-1s Raman events and two-photon
transitions from levels withn ≥ 2. The recombination problem for hydrogen is described us-
ing aneffective400-shell multi-level approach, to which we subsequently add all important
recombination corrections discussed in the literature thus far. We explicitly solve the radia-
tive transfer equation of the Lyman-series photon field to obtain the required modifications
to the rate equations of the resolved levels. In agreement with earlier computations we find
that 2s-1s Raman scattering leads to a delay in recombination by∆Ne/Ne ∼ 0.9% atz∼ 920.
Two-photon decay and Raman scattering from higher levels (n > 3) result in small additional
modifications, and precise results can be obtained when including their effect for the first 3−5
shells. This work is a major step towards a new cosmological recombination code (CosmoRec)
that supersedes the physical model included in Recfast, and which, owing to its short runtime,
can be used in the analysis of future CMB data from the Planck Surveyor.

Key words: Cosmic Microwave Background: cosmological recombination, temperature
anisotropies, radiative transfer

1 INTRODUCTION

The Planck Surveyor1 is currently observing the temperature and
polarization anisotropies of the cosmic microwave background
(CMB), and scientists all over the world eagerly await its first data
release, scheduled for early 2011. With Planck data sets cosmol-
ogists will be able to determine key cosmological parameters with
unprecedented precision, making it possible to distinguish between
the various models ofinflation (e.g. see Komatsu et al. 2010, for
recent constraints).

Over the past 5 years, various groups (e.g.
see Dubrovich & Grachev 2005; Chluba & Sunyaev
2006b; Kholupenko & Ivanchik 2006; Switzer & Hirata
2008; Wong & Scott 2007; Rubiño-Martı́n et al. 2008;
Karshenboim & Ivanov 2008; Hirata 2008; Chluba & Sunyaev
2008; Jentschura 2009; Labzowsky et al. 2009; Grin & Hirata
2010; Ali-Haı̈moud & Hirata 2010) have realized that the un-
certainties in the theoretical treatment of the cosmological
recombination process could have important consequences for
the analysis of the CMB data from the Planck Surveyor. It was
shown that in particular our ability to measure the precise value

⋆ E-mail: jchluba@cita.utoronto.ca
† E-mail: thomas@cita.utoronto.ca
1 www.rssd.esa.int/Planck

of the spectral index of scalar perturbations,nS, and the baryon
content of our Universe will be compromised if modificationsto
the recombination model by Recfast (Seager et al. 1999, 2000) are
neglected (Rubiño-Martı́n et al. 2010).

To ensure that uncertainties in the cosmological recombina-
tion model do not undermine the science return of the Planck

satellite, it is crucial to incorporate all important processes lead-
ing to changes in the free electron fraction close to the maxima
of the Thomson visibility function (Sunyaev & Zeldovich 1970)
by more than∼ 0.1% into one recombination module. The main
obstacle towards accomplishing this so far was that detailed re-
combination calculations took too long to allow accountingfor
the full cosmological dependence of the recombination corrections
on a model-by-model basis. This led to the introduction ofim-
proved fudge factorsto Recfast (Wong & Scott 2007; Wong et al.
2008), or multi-dimensional interpolation schemes(Fendt et al.
2009; Rubiño-Martı́n et al. 2010), that allow fast but approximate
representation of the full recombination code.

Although it was already argued that for the stringent error-bars
of today’s cosmological parameters such approaches shouldbe suf-
ficient (Rubiño-Martı́n et al. 2010), from a physical standpoint it
would be much more satisfying to have a full representation of the
recombination problem, that does not suffer from the limitations
mentioned above, while capturing all the important physical pro-
cesses simultaneously. Furthermore, such a recombinationmodule
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2 Chluba and Thomas

increases the flexibility, and allows us to provide extensions, e.g.,
to account for the effect ofdark matter annihilation, energy injec-
tion by decaying particles(e.g. see Chen & Kamionkowski 2004;
Padmanabhan & Finkbeiner 2005; Chluba 2010), or thevariation
of fundamental constants(Kaplinghat et al. 1999; Galli et al. 2009;
Scóccola et al. 2009), while treating all processes simultaneously.

In this paper, we describe our new approach to the recombina-
tion problem, which enables us to fulfill this ambition by overcom-
ing the problems mentioned above. Our code, called CosmoRec2,
runs in 1− 2 minutes for a given set of cosmological parameters as
it stands and can be optimized further to run well below a minute,
eliminating the need forfudge factorsto solve the recombination
problem. One of the key ingredients that facilitates this increase
in speed is the effective multi-level approach, which was proposed
recently by Ali-Haı̈moud & Hirata (2010).

We also extend our previous analysis on the effects of two-
photon processes during the cosmological recombination epoch of
hydrogen (Chluba & Sunyaev 2008, 2010b) to account forns-1s
andnd-1s Raman scattering and two-photon transitions from levels
with n ≥ 2. The radiative transfer equation for the Lyman-series
photons during hydrogen recombination is solved in detail using
a PDE solver that we developed for this purpose and can accom-
modate non-uniform grids (see Appendix B for more details).Our
results for the effect of Raman scattering on the recombination dy-
namics are in good agreement with earlier computations (Hirata
2008). Furthermore, we show that two-photon decays from levels
with n & 4− 5 can be neglected and Raman scattering is only im-
portant for the first few shells.

The main difficulty with two-photon and Raman processes
during the recombination epoch is the presence of resonances in
the interaction cross-sections related to normal ’1+1’ photon tran-
sitions that are already included into the multi-level recombina-
tion code (Hirata & Switzer 2008; Chluba & Sunyaev 2008; Hirata
2008; Chluba & Sunyaev 2010b). Unlike for the 2s-1s two-photon
decay, all the higherns-1s andnd-1s two-photon channels include
’1 + 1’ photon sequences via energeticallylowerLyman-series res-
onances, i.e.,ns/d↔ kp↔ 1s withk < n. Similarly, for ns-1s and
nd-1s Raman-scattering eventsall higherLyman-series resonances,
i.e., ns/d ↔ kp ↔ 1s withk > n, appear. Therefore, special care
has to be taken to avoiddouble-countingof these resonances in the
rate equations of the multi-level atom, as we explain in§ 3.4.3,
§ 3.4.4,§ 3.5.3, and§ 3.5.4.

In § 2 we outline our principle approach to the recombination
problem. The terms for the radiative transfer equation thatallow to
take all important recombination corrections into accountare de-
rived in § 3. We then solve the evolution equation for the high fre-
quency photon field during the recombination epoch, and illustrate
the different changes in§ 4. In § 5, we discuss the different correc-
tions to the ionization history, and we present our conclusions and
outlook in§ 6.

2 PERTURBATIVE APPROACH TO SOLVING THE
FULL RECOMBINATION PROBLEM

2.1 General aspects of the standard recombination problem

The cosmological recombination problem consists of determining
an accurate estimate of the free electron fraction,Xe = Ne/NH, as a

2 This code will be available at www.Chluba.de/CosmoRec.

function of redshift. Because of particle conservation, and the num-
ber of electrons in excited states of Hi and He i being negligible,
one may write3

Ne ≈ NH[1 − XH
1s] + NH[ fHe − XHe

1s ], (1)

where NH denotes the number density of hydrogen nuclei, and
fHe = NHe/NH is the fraction of helium nuclei. The populations
of the different levels are given byXa

i = Na
i /NH, where ’a’ indicates

the atomic species. Furthermore,Xi ≡ XH
i for convenience.

Equation (1) implies that the recombination problem reduces
to finding solutions toXa

1s. For hydrogen, thestandardrate equation
describing the evolution of the ground-state population has the form
(see also; Seager et al. 1999, 2000)

dXH
1s

dt

∣

∣

∣

∣

∣

∣

st

= ∆Rst
2s↔1s+

∑

k

∆Rst
kp↔1s (2a)

∆Rst
2s↔1s = A2s1s

[

XH
2s− XH

1se
−hν21/kTγ

]

(2b)

∆Rst
kp↔1s = Akp1s(1+ npl

kp1s)
[

XH
kp − 3 XH

1sn̄kp1s

]

. (2c)

Heren̄kp1s is the mean photon occupation number over the Lyman-k
line profile, Ai the atomic rate coefficients for spontaneous emis-
sion, andnpl

kp1s is the occupation number of the CMB blackbody
photons at the Lyman-k transition frequencyνk1 ≡ νkp1s.

The solution of Eq. (2), depends on the level populations
of the 2s- andkp-states. In addition, the photon distribution in
the vicinity of every Lyman-resonance has to be known, to de-
fine n̄kp1s. n̄kp1s is often estimated by the Sobolev approximation,
which, however, breaks down during recombination, leadingto
non-negligible corrections to the recombination dynamics(e.g. see
Chluba & Sunyaev 2009b, 2010b, 2009a). The rate equations for
the 2s- andkp-states themselves can, in principle, be explicitly
given. But here it is only important to realize that these lead to a
large network of rate equations which depends on the populations
of all other excited levels. To complicate matters further the elec-
tron temperature,Te, enters the whole problem via recombination
coefficients,αi(Te,Tγ), to each leveli, whereTγ is the photon tem-
perature.

The evolution ofTe is described by one simple differential
equation, which accounts for the cooling of electrons caused by the
Hubble-expansion, and the energy exchange with CMB photonsvia
Compton scattering. Other processes, e.g., such as Bremsstrahlung
cooling, are subdominant (Seager et al. 2000).

2.1.1 The effective multi-level approach

Recently, Ali-Haı̈moud & Hirata (2010) suggested to simplify the
recombination problem to a subset of levels that need to be fol-
lowed explicitly. Here we shall call the members of this subset ’re-
solved’ levels. This approach enables us to account for the effect
of recombinations due to highly excited states (n > 100), without
actually solving for all these level populations explicitly. The ratio-
nale being that except for the optically thick Lyman-seriestransi-
tions, all other rates are mediated by the CMB blackbody photons,
and hence only depend on the photon and electron temperatures.

The downside of this simplification entails the need to tab-
ulate effective rate coefficients as a function ofTγ and Te prior
to the computation. This however needs to be done only once,

3 We assume to be at redshiftsz≪ 6000, well after doubly ionized helium
recombines.
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Towards a complete treatment of recombination3

and given that the number of resolved states necessary for con-
verging solutions is small, thiseffective multi-level approachre-
sults in tremendous speed-ups for recombination calculations (see
Ali-Haı̈moud & Hirata 2010, for more details). For this workwe
also implemented such an effective rate approach. The rate co-
efficients for an effective 400-shell hydrogen atom were com-
puted using our most recent recombination code (Chluba et al.
2010), while helium is described with a multi-level treatment
(Chluba & Sunyaev 2010a).

Within this framework the choice of the number of resolved
states depends on the extraphysicsthat one intends to include. For
example, in aminimalmodel for the hydrogen recombination prob-
lem one should explicitly solve for the4 1s, 2s, and 2p level popu-
lations in tandem with the electron temperature,Te.

This minimal choice already allows us to include processes
that affect the net rates in the 2s-1s two-photon channel and the
2p-1s Lyman-α resonance, e.g., the effect of stimulated 2s-1s
two-photon decay (Chluba & Sunyaev 2006b), or the feedback of
Lyman-α photons on the 1s-2s rate (Kholupenko & Ivanchik 2006).
However, since we restricted ourselves to the 1s, 2s and 2p states,
corrections due to Lyman-β or higher resonance feedback cannot
be modelled as these would require resolvingnp states withn > 2
(Chluba & Sunyaev 2007). We will return to these points in§ 2.2.1.

2.1.2 Sobolev approximation for̄nkp1s

In a multi-level approach the Sobolev approximation is invoked to
obtain a solution for the photon-field around every resonance ap-
pearing in Eq. (2c). The photon occupation number around each
line is then given by5

∆nk
ν = ∆nk

L

[

1− e−τ
k
S[1−χk

ν]
]

, (3)

where∆nk
L ≈ nk

L − npl
kp1s, τ

k
S is the Sobolev optical depth in the

Lyman-k resonance, andχk
ν =
∫ ν

0
ϕk

V(ν) dν. Hereϕk
V(ν) is the Voigt

profile corresponding to a resonance, and the line occupation num-
ber,nk

L , is defined as:

nk
L =

Nkp

3 N1s
. (4)

Consequently, a simple approximation for the mean occupation
number is

n̄kp1s = nk
L − Pk

S∆nk
L , (5)

with Pk
S = [1 − e−τ

k
S]/τkS being the Sobolev escape probability.

For the Lyman-α resonance Eq. (3) results in a photon
distribution that is rather unphysical (e.g. see discussion in
Chluba & Sunyaev 2009b). This is primarily due to the assumption
that every interaction with the resonance leads to a complete redis-
tribution of photons over the whole line profile, which for typical
values ofτS during recombination couples the photon distribution
from the line center up to frequencies in the Lyman-continuum. For
conditions present in our Universe, photon redistributionover fre-
quency is much less effective, most notably in the distant wings.
Thus, it is important to distinguish between scattering, real emis-
sion and absorption events, as we will discuss in§ 3.

4 Because the 2s and 2p states are usually close to full statistical equilib-
rium, one could also eliminate either of these states usingX2p = 3X2s and,
as a result, closely resemble the normal Recfast code, now without requir-
ing a fudge factor.
5 We assumed that asν → ∞ the distortion∆n∞ → 0, and that (as usual)
the factor (νk1/ν)2 ∼ 1.

2.2 Beyond the standard rate equation for 1s

As mentioned in§ 2.1.1, within the effective multi-level approach
the choice for the resolved states depends on the physics to be mod-
elled in detail. For example, in order to include the full effect of
Lyman-series feedback, say up ton = 8, theminimal model that
follows 1s, 2s, and 2p would at least have to be extended by all
kp-states up to 8p.

Also, the inclusion of two-photon processes from higher levels
and Raman-scattering, requires us to re-write equation (2)in a more
generalized form as,

dXH
1s

dt

∣

∣

∣

∣

∣

∣

mod

=
∑

i

{

XH
i Ri→1s− XH

1sR1s→i

}

, (6)

whereRi→ j are the rates between the levelsi and j. These rates
depend on atomic physics, the CMB blackbody, the electron tem-
perature, and the solution for the Lyman-series spectral distortion
introduced by the recombination process.

To include two-photon corrections to the Lyman-series up to
n ≤ nmax, the important levels to follow are all thend andns-states
with 2 ≤ n ≤ nmax. The corresponding partial rates to thenp-states
drop out of the equations, and the Lyman-series emission andab-
sorption profiles, usually given by a Voigt function, will bereplaced
by the two-photon profiles for thens↔ 1s andnd↔ 1s processes,
and similarly for the Raman process. We will specify these correc-
tions more precisely in the following sections.

2.2.1 Accounting for corrections from radiative transfer effects

Changes in the level populations, electron temperature andfree
electron fraction remain small (∼ 1%), when different physical
processes, which were neglected in earlier treatments (e.g. see
Rubiño-Martı́n et al. 2010, for overview) are included. This justi-
fies treating corrections toTe and the populations of resolved lev-
els,Xi, as smallperturbations. On the other hand, it has been shown
that the changes in the photon field caused by time-dependence
(Chluba & Sunyaev 2009b), line scattering (Chluba & Sunyaev
2009a; Hirata & Forbes 2009), or two-photon corrections (Hirata
2008; Chluba & Sunyaev 2010b), arenon-perturbative.

In §3 we derive in detail the different correction terms for the
photon diffusion equation and provide modifications to the net rates
of the effective multi-level atom. The idea is to first solve the re-
combination history using the effective multi-level approach in the
’1 + 1’ photon description, i.e. equateRi→ j = R1+1

i→ j in Eq. (6), and
then compute the solution to the photon field using the radiative
transfer equation. This then leads to corrections in the netrates,
which are used in computing changes to the recombination dynam-
ics, and hence modify Eq. (6). These corrections being small, de-
mand only one iteration to converge. Detailed descriptionsto the
notations in the following sections and part of the methods used
can be also found in Chluba & Sunyaev (2009b, 2010b, 2009a).

3 EQUATION FOR THE PHOTON FIELD EVOLUTION
AND CORRECTIONS TO THE EFFECTIVE
MULTI-LEVEL ATOM

To account for all corrections to the cosmological recombination
problem, it is important to follow the evolution ofnon-thermal pho-
tons in the Lyman-series, which are produced during recombina-
tion. These photons interact strongly with neutral hydrogen atoms

c© 0000 RAS, MNRAS000, 000–000



4 Chluba and Thomas

throughout the entire epoch of recombination, and their rate of es-
capefrom the Lyman-resonances is one of the key ingredients in
accurately solving the recombination problem.

The partial differential equation governing the evolution of the
photon field has the form (see Chluba & Sunyaev 2009b, for a de-
tailed discussion)

1
c

[

∂∆nν
∂t

∣

∣

∣

∣

∣

ν

− Hν
∂∆nν
∂ν

∣

∣

∣

∣

∣

t

]

= C[∆nν]em/abs+ C[∆nν]scat, (7)

where∆nν = c2

2ν2
∆Nν is the distortion in the photon occupation

number, and a distinction is made between the collision terms
leading to emission and absorption,C[∆nν]em/abs, and scattering,
C[∆nν]scat. As an example, the first term on the right hand side of
the equation can account for two-photon corrections to the line pro-
files, while the second term, electron and/or resonance scattering.
The second term on the left hand side describes the redshifting of
photons due to Hubble expansion, and plays a crucial role in the es-
cape of photons from the optically thick Lyman-series resonances.

In Eq. (7) the CMB blackbody has been subtracted, i.e.,∆nν =
nν − npl

ν , wherenpl
ν = [ehν/kTγ − 1]−1 is the blackbody occupation

number, because the left hand side directly vanishes for a black-
body with temperatureTγ(z) ∝ (1 + z). Also, spectral distortions
created by Compton scattering off electrons withTe , Tγ will be
extremely small for conditions in our Universe6, at least if there is
no additional energy release.

By changing the time-variable to redshiftz using dz/dt =
−H(1+z), and scaling to dimensionless frequencyx = ν/ν21, Eq. (7)
reads

∂∆nx

∂z

∣

∣

∣

∣

∣

x
=−

x
[1 + z]

∂∆nx

∂x

∣

∣

∣

∣

∣

z
− Λz

{

C[∆nν]em/abs+ C[∆nν]scat
}

, (8)

where∆nx = ν21∆nν andΛz =
cν21

H[1+z] . We will now discuss the
terms describing the resonance and electron scattering. In§ 3.1 we
specify the different emission and absorption terms, which then in
§ 4 and§5 are used to compute the corrections to the Lyman-series
distortion and ionization history.

3.1 Inclusion of partial redistribution by resonance and
electron scattering

Here we provide the terms for the Boltzmann equation de-
scribing the effect of (partial) photon redistribution by reso-
nance and electron scattering. The form of the collision term
for these cases within a Fokker-Planck formulation was dis-
cussed earlier (e.g. Zeldovich & Sunyaev 1969; Basko 1978b,a;
Rybicki & dell’Antonio 1994; Sazonov & Sunyaev 2000; Rybicki
2006; Chluba & Sunyaev 2009a). Since we are only following the
evolution of the distortion from a blackbody, and since it isclear
that induced effects are negligible7, one can readily write

ΛzC[∆nν]|scatt≈
1
x2

∂

∂x
D(x)

[

∂

∂x
∆nx + ξ(z)∆nx

]

, (9)

6 The cooling of CMB photons by losing energy to keep electronsat Te ∼

Tγ should lead to ay-distortion withy-parametery ∼ 10−10 − 10−9. The
dissipation of energy by acoustic waves should lead toy ∼ 10−8. These can
be neglected for our purpose.
7 Eliminating the dominant term of the CMB blackbody leaves uswith a
term that is tiny because we are always in the distant Wien tail of the CMB
at all times during recombination.

wherex is the dimensionless frequency andξ(z) = hν21
kTe
≈ 40 1100

[1+z] .
The first term on the right hand side describes photon diffusion and
the second accounts for the recoil effect.

3.1.1 Electron scattering

The diffusion coefficient in the case of electron scattering is (e.g.
see Zeldovich & Sunyaev 1969; Sazonov & Sunyaev 2000)

De(x) =
σTNec

H[1 + z]

[

kTe

mec2

]

x4, (10)

where σT ≈ 6.65 × 10−25 cm2 is the Thomson cross section.
Chluba & Sunyaev (2009a) pointed out that electron scattering has
an effect only at the early stages of recombination (z& 1400). How-
ever it is easy to include, and also has the advantage of stabiliz-
ing the numerical treatment by damping small scale fluctuations of
the photon occupation number caused by numerical errors, even in
places where line scattering is already negligible.

As can be seen from the form of the diffusion coefficient in
Eq. (10), the efficiency of electron scattering to a large extent is
achromatic. This is in stark contrast to the case of resonance scat-
tering, which is most efficient only in a very narrow range around
the line center (see next paragraph). Furthermore, the number of
free electrons drops rapidly towards the end of recombination, such
that the Fokker-Planck approximation is expected to break down
(Chluba & Sunyaev 2009a). Nevertheless, the diffusion approxima-
tion remains sufficient for computations of the free electron fraction
(see Ali-Haı̈moud et al. 2010).

3.1.2 Resonance scattering

For resonance scattering by a Lyman-k line the diffusion coeffi-
cient is (e.g. see Basko 1978b,a; Rybicki 2006; Chluba & Sunyaev
2009a, and reference therein)

Dk(x) ≈ pkp
sc
σ

kp
r N1sc

H[1 + z]

[

kTe

mHc2

]

ν2k1

ν221

x2φ
kp
V (x), (11)

whereσkp
r =

3λ2k1
8π

Akp1s

∆ν
kp
D

and∆νkp
D denote the resonant-scattering cross

section and the Doppler width of the Lyman-k resonance, respec-
tively. For the Lyman-α line σ2p

r ∼ 1.91× 10−13 cm2 and∆ν2p
D ∼

2.35× 10−5 ν21 at z∼ 1100. The Voigt profileφkp
V (x) = ϕkp

V (x)∆νkp
D ,

is normalized as
∫ ∞

−∞
φ

kp
V (xkp

D ) dxkp
D =

∫ ∞

0
ϕ

kp
V (ν) dν = 1. Where

xkp
D = [ν − νkp]/∆ν

kp
D is the distance to the line center in units of

the Doppler width.
The scattering probability of the Lyman-k resonance,pkp

sc, is
determined by aweighted countof all possible waysout of thekp-
state,R−kp(Tγ), excluding the Lyman-series resonance being consid-
ered, and then writing the branching ratio as8

pkp
sc =

Akp1s

Akp1s+ R−kp

, (12)

yielding the probability for re-injection into the Lyman-k reso-
nance. The ratesR−kp(Tγ) and the scattering probabilities,pkp

sc(Tγ),
can be pre-computed, independent of the solutions obtainedfrom
the multi-level code. We detail the procedure below.

Following Rybicki & dell’Antonio (1994), the diffusion coef-
ficient is D ∝ φkp

V (ν). We neglect corrections due to non-resonant

8 Stimulated emission for the Lyman-series has been neglected.
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Towards a complete treatment of recombination5

contributions (e.g. see Lee 2005) in calculating the scattering cross
section, which would lead to a different frequency dependence far
away from the resonance (e.g. Rayleigh scattering in the distant
red wing, Jackson 1998). However, because it turns out that reso-
nance scattering is only important in the vicinity of the Lyman-α
resonance, this approximation suffices.

It is also worth mentioning that Eq. (11) together with Eq. (9),
in the limit of large optical depth9, provides a viable description
for the redistribution of photon over frequency. Unlike thecase of
complete redistribution(in which the reemission after each scatter-
ing event occurs over the whole Voigt profile), in the recombina-
tion epoch photons are onlypartially redistributedas a result of the
Doppler motions of the hydrogen atoms, so-called type-II redistri-
bution as defined in Hummer (1962).

3.1.3 Equilibrium solution for the scattering term

Independent of the type of scattering, the equilibrium distribution
with respect to the scattering term Eq. (9) is given by

∆nsc,eq
x = ∆nx0(z) e−ξ(z)[x−x0] . (13)

This is the expected Wien spectrum with the temperature defined
by the electrons. The normalization∆nx0(z) is determined by the
emission and absorption process.

The optical depth to line scattering being extremely large in-
side the Doppler cores of the Lyman-resonances (τS ∼ 106 − 108

during Hi recombination) causes the photon distribution within the
Doppler core to remain extremely close to equilibrium,∆nsc,eq

x .

3.2 Normal Lyman-k emission and absorption terms

In the normal ’1+ 1’ photon picture, the emission profile for each
Lyman-series resonance is given by a Voigt-profile,ϕkp

V , with Voigt-
parameterakp. Given the rate,R+kp(Tγ,Te), at whichfresh10 electrons
reach thekp-state, and the probability of photon injection into the
Lyman-k resonance,pkp

em ≡ pkp
sc, the Lyman-k line-emission and ab-

sorption term are (e.g. see Chluba & Sunyaev 2010b);

∂∆nx

∂z

∣

∣

∣

∣

∣

Ly−k

em/abs
= −pkp

d

σ
kp
r N1sc

H[1 + z]

ν2k1

ν221

φ
kp
V

x2

{

ν2p1s∆nkp
em− f kp

x ∆nx

}

. (14)

The factor 1/x2 accounts for the translation from photon number
to the occupation number because∆Nν ∝ ν2∆nν, for which the
Voigt-profile is defined. Also,pkp

d = 1− pkp
em is the death or the real

absorption probability in thekth Lyman-series resonance, and∆nkp
em

and f kp
x are given by,

∆nkp
em =

g1s

gkp

R+kp

R−kp N1s
− e−hνk1/kTγ (15a)

f kp
x = exp

(

h[ν − νk1]/kTγ
)

, (15b)

whereg1s/gkp is the ratio of the statistical weights of the initial
and final states. The function∆nkp

em(Tγ,Te) can in principle be pre-
computed using the solution for the populations of the levels from

9 During hydrogen recombination photons scatter efficiently off the
Lyman-α resonance out to∼ 104 − 105 Doppler width (see Fig. 3 in
Chluba & Sunyaev 2009b). However, the redistribution of photons in the
distant damping wings still remains rather slow (Chluba & Sunyaev 2009a).
10 Electrons that did not enter the p-state via the Lyman-k resonance.

the initial run of the effective multi-level recombination code. How-
ever, the simplest way to define the ratioR+kp/R

−
kp is to use the quasi-

stationary approximation for thenp-population (see details below).
We note that in full thermodynamic equilibrium∆nkp

em = 0, so that
no distortion is created (∆nx = 0).

Physically, Eq. (14) includes two important aspects, whichare
not considered in the standard recombination calculation.Firstly,
it allows for a distinction between scattering events on oneside,
and real emission and absorption events on the other. Secondly,
it ensures conservation of blackbody spectrum in full thermody-
namic equilibrium, even in the very distant wings of the lines. Refer
Chluba & Sunyaev (2010b) for a detailed explanation of the latter
point, and on how this leads to one of the largest correctionsin the
case of Lyman-α transport.

3.2.1 Computing∆nkp
em

To solve the evolution of the photon field, one has to know at which
rate photons are produced by the Lyman-resonance. This ratede-
pends on∆nkp

em as defined in Eq. (15).
The rate equation for the evolution of the population in the

kp-level has the form (see Appendix B Chluba & Sunyaev 2010b),

dXkp

dt
=

dXkp

dt

∣

∣

∣

∣

∣

∣

Ly−k

+ R+kp − R−kpXkp (16a)

dXkp

dt

∣

∣

∣

∣

∣

∣

Ly−k

=
g1s

gkp
Akp1sX1sI

kp
1 − Akp1sXkpI

kp
2 (16b)

I
kp
1 =

∫

ϕ
kp
V (ν) eh[ν−νk1]/kTγ nν dν (16c)

I
kp
2 =

∫

ϕ
kp
V (ν)[1 + nν] dν ≈ 1+ npl(νk1) ≈ 1. (16d)

In this picture the emission, absorption and resonance scattering
terms are all treated simultaneously. In addition, the asymmetry
between the emission and absorption profile in the Lyman-k res-
onance, as required by detailed balance, has been incorporated.

Under quasi-stationarity, and using the definition of the death
probability, pkp

d , Eq. (16) yields

g1s

gkp

R+kp

R−kp X1s
=

1

pkp
d

[

gkp

g1s

Xkp

X1s
− I

kp
1

]

+ I
kp
1 , (17)

such that with Eq. (15)

∆nkp
em =

1

pkp
d

[

gkp

g1s

Xkp

X1s
− I

kp
1

]

+ I
kp
1 − e−hνkp1s/kTγ (18a)

≈ ∆nk
L















1+
pkp

em

pkp
d

Pk
S















. (18b)

In the second step we used the normal Sobolev approximation,for
whichIkp

1 ≈ nk
L −Pk

S

[

nk
L − npl

kp1s

]

(for the case of Lyman-α compare
also with Eq. (41) in Chluba & Sunyaev 2009b).

From Eq. (18b) we have∆nkp
em ≈ ∆nk

L , since for all Lyman-
series resonances the second term in brackets is very small.Never-
theless, for the total normalization of the line intensity close to the
line center, this small correction is important (Chluba & Sunyaev
2009b), in particular for the Lyman-α resonance.

Also we would like to mention that for the Voigt parameter of
the Lyman-k profiles,akp = Akp

tot/[4π∆ν
kp
D ], thetotalwidth of the line

is used, where transitions induced by the CMB blackbody (e.g. to
higher levels) are included. Numerically, it is possible tocompute
the total width for the Lyman-k resonance withAkp

tot ≡ Akp1s/p
kp
em.
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6 Chluba and Thomas

3.3 The 2s-1s two-photon channel

The 2s-1s two-photon channel provides the pathway for about
60% of all electrons in hydrogen to settle into the ground state
(Chluba & Sunyaev 2006a). It therefore provides the most impor-
tant channel in the cosmological recombination process. Here we
treat the case of 2s-1s separately to illustrate the important approx-
imations in the two-photon picture. The derivation outlined in this
section is then used to obtain the corresponding terms for the two-
photon processes from excited states withn > 2 (see§ 3.4).

The net change of the number density of electrons in the 2s
level via the 2s-1s two-photon channel is given by

dX2s

dt

∣

∣

∣

∣

∣

2γ

1s
= A2γ

2s1sX1s

∫

ϕ
2γ
2sn(ν) n(ν21 − ν) dν

− A2γ
2s1sX2s

∫

ϕ
2γ
2s[1 + n(ν)][1 + n(ν21 − ν)] dν, (19)

whereA2γ
2s1s = 8.2206 s−1 (Labzowsky et al. 2005) is the vacuum

2s-1s two-photon decay rate, andϕ2γ
2s denotes the 2s-1s two-photon

decay profile normalized as
∫

ϕ
2γ
2s dν = 1. Including all possible

ways in and out of the 2s-level the net change of the number density
of electrons in the 2s-state can be written as

dX2s

dt
=

dX2s

dt

∣

∣

∣

∣

∣

2γ

1s
+ R+2s− R−2sX2s. (20)

HereR+2s andR−2s include the effect of all transitions to bound states
with n > 2 and the continuum.

In order to simplify the notation we now introduce

〈 f (ν) 〉2γi =
∫ νi1s

0
ϕ

2γ
i f (ν) dν, (21a)

Gi
1 = 〈 n n′ 〉2γi (21b)

Gi
2 = 〈 [1 + n][1 + n′] 〉2γi (21c)

where f (ν) is some arbitrary function of frequency andn = n(ν)
andn′ = n(ν′) with ν′ = νi1s− ν.

Then, underquasi-stationaritythe solution for the population
of the 2s-state is given by

XQS
2s =

R+2s+ A2γ
2s1sX1sG

2s
1

R−2s+ A2γ
2s1sG

2s
2

. (22)

In the multi-level approach the effect of stimulated two-photon
emission is neglected leading toG2s

2 ≈ 1. Also any CMB spec-
tral distortion that is introduced by the recombination process
(e.g. because of Lyman-α emission) is omitted, implyingG2s

1 ≈
〈

npl npl′
〉2γ

2s
≈ exp(−hν21/kTγ). In this approximation, the result

from Eq. (22) becomes identical to the one obtained using Eq.(2b)
and Eq. (20), in the standard multi-level approach.

However, in the recombination problem corrections to both
G2s

1 andG2s
2 are important. For the stimulated two-photon emission

only the occupation number given by the undistorted CMB black-
body has to be considered and thus,

G2s
2 ≈
〈

[1 + npl][1 + npl′]
〉2γ

2s
≡ G

2s,pl
2 , (23)

which can be precomputed as a function of temperature. Typically,
G

2s,pl
2 exceeds unity by a few percent (Chluba & Sunyaev 2006b).

For G2s
1 one can make use of the fact that the distortions at

eitherν or ν′ are very small, so that

n n′ ≈ npl npl′ + npl′ ∆n+ npl ∆n′. (24)

Hence Eq. (19) can be re-written as,

dX2s

dt

∣

∣

∣

∣

∣

2γ

1s
= A2γ,∗

2s1s

[

X1se
−hν21/kTγ − X2s

]

+ A2γ
2s1sX1s∆G

2s
1 (25a)

∆G2s
1 =

∫

ϕ
2γ
2s

[

npl′∆n+ npl ∆n′
]

dν ≡2
∫ ν21

ν21
2

ϕ
2γ
2s npl′∆ndν, (25b)

where we defined the stimulated 2s-1s two-photon decay rate
within the CMB ambient radiation field asA2γ,∗

2s1s = A2γ
2s1sG

2s,pl
2 (cf.

Chluba & Sunyaev 2006b). Also Eq. (25b) reflects the symmetry
of the two-photon profile aroundν = ν21/2.

Note that forG2s,pl
2 only the CMB blackbody spectrum is im-

portant and therefore can, in principle, be precomputed as afunc-
tion of photon temperature,Tγ. This also emphasizes the difference
in the origin of the two terms of Eq. (25a),G2s,pl

2 being thether-
mal contribution, while∆G2s

1 arises solely because ofnon-thermal
photons created in the recombination process.

By comparing Eq. (25) with Eq. (2b) one can write down the
correction to the 2s-1s net two-photon rate

∆Rcorr
2s↔1s = A2γ

2s1s∆G
2s,pl
2

[

X1se
−hν21/kTγ − X2s

]

+ A2γ
2s1sX1s∆G

2s
1 . (26)

Here we introduced∆G2s,pl
2 = G

2s,pl
2 −1, which during recombination

is of order∼ 1%. In Equation (25) the integral∆G2s
1 depends on the

spectral distortion introduced by the recombination process in the
Wien’s tail of the CMB blackbody. Including only the Lyman-α
distortion provides a manner in which to take its feedback effect
into account (cf. Kholupenko & Ivanchik 2006).

3.3.1 The 2s-1s two-photon emission and absorption term

In contrast to the Lyman-series channels, the terms for the photon
radiative transfer equation in the case of the 2s-1s channelcan be
directly obtained from the net rate between the 2s and 1s state as in
Eq. (19), resulting in

1
c
∂Nν
∂t

∣

∣

∣

∣

∣

2s1s

2γ
= A2γ

2s1sN2sϕ̃
2γ
2s[1 + n(ν)][1 + n(ν21 − ν)]

− A2γ
2s1sN1sϕ̃

2γ
2sn(ν) n(ν21 − ν). (27)

Here we defined ˜ϕ2γ
2s =

2ϕ2γ
2s

4π , where the factor of two results from
two photons being added to the photon field, and the 4π converts
the units to per steradian.

The reason for this simple connection to the net rate equation
is related to the fact that every transition from the 1s stateto the
2s level is expected to lead to acomplete redistributionover the
2s-1s two-photon profile. The main reason behind this assumption
of redistribution is that the probability of coherent 1s-2sscattering
event is tiny because the 2s-1s decay rate is extremely smallcom-
pared to the time it takes to excite a 2s-electron to higher levels or
the continuum.

However, some additional simplifications are possible. First,
we can again replace the factors, [1+ n][1 + n′], accounting for
stimulated two-photon emission with those from the undistorted
CMB blackbody. Furthermore, from Eq. (24),

n n′ ≈ e−hν21/kTγ [1 + npl][1 + npl′]

[

1+
∆n
npl
+
∆n′

npl′

]

. (28)

Also, since the spectral distortions at very low frequencies are never
important, one of the two terms in Eq. (28) (say the one related to
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Towards a complete treatment of recombination7

∆n′) can always be omitted. Therefore we can rewrite Eq. (27) as

1
c
∂Nν
∂t

∣

∣

∣

∣

∣

2s1s

2γ
= A2γ

2s1sN1s ϕ̃
2γ,∗
2s

[

∆n2s
em− f 2s

ν ∆nν
]

(29)

whereϕ̃2γ,∗
2s ≡ ϕ̃

2γ
2s[1 + npl][1 + npl′] and

∆n2s
em =

X2s

X1s
− e−hν21/kTγ (30a)

f 2s
ν =

e−hν21/kTγ

npl(ν)
≈ exp

(

h[ν − ν21]/kTγ
)

. (30b)

If the term ∆n′

npl′ is non-negligible, as might be the case at very low
redshifts (z . 400), where the Lyman-α photons emitted atz ∼
1400 redshifts into the 2s-1s absorption channel, one in addition
has to subtract the termf 2s

ν′
∆nν′ within the brackets of Eq. (29). In

terms ofx = ν/ν21, z and∆nx the photon occupation number now
evolves as,

∂∆nx

∂z

∣

∣

∣

∣

∣

2s1s

2γ
= −
σ

2γ
2s1sN1sc

H[1 + z]

φ
2γ,∗
2s

x2

[

ν21∆n2s
em− f 2s

x ∆nx

]

. (31)

Here the 2s-1s cross section is given byσ2γ
2s1s=

λ221A2γ
2s1s

8πν21
, andφ2γ,∗

2s =

4π ν21ϕ̃
2γ,∗
2s .

Eq. (31) bears a striking resemblance to the emission and ab-
sorption in the Lyman-series channels as in Eq. (14) becauseone of
the two photons that are involved in the 2s-1s two-photon process
is drawn from the undistorted CMB blackbody spectrum, so that
the evolution equation essentially becomes aone-photonequation.
The difference is the absence of a death probability since practi-
cally every electron that is excited to the 2s state will takea detour
to higher levels or the continuum asp2s

d ≈ 1.

3.4 Two-photon emission and absorption terms from excited
levels withn > 2

One of the most interesting modifications to the solution forthe
photon field is related to the deviations of the profiles for the
different two-photon emission and absorption channels from the
Lorentzian shape (Chluba & Sunyaev 2008). For the recombina-
tion problem only those one-photon sequences involving a Lyman-
series resonance (e.g. 4d↔ 2p↔ 1s) are important11. In this sec-
tion we shall replace the standard ’1+ 1’-photon terms for these
channels with the full two-photon description that takes into ac-
count the coherent nature of the process12.

We generalize the approach detailed in Chluba & Sunyaev
(2010b) for emission of photons close to the Lyman-α line to in-
clude corrections around the Lyman-β and higher resonances.

11 All the other two-photon emission and absorption channel (e.g. 4d↔
2p ↔ 2s) can be treated within a blackbody ambient radiation field, so
that their net rate can be directly computed. Without deviations from the
blackbody shape these will be extremely close to the normal ’1+ 1’ photon
rates. Also they can only affect the net recombination rate as a ’correction
to correction’, because they only act on the electron ’feeding rates’ into
the main channels towards the ground state. A similar argument holds for
Raman scattering events that do not directly connect to the ground state.
12 Conditions persistent in the Universe at the recombinationepoch makes
collisions negligible, maintaining the coherence of the two-photon decay
(e.g. see Chluba & Sunyaev 2008; Hirata 2008)

3.4.1 Net rates for two-photon transitions from excited s- and
d-states

The net change of the number density of electrons in the level
j ∈ {ns,nd} via the j-1s two-photon channel is given by

dXj

dt

∣

∣

∣

∣

∣

∣

2γ

1s

=
gj

g1s
A2γ

j1sX1s

∫

ϕ
2γ
j (ν) n(ν) n(ν j1 − ν) dν

− A2γ
j1sXj

∫

ϕ
2γ
j (ν) [1 + n(ν)][1 + n(ν j1 − ν)] dν. (32)

Hereϕ2γ
j denotes the profile for thej-1s two-photon decay, which

can be computed as explained in Appendix A, and is normalized13

as
∫

ϕ
2γ
j dν = 1. The (vacuum) two-photon decay rate is given by

A2γ
j1s =

n j−1
∑

k=2

Aj kp pkp
em. (33)

The ratio of the statistical weights isgj/g1s = 1 for thens-states,
andgj/g1s = 5 for nd-states. Equation (33) simply reflects the one-
photon decay rates and branching ratios of all the ’1+ 1’ photon
routes j → np→ 1s via intermediate p-states withn < nj . Stimu-
lated emission induced by the CMB photons is not included in the
definition ofA2γ

j1s, since it is taken into account differentially by the
integrals in Eq. (32).

With notations defined in Eq. (21), and following the proce-
dure to derive Eq. (25), we can re-write Eq. (32) as

dXj

dt

∣

∣

∣

∣

∣

∣

2γ

1s

= A2γ,∗
j1s

[

gj

g1s
X1se

−hν j1s/kTγ − Xj

]

+
gj

g1s
A2γ

j1s X1s∆G
j
1 (34a)

∆G
j
1 = 2

∫ ν j1s

ν j1s/2
ϕ

2γ
j npl′∆ndν, (34b)

where we defined the stimulatedj-1s two-photon decay rate within
the CMB ambient radiation field asA2γ,∗

j1s = A2γ
j1sG

j,pl
2 .

TheG j,pl
2 depends crucially only on the CMB blackbody spec-

trum and thus can be precomputed as a function of photon temper-
ature,Tγ. On the other hand, like for the 2s-1s two-photon process
(see Eq. (25)),∆G j

1 arises due tonon-thermalphotons, and hence
depends directly on the solution for the photon field.

In the normal ’1+ 1’ photon picture, the two-photon profiles
can be considered as a sum ofδ-functions and therefore

A2γ(1+1),∗
j1s =

n j−1
∑

k=2

A∗j kp pkp
em. (35)

HereA∗j kp = Aj kp[1+npl(ν jk)], and the stimulated effect close to the
Lyman-series resonances has been neglected, i.e. 1+ npl(νkp1s) ≈ 1.

3.4.2 Two-photon emission and absorption for excited s- and
d-states

The two-photon emission and absorption terms are obtained fol-
lowing the steps in the derivation of Eq. (31). For thej-1s two-
photon channel one therefore obtains

∂∆nx

∂z

∣

∣

∣

∣

∣

j1s

2γ
= −
σ

2γ
j1sN1sc

H[1 + z]

ν2j1

ν221

φ
2γ,∗
j

x2

[

ν21∆nj
em− f j

x∆nx

]

. (36)

13 Small correction to the normalization due to the two-photondescription
are neglected.

c© 0000 RAS, MNRAS000, 000–000



8 Chluba and Thomas

The j-1s two-photon cross section is given byσ2γ
j1s =

g j

g1s

λ2j1A2γ
j1s

8πν j1
,

andφ2γ,∗
j = 4π ν j1ϕ̃

2γ
j (ν) [1 + npl(ν)][1 + npl(ν′)], where, because of

energy conservation,ν′ = ν j1s− ν. Also,

∆nj
em =

g1s

gj

Xj

X1s
− e−hν j1/kTγ (37a)

f j
ν =

e−hν j1/kTγ

npl(ν)
≡

eh[ν−ν j1]/kTγ

1+ npl(ν)
≈ exp

(

h[ν − ν j1]/kTγ
)

. (37b)

Again we emphasize the resemblance of the equation above to that
of the one-photon equation for the Lyman-series emission and ab-
sorption channels as in Eq. (14).

3.4.3 Correcting the Lyman-series emission and absorption
terms in the radiative transfer equation

Two-photon decays from a given initial statej ∈ {ns, nd} involve
Lyman-series resonances withk < n. For example, a 4d-1s two-
photon emission event includes the effect of the Lyman-α and β
resonance. In the Lyman-series emission and absorption terms as
in Eq. (14), these are already accounted for as ’1+1’ photon terms,
when the profile is given by the normal Voigt function.

To avoid thedouble countingof these transitions in the radia-
tive transfer equation, two modifications are necessary: (i) all death
probabilities, pkp

d , have to be reduced to account only for those
channels that are not included in the two-photon description, and
(ii) the Lyman-series emission rates have to be reduced for the same
reason. This approach was also explained in Chluba & Sunyaev
(2010b) for the 3s-1s and 3d-1s two-photon process. Includingonly
the j-1s two-photon process (say for 3d-1s), the modified death
probability and∆ñkp

em of the Lyman-k resonance becomes,

p̃kp
d = pkp

d − pj,kp
d (38a)

∆ñkp
em =

1
3 X1s

R+kp − Rj,+
kp

R−kp − Rj,−
kp

− e−hνkp/kTγ (38b)

where the partial death probability,pj,kp
d , is given by

pj,kp
d =

Rj,−
kp

Akp1s+ R−kp

≡ pkp
em

Rj,−
kp

Akp1s
≡ pkp

d

Rj,−
kp

R−kp

. (38c)

The partial rates in and out of thekp-state are

Rj,+
kp = Aj kp[1 + npl(ν j kp)] Xj (38d)

Rj,−
kp =

gj

gkp
Aj kp npl(ν j kp) (38e)

such thatg1s
gkp

Rj,+
kp

Rj,−
kp X1s

≡ nj
L ehν j kp/kTγ with nj

L =
g1s
g j

X j

X1s
.

When more than one two-photon channel is included, then for
every Lyman-resonance the following needs to be computed;

p̃kp
d = pkp

d −
∑

j

pj,kp
d (39a)

∆ñkp
em =

1
3 X1s

R+kp −
∑

j Rj,+
kp

R−kp −
∑

j Rj,−
kp

− e−hνkp/kTγ , (39b)

where the sums run over all involved initial levelsj.

3.4.4 Correcting the net rates in the multi-level atom

Equation (32) relates the population of levelj with the ground state.
The corresponding net two-photon transition rate includesthe effect

of all ’1 + 1’ photon processes,j ↔ np ↔ 1s, via Lyman-series
resonances withn < nj . Double-counting can again be avoided by
subtracting the corresponding ’1+ 1’ photon terms from the full
j-1s two-photon rate. The remaining corrections can then be added
to the effective multi-level code as additional rates which directly
connects levelj to the ground state14.

In the standard multi-level description of allj ↔ np ↔ 1s
sequences (nj > n), the contributions to the two-photon net rate as
in Eq. (32), take the form (see also Chluba & Sunyaev 2010b)

dXj

dt

∣

∣

∣

∣

∣

∣

2γ(1+1)

1s,kp

=
gkp

g1s
X1s Akp1s pj,kp

d n̄kp1s− Xj A∗j kp pkp
em (40a)

≡
gj

g1s
X1s Aj kp pkp

emnpl(ν jk) n̄kp1s− Xj A∗j kp pkp
em (40b)

dXj

dt

∣

∣

∣

∣

∣

∣

2γ(1+1)

1s

=

n j−1
∑

k=2

dXj

dt

∣

∣

∣

∣

∣

∣

2γ(1+1)

1s,kp

. (40c)

Equation (40a) is interpreted as electrons exiting levelj via the
route j → np → 1s at a rateA∗j kp times the probability,pkp

em (sec-
ond term). Similarly, electrons reach statej from the ground state
via the route 1s→ np → j, with the Lyman-k excitation rate,
gkp

g1s
Akp1sn̄kp1s times the probability,pj,kp

d , to then make the transition
kp→ j (first term). Using Eq. (38c) and (38e) leads to Eq. (40b).

Equation (40b) helps make the connection of the full two-
photon net rate and the ’1+ 1’ photon terms because Eq. (40b)
can be directly derived from Eq. (32), assuming that the two-photon
profile is given by independent (non-interacting) resonances, where
the line shapes are given by the normal Voigt-profiles.

Substituting ¯nkp1s = npl(νkp1s) + ∆n̄kp1s, and using the relation
ehν/kTγ = [1 + npl(ν)]/npl(ν), Eq. (40b) simplifies to

dXj

dt

∣

∣

∣

∣

∣

∣

2γ(1+1)

1s,kp

= A∗j kp pkp
em

[

gj

g1s
X1se−hν j1/kTγ − Xj

]

+
gj

g1s
X1s Aj kp pkp

emnpl(ν jkp)∆n̄kp1s, (41)

such that upon summing over the intermediatekp resonances we
have,

dXj

dt

∣

∣

∣

∣

∣

∣

2γ(1+1)

1s

= A2γ(1+1),∗
j1s

[

gj

g1s
X1se−hν j1/kTγ − Xj

]

+
gj

g1s
X1s

k<n j
∑

k=2

Aj kp pkp
emnpl(ν jkp)∆n̄kp1s. (42)

The above with Eq. (34) reveals the correction term for the rate
equations as;

∆R2γ
j↔1s = A2γ

j1s∆G
j
2

[

gj

g1s
X1se

−hν j1s/kTγ − Xj

]

+ A2γ
j1s

gj

g1s
X1s



















∆G
j
1 −

k<n j
∑

k=2

Aj kp pkp
em

A2γ
j1s

npl(ν jkp)∆n̄kp1s



















. (43)

Here we define∆G j
2 = G

j
2 − A2γ(1+1),∗

j1s /A2γ
j1s.

Similar to the 2s-1s two-photon channel, the correction to the
rate equations here has two contributions. The first is related to
∆G

j
2, which is independent of the solution to the photon distribution

and therefore can be pre-calculated, and the second arisingfrom the

14 Chluba & Sunyaev (2010b) proposed a varied treatment in which the
’1 + 1’ photon terms were first taken out of the standard network ofrate
equations and then the full two-photon rate between levelj and 1s added,
which at the end, is completely equivalent.
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integral∆G j
1. However, in contrast to the 2s-1s two-photon chan-

nel, in the normal rate equations, part of the latter term is already
included. Thus the ’1+ 1’ photon term has to be subtracted (last
term in brackets), where this term is calculated using the Sobolev
approximation for∆n̄kp1s.
∆G

j
2 in principle also arises in the normal ’1+1’ picture, when

differentially accounting for the effect of stimulated emission in
the CMB blackbody. However, the shape of the two-photon emis-
sion profile is crucial, since with the normal sum of Lorentzians
the integrand in Eq. (21c) would diverge forν → ν j1 andν → 0
(Chluba & Sunyaev 2010b). Furthermore, the latter two termsin
Eq. (43) account for both, modifications in the shape of the full
two-photon profiles, and differences in the solution of the photon
field in comparison with the standard Sobolev approximation.

The problem is numerical because two large terms are being
subtracted. One way to achieve stable results is to split therange
of integration into intervals where the mean occupation number
in the standard Sobolev approximation is represented by (compare
Chluba & Sunyaev 2009b)

∆n̄kp1s= ∆nkp
L

∫ ∞

0
ϕ

kp
V (ν′)

[

1− e−τ
kp
S [1−χkp

ν′
]
]

dν′

= ∆nkp
L

















χ
kp
ν′
−

e−τ
kp
S [1−χkp

ν′
]

τ
kp
S

















∞

0

= ∆nkp
L

[

1− Pkp
S

]

, (44)

with χkp
ν =
∫ ν

0
ϕ

kp
V dν′. Outside the resonances one can simply com-

pute each term in Eq. (43) separately, since there the contributions
are small. For those intervals containing a resonancek on the other
hand, one should compute both contributions in one integral, so that
the main terms cancel. Clearly, the choice of the intervals is only
motivated by the numerical precision that needs to be achieved.
Since the Voigt-profiles have their main support inside the Doppler
core, it is sufficient to define regions of a few Doppler width around
the resonances. This approach suffices for our purpose.

Alternatively, one can directly integrate the net two-photon
production rate, Eq. (36), over frequency and then subtractthe net
’1 + 1’ photon rate to obtain the correction. We confirmed that both
approaches lead to the same answer.

To capture part of the dependence of∆R2γ
j↔1s on the solu-

tion for the populations, in numerical computations we tabulate the
functionF 2γ

j↔1s = ∆R2γ
j↔1s/(X1s∆nj

L) as a function of redshift, once
we computed the solution for the photon field using the results for
the populations of the levels obtained from a run of our effective
multi-level recombination code.

3.5 Raman-scattering

In our previous works (Chluba & Sunyaev 2010b, 2009a) we did
not consider the effect of Raman-scatteringon the ionization his-
tory. However, correction due to this process reaches∆Ne/Ne ∼

0.9% atz ∼ 900 (Hirata 2008), and hence demands careful con-
sideration. The matrix element for this process is directlyrelated to
the one for the two-photon emission process by crossing-symmetry.
In Appendix A we explain how to compute the Raman-scattering
profiles,ϕR

j (ν), for the j-1s Raman process. Additional details can
also be found in Hirata (2008), where the importance of this effect
during recombination was shown for the first time.

3.5.1 Net rates for ns-1s and nd-1s Raman-scattering

The net change in the number density of electrons in the level
j ∈ {ns,nd} caused byj-1s Raman scatterings is given by

dXj

dt

∣

∣

∣

∣

∣

∣

R

1s

=
gj

g1s
AR

j1sX1s

∫ ν1sc

ν j1s

ϕR
j (ν − ν j1s) n(ν) [1 + n(ν − ν j1s)] dν

− AR
j1sXj

∫ ν jc

0
ϕR

j (ν) n(ν) [1 + n(ν j1s+ ν)] dν (45a)

≡
gj

g1s
AR

j1sX1s

∫ ν1sc

ν j1s

ϕR
j (ν − ν j1s) n(ν) [1 + n(ν − ν j1s)] dν

− AR
j1sXj

∫ ν1sc

ν j1s

ϕR
j (ν − ν j1s) n(ν − ν j1s) [1 + n(ν)] dν, (45b)

where Eq. (45b) was simply obtained from Eq. (45a) by transform-
ing the frequency range of the second integral.

In Eq. (45),ϕR
j denotes thej-1s Raman-scattering profile, and

the Raman-scattering coefficient is given by15

AR
j1s =

nmax
∑

k=n j+1

gkp

gj
Akp j pkp

em. (46)

The ratio of the statistical weights isgkp/gj = 3 for thens-states,
andgkp/gj = 3/5 for nd-states. Equation (46) simply reflects the
one-photon terms and branching ratios of all the ’1+ 1’ photon
routesj → np→ 1s via intermediate p-states withn > nj .

A rigorous treatment of Eq. (46) would include the integral
over continuum states. However, any electron reaching the con-
tinuum would forget its history because of fast Coulomb interac-
tions resulting in decoherence of the Raman process in the contin-
uum. Furthermore, as mentioned above, the Lyman-continuumis
extremely optically thick such that these channels will always can-
cel out (see also Hirata 2008). Also, in numerical computations we
only follow the evolution of the photon field up to some maximal
frequency,νmax. Therefore, in our description we are not account-
ing for the full Raman-process connected with transitions involving
photons withν > νmax. This approximation is fully justified as the
higher Lyman-series contribute negligible amounts to the total re-
combination rate. Thus the sum over intermediate p-states become
finite, without significant loss of precision.

To simplify Eq. (45) we define the following quantities16

〈 f (ν) 〉Ri =
∫ νmax

νi1s

ϕR
i (ν − ν j1s) f (ν) dν (47a)

Ri
1 = 〈n [1 + n′] 〉Ri (47b)

Ri
2 = 〈n

′[1 + n] 〉Ri (47c)

with n′ = n(ν − ν j1s). In the spirit of the two-photon emission and
absorption process, we can now write

Ri
1 ≈
〈

npl [1 + npl′]
〉R

i
+
〈

∆n [1 + npl′]
〉R

i

≈ Ri
2 e−hν j1s/kTγ +

〈

∆n [1 + npl′]
〉R

i
(48a)

Ri
2 ≈
〈

npl′[1 + npl]
〉R

i
= AR,∗

j1s/A
R
j1s. (48b)

15 We call AR
j1s ’coefficient’ since in vacuum there is no Raman-process.

16 Formally, the upper limit of the integral over the Raman-profiles should
go to infinity. However, since we are following the spectrum in a finite range
of frequencies, this introduces an upper limit,νmax ≤ ν1sc.
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10 Chluba and Thomas

The total j → 1s ’1+ 1’ Raman-scattering rate in the CMB black-
body ambient radiation field is

AR(1+1),∗
j1s =

nmax
∑

k=n j+1

gkp

gj
Akp j npl(ν jk) pkp

em. (49)

This then leads to

dNj

dt

∣

∣

∣

∣

∣

∣

R

1s

= AR,∗
j1s

[

gj

g1s
X1se

−hν j1s/kTγ − Xj

]

+
gj

g1s
AR

j1s X1s∆R
j
1 (50a)

∆R
j
1 =

∫ νmax

ν j1s

ϕR
j (ν − ν j1s) [1 + npl′] ∆n(ν) dν. (50b)

HereAR,∗
j1s and∆R j

1 are important in defining the correction to the

rate equations (see§ 3.5.4). AgainAR,∗
j1s is the thermal contribution,

while ∆R j
1 arises from non-thermal photons.

3.5.2 Terms in the radiative transfer equation for
Raman-scattering

From Eq. (45) the terms in the radiative transfer equation for the
photon field can be obtained. However, one aspect is important to
keep in mind: a photon that Raman-scatters off an electron in the
j th-state is removed from frequencies 0≤ ν ≤ ν jc. However, the
scattered photon appears in the frequency rangeν jc < ν j1 ≤ ν

′ ≤

ν1c, and likewise for the inverse process. This description assumes
complete redistributionof photons over the full Raman-scattering
profile17 during each scattering event. Therefore, the terms for the
radiative transfer equation read

1
c
∂Nν
∂t

∣

∣

∣

∣

∣

j1s

R,ν≤ν jc

=
gj

g1s
AR

j1sN1s ϕ̃
R
j (ν) n(ν j1s+ ν) [1 + n(ν)]

− AR
j1sNj ϕ̃

R
j (ν) n(ν) [1 + n(ν j1s+ ν)] (51a)

1
c
∂Nν
∂t

∣

∣

∣

∣

∣

j1s

R,ν j1s≤ν

= AR
j1sNj ϕ̃

R
j (ν − ν j1s) n(ν − ν j1s) [1 + n(ν)]

−
gj

g1s
AR

j1sN1s ϕ̃
R
j (ν − ν j1s) n(ν) [1 + n(ν − ν j1s)], (51b)

whereϕ̃R
j (ν) = ϕR

j (ν)/4π. It is clear that the total integral over fre-
quency vanishes, when adding the above two terms, showing that
the Raman-process conserves photon number. However, the num-
ber density of electrons in the 1s andj-state is altered after each
Raman-scattering event, according to Eq. (45).

With regards to the recombination dynamics we are not in-
terested in the changes to the photon spectrum at low frequencies.
Therefore, we only consider Eq. (51b). For stimulated terms, the
distortions can be neglected. Furthermore, one can define ˜ϕR,∗

j (ν) ≡
ϕ̃R

j (ν) npl(ν) [1 + npl(ν j1s+ ν)] ≈ ϕ̃R
j (ν) npl(ν), and neglect the distor-

tions at low frequencies, such that

1
c
∂Nν
∂t

∣

∣

∣

∣

∣

j1s

R,ν j1s≤ν

≈ AR
j1sNj ϕ̃

R,∗
j (ν − ν j1s)

−
gj

g1s
AR

j1sN1s ϕ̃
R,∗
j (ν − ν j1s) f j

ν n(ν), (52)

where f j
ν is defined by Eq. (37b). In terms of the photon occupation

17 We neglect corrections caused by partial redistribution inRaman-
scattering events, but like in the case of two-photon transitions these should
be very small.

number this equation becomes,

∂∆nx

∂z

∣

∣

∣

∣

∣

j1s

R,ν j1s≤ν

= −
σR

j1sN1sc

H[1 + z]

ν2j1

ν221

φR,∗
j

x2

[

ν21∆nj
em− f j

x∆nx

]

, (53)

where∆nj
em is defined as in Eq. (37a). Thej-1s Raman-scattering

cross section is given byσR
j1s =

g j

g1s

λ2j1AR
j1s

8πν j1
, and we setφR,∗

j ≡

4π ν j1ϕ̃
R,∗
j (ν − ν j1s). Note the close similarity of this equation to

the one-photon equation for the Lyman-series emission and ab-
sorption channels in Eq. (14). Photons scattering from frequencies
0 ≤ ν ≤ ν jc into the rangeν j1s ≤ ν appear as a source term. This
is related to the fact the these photons are drawn from the CMB
blackbody.

3.5.3 Correcting the Lyman-series emission and absorption
terms in the radiative transfer equation

Like in the case of two-photon emission and absorption, the reso-
nant part of the Raman-process is already part of the ’1+ 1’ pho-
ton Lyman-series transfer in Eq. (14). To avoid double-counting we
simply have to correct the death probability and∆nkp

em of the Lyman-
k resonance for terms that are included in the Raman-scattering
process. For example, when using the terms for the 2s-1s Raman-
scattering process in the radiative transfer equation,pkp

d and∆nkp
em

for Lyman-β, γ, δ, and higher will have to be corrected.
The modified death probability can be obtained by adding

appropriate terms to the sums of Eq. (39). However, for each in-
cluded Raman-channels one now hasRj,−

kp = Akp j [1 + npl(ν j kp)],

andRj,+
kp =

gkp

g j
Akp j npl(ν j kp) Xj ≡ Rj,−

kp
gkp

g j
Xj e−hν j kp/kTγ .

3.5.4 Correcting the net rates in the multi-level atom

Like in the case of two-photon emission and absorption events, cor-
rections to the net rates in the multi-level atom have to be defined
to avoid double-counting. In the standard multi-level description
of all j ↔ np ↔ 1s sequences (nj < n), the contributions to the
Raman-scattering net rate, Eq. (45), takes the form

dXj

dt

∣

∣

∣

∣

∣

∣

R(1+1)

1s,kp

=
gkp

g1s
X1s Akp1s pj,kp

d n̄kp1s−
gkp

gj
Xj Akp j npl(ν jk)pkp

em (54a)

≡
gkp

g1s
X1s A∗kp j pkp

em n̄kp1s−
gkp

gj
Xj Akp j npl(ν jk)pkp

em (54b)

dXj

dt

∣

∣

∣

∣

∣

∣

R(1+1)

1s

=

nmax
∑

k=n j+1

dXj

dt

∣

∣

∣

∣

∣

∣

R(1+1)

1s,kp

. (54c)

As mentioned above,nmax is a consequence of the finite computa-
tional domain. The terms in Eq. (54) is interpreted as in the case of
two-photon emission and absorption (see§ 3.4.4).

Inserting n̄kp1s = npl(νkp1s) + ∆n̄kp1s, and using the relation
ehν/kTγ = [1 + npl(ν)]/npl(ν), Eq. (54b) simplifies to,

dXj

dt

∣

∣

∣

∣

∣

∣

R(1+1)

1s,kp

=
gkp

gj
Akp j npl(ν jk)pkp

em

[

gj

g1s
X1se−hν j1/kTγ − Xj

]

+
gkp

g1s
X1s A∗kp j pkp

em∆n̄kp1s, (55)
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such that summing over the intermediatekp resonances leads to,

dXj

dt

∣

∣

∣

∣

∣

∣

R(1+1)

1s

= AR,∗
j1s

[

gj

g1s
X1se−hν j1/kTγ − Xj

]

+ X1s

nmax
∑

k=n j+1

gkp

g1s
A∗kp j pkp

em∆n̄kp1s. (56)

Using Eq. (50) it is clear that the correction term for the rate equa-
tions are,

∆RR
j↔1s = AR

j1s∆R
j
2

[

gj

g1s
X1se

−hν j1s/kTγ − Xj

]

+ AR
j1s

gj

g1s
X1s



















∆R
j
1 −

nmax
∑

k=n j+1

gkp

gj

A∗kp j pkp
em

AR
j1s

∆n̄kp1s



















, (57)

where we define∆R j
2 = R

j
2−AR(1+1),∗

j1s /AR
j1s. Like for the two-photon

channels (see Eq. (43)),∆R j
2 in principle also arises in the normal

’1 + 1’ picture, where the shape of the Raman-profile ensure that
the integrand remains finite, this time in the limit ofν → ν j1s (see
Appendix A2). Furthermore, the latter two terms in Eq. (57) ac-
count for both, modifications in the shape of the Raman profiles
with respect to the normal sum of Lorentzians, and differences in
the solution of the photon field with respect to the Sobolev approx-
imation.

Again one can compute the integrals over frequency by split-
ting the range of integration and using Eq. (44) to model the
“Sobolev part”. In numerical calculations, we tabulateF R

j↔1s =

∆RR
j↔1s/(X1s∆nj

L) versus redshift, to include the correction into the
effective multi-level recombination code, and then use this tocor-
rect the rate equations.

4 CHANGES IN THE LYMAN-SERIES DISTORTION
FOR DIFFERENT PHYSICAL PROCESSES

In §5 we discuss the changes to the free electron fraction due to the
various physical processes under consideration. However,in order
to understand the source of these corrections it is illustrative to first
look at the modifications in the Lyman-series spectral distortion.

In Fig. 1 we present the spectral distortion at two different
redshifts, one before the maximum of the Lyman-series emission
(which happens atz ∼ 1300− 1400), and one just before the
maximum of the Thomson visibility function. We include Lyman-
resonances up ton = 8 for these computations. The solutions to the
populations of the hydrogen levels were obtained from our imple-
mentation of the effective 400-shell recombination code.

The solid black line in all panels, shows ourreference case, for
which the Lyman-series is modelled using Voigt-profiles. This case
already includes the effect of resonance scattering(for all Lyman-
series resonances),electron scattering, the full time-dependence
(Chluba & Sunyaev 2009b) of the emission and absorption pro-
cess, and thethermodynamic correctionfactor for each resonance
(Chluba & Sunyaev 2010b), capturing a large part of the correc-
tions with respect to the Sobolev treatment. In particular,the dis-
tinction between scattering and emission/absorption events (by in-
troducing the death probability) is important for the photon distri-
bution on the blue side of the Lyman-α resonance (see discussion
in Chluba & Sunyaev 2009b). Furthermore, time-dependence and
the thermodynamic correction factor lead to a large modification of
the photon distribution with respect to the standard Sobolev case.

We will now discuss the effect of the different processes on
the shape of the Lyman-series distortion separately.

4.1 Effect of Lyman-series scattering

In Fig. 1, the dotted curve shows the case for which we “switched
off” the terms for Lyman-series scattering. This line is only visible
in the upper panels, since at high frequencies above the Lyman-α
line it coincides with the reference case. The figure illustrates that
partial redistribution by Lyman-series scattering is onlyimportant
close to the Lyman-α resonance, and on its red wing. We could,
in principle, neglect the correction due to resonance scattering for
Lyman-n with n > 2, however, with our efficient PDE solver it is
straightforward to take them into account.

The physical reason for this behaviour is that the scattering
probability in the Lyman-α line is very close to unity (p2p

sc ∼ 0.999−
0.9999), such that only in the vicinity of the Doppler core can real
emission and absorption terms act efficiently, strongly redistribut-
ing photons over frequency. Outside the Doppler-core, however, re-
distribution is much slower making the effect of Doppler redistri-
bution visible.

For the higher Lyman-series resonance, on the other hand, the
death probability is only about an order of magnitude smaller than
the scattering probability, implying that far out in the wings of the
resonance photons can be efficiently redistributed by emission and
absorption processes. In this case, resonance scattering leads to a
small correction (see also arguments in Ali-Haı̈moud et al.2010).

4.2 Two-photon emission and absorption from the excited
states withn ≥ 3

Next we include the corrections due to theshapesof thens-1s and
nd-1s two-photon profiles (Fig. 1, red/dashed line). Byshapewe
also address modifications caused by the presence of CMB black-
body photons.

One can see that in comparison to the reference case this
slightly decreases the spectral distortion between all Lyman-
resonances, indicating that the emission/absorption opacity has
decreased. The largest effect is seen between the Lyman-α and
Lyman-β lines, as a result of the 3s-1s and 3d-1s two-photon emis-
sion and absorption process. This result is in agreement with our
earlier treatment (Chluba & Sunyaev 2010b), where it was demon-
strated that the shape of the 3s-1s and 3d-1s two-photon profiles
leads to a slight acceleration of recombination, which however, is
less important than the corrections arising from the thermodynamic
correction factor and time-dependence, individually.

We tried to identify the main source of the modifications above
the Lyman-β resonance in more detail. In the full two-photon pic-
ture, the 3s-1s and 3d-1s two-photon emission and absorption chan-
nels only act on photons withν ≤ ν31. However, when neglecting
the modifications to the shapes of the two-photon profiles, a large
part of the opacity above the Lyman-β line (incorrectly) comes
from the 3s-1s and 3d-1s ’1+ 1’ photon channel, which involves
the Lyman-α resonance and is modelled by a normal Voigt profile.
It turns out that only for the 3s-1s and 3d-1s two-photon process
does the exact shape of the two-photon profile really matter.Above
the Lyman-β line the small correction with respect to the solid line
is practically captured bytruncatingthe Voigt profiles (in particu-
lar the one for Lyman-α), such that the energy is conserved (e.g.
photons emitted or absorbed in a 3s-1s and 3d-1s ’1+ 1’ photon
process can only have energiesν ≤ ν31, and so on). This illustrates
how important the shape of the line profiles is when going far into
the damping wings of the resonances.
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Figure 1. Solution for the Lyman-series distortion atz = 1490 (left panels) andz = 1190 (right panels) for different combinations of physical processes
(for details see§4). In all cases we include the effect of electron scattering. We also marked the positions of the Lyman-series resonances with the vertical
dashed-dot-dotted lines. The effect of partial frequency redistribution is only important close to the Lyman-α line center, so that the dotted line is only visible
in the upper panels. A movie on the time-evolution of the Lyman-series distortion can be found at www.Chluba.de/Lyman-series-movie.

4.3 Importance of Raman scattering

In addition to the two-photon corrections, we ran cases thatalso in-
clude the full Raman scattering treatment (Fig. 1, blue/dash-dotted
line). One can see that the Raman process led to an enhancement
of the spectral distortion between the Lyman-α and Lyman-β reso-
nance, while in all the other cases the spectral distortion decreases
between the resonances. Thus one expects an increased blue-wing
feedback correction and hence a delay of hydrogen recombina-
tion from Lyman-α. On the other hand, these additional red-wing
Lyman-β photons were created in a 2s-1s Raman event, such that at
earlier times an acceleration is expected. This simple picture is in
agreement with earlier discussions of this process (Hirata2008).

In the case considered, the main source of the difference in the
Lyman-series distortion comes from the 2s-1s Raman treatment.
Neglecting the Raman-corrections to the higherns-1s andnd-1s
channels does no affect the shape of the distortion noticeably. This
is one of the reasons why the Raman process need to be included
only for the first few levels.

Since in the case of Raman scattering, the 2s→ 1s scattering
profile is given by ˜ϕR,∗

j (ν) ≈ ϕ̃R
j (ν) npl(ν) (see Sect. 3.5), one ex-

pects two sources of corrections: (i) due to the difference ofϕR
j (ν)

with respect to a sum of Voigt profiles with appropriate weights,
and (ii) the factornpl(ν). In the normal ’1+ 1’ photon picture this
factor would not appear differentially, but instead directly for each

resonance frequency. It turns out that both part of the correction are
important for the 2s-1s Raman treatment.

We note, that the spectral distortion atz = 1190 in the full
treatment looks very similar to the curve given in Hirata (2008).
However, in Hirata (2008) also the CMB blackbody spectrum was
added, andnν instead ofx3∆nx was plotted, which makes a direct
comparison more difficult.

5 CHANGES TO THE FREE ELECTRON FRACTION
FOR DIFFERENT PHYSICAL PROCESSES

In this section we present our analysis of the different corrections to
the standard recombination calculation. We focus on hydrogen, and
model the helium recombination dynamics using the description
given in Chluba & Sunyaev (2010a), including the first five shells
with full feedback. With the current version of our effective multi-
level recombination code we are able to account for all important
corrections to the recombination dynamics of hydrogen. We show
a direct comparison with previous results and find very good agree-
ment. All figures in which we compared the output of our recom-
bination code with Recfast we used Recfast v1.4.2 (Wong & Scott
2007), but excluded the corrections to the helium recombination
history in Recfast and removed the switches in the Recfast ODE
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Figure 2. Dependence of the modifications to the recombination dynamics
on the number of included shells. The results of our effective multi-level
recombination code were directly compared with the output from Recfast.

system (see Fendt et al. 2009, for details). The cumulative effect on
the ionization history is presented in Fig. 6.

5.1 Results from our effective multi-level code

In Fig. 2 we show the changes in the recombination dynamics with
the number of shells that were included into the computationof
the effective rates. This figure confirms that our implementation
of the effective multi-level approach yields corrections that are in
agreement with our earlier computations Chluba et al. (2010). We
find that the correction converges down toz∼ 200 when including
∼ 300− 400 shells, as already explained in Chluba et al. (2010).
We also directly compared with our full multi-level recombination
code and found the difference to be smaller than∆Ne/Ne ∼ 10−5.

Collisional processes are still able to change the low redshift
behaviour at the∼ 0.1% level in this redshift range (Chluba et al.
2010), however, we defer a detailed analysis on the importance of
this effect to a future work.

5.2 The reference case

In Fig. 3 we present a compilation of different corrections to the
ionization history that are included into our reference case. For
this weinternally compared the outputs of our recombination code
when switching on and off different processes. We computed the
solution to the photon transfer problem including the Lyman-series
up to n = 8, with Lyman-θ (n = 9) on the upper boundary of
the frequency grid. In the Lyman-series transfer we did not in-
clude the corrections to theprofilesof the emission and absorption
processes arising from two-photon and Raman events, i.e. wede-
scribed Lyman-k emission and absorption using Eq. (14). However,
in our full reference case, Lyman-k resonance and electron scat-
tering, as well as 2s-1s two-photon emission and absorptionwere
included (see Sect. 4 for additional comments).

To account for all the corrections to the rate equations in the
effective multi-level recombination code, we ran the obtainedsolu-
tion for the photon distribution through the modules that also allow
us to take the two-photon and Raman scattering corrections into ac-
count (see explanations in Sect. 3). However, we replaced the full
profiles of the channels with the normal Voigt-profiles.
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Figure 3. Corrections that are included into the reference case.

The cumulative difference with respect to the output of our ef-
fective multi-level recombination code which does not include any
of the radiative transfer corrections is shown in Fig. 3. In total we
find a delay in recombination by∆Ne/Ne ∼ 0.4% atz∼ 930, and an
early acceleration by∆Ne/Ne ∼ −1.0% atz ∼ 1270. The reference
case therefore captures a significant part of the total correction with
respect to Recfast (see Sect. 5.5 for details).

5.2.1 The 2s-1s two-photon correction

Figure 3 shows the total correction due to changes in the 2s-1s
two-photon channel. We only modified the 2s-1s two-photon and
Ly-α net rate in our effective multi-level recombination code using
Eq. (26), but did not alter any of the other rates. Also we switched
off line-diffusion.

We find a delay of recombination by∆Ne/Ne ∼ 0.83% atz ∼
990, which is slightly (by∆Ne/Ne ∼ 0.18%) larger than in earlier
computations of this process (e.g. Fendt et al. 2009).

There are two main reasons for this difference; (i) because in
the reference case we include the emission and absorption inthe
2s-1s two-photon channel, theself-feedbackof photons emitted by
2s-1s transitions on the 1s-2s two-photon channel is accounted for,
which leads to an additional delay of∆Ne/Ne ∼ 0.08% and (ii)
the remaining deceleration by∆Ne/Ne ∼ 0.1% is just caused by
normal absorption of 2s-1s photons by Lyman-α (without the aid
of line-diffusion).

5.2.2 Feedback to Lyman-α and the diffusion correction

We now considered the feedback correction to Ly-α. Like in our
earlier treatment (Chluba & Sunyaev 2007) we find∆Ne/Ne ∼

0.21% atz∼ 1100. We computed this correction from our radiative
transfer code by modifying the Lyman-α escape probability, with
resonance scattering switched off. We also left the rate equations
for the higher Lyman-series resonances unaffected, in order to not
reflect the full Lyman-series feedback correction, which amounts
to ∆Ne/Ne ∼ 0.26% atz∼ 1100 (Chluba & Sunyaev 2010a).

In Figure 3 the correction due to Lyman-α diffusion alone is
depicted. Again this was computed as a correction to the Lyman-
α resonance only. We find an acceleration by∆Ne/Ne ∼ −0.44%
at z ∼ 900. This is slightly smaller than in our earlier computation
(Chluba & Sunyaev 2009a). The reason is simply that there we only
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Figure 4. Two-photon corrections from highly excited levels (n > 2) and
their convergence withn.

included 3 shells into our computation. However, when including
more than 5− 10 shells the diffusion correction becomes slightly
smaller, reducing to the curve presented in Fig. 3. To check the
precision of our PDE-solver, we recomputed the curve for the3-
shells case and confirmed our earlier result.

5.2.3 The correction due to time-dependence and
thermodynamic factor

The final correction that is taken into account by the computa-
tions in the reference case is caused by the time-dependenceof the
Lyman-α emission process and the thermodynamic correction fac-
tor (see Fig. 3). The origin of these terms was first explainedin de-
tail by Chluba & Sunyaev (2009b) and Chluba & Sunyaev (2010b).
The net effect is an acceleration in recombination by∆Ne/Ne ∼

−1.28% atz ∼ 1200. This result is in excellent agreement with
the curves presented in Chluba & Sunyaev (2010b), Fig. 18 therein.
Note that in the Figure of Chluba & Sunyaev (2010b) also the 3s-1s
and 3d-1s two-photon profile correction was included.

5.2.4 Correction from the higher Lyman-n

For the solid black line in Fig. 3 all Lyman-series corrections were
included. However, so far we have just discussed the corrections to
the 2s-1s two-photon and Lyman-α channel. We found a cumula-
tive acceleration by∆Ne/Ne ∼ −0.06% atz∼ 1210 as result of the
higher Lyman-series. This correction includes all feedback correc-
tions among the higher levels, time-dependence, and the thermody-
namic factors. Since the additional modification is small, this shows
that just a detailed treatment of 2s-1s two-photon and Lyman-α cor-
rections already gives a very good approximation to the total cor-
rection in the reference case.

5.3 Two-photon corrections from levels withn > 2

In this Section we discuss the correction caused by the modifica-
tions in the emission and absorption profiles of thens-1s andnd-
1s two-photon channels. These corrections are due : (i)quantum-
mechanicalmodifications to the shapes of the line-profiles, and (ii)
stimulatedtwo-photon emission in the CMB blackbody radiation
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Figure 5. Raman scattering corrections from excited levels

field. For two-photon processes fromns andnd-states withn > 2
the former dominates.

In Fig. 4 we present the changes to the free electron fraction
when the two-photon corrections up to the 8s-1s and 8d-1s two-
photon channel are included. Two-photon processes lead to atotal
acceleration of recombination by∆Ne/Ne ∼ −0.46% atz ∼ 1120.
The main contribution comes from the 3s-1s and 3d-1s two-photon
process, while the higher levels only add∆Ne/Ne ∼ −0.08% at
z∼ 1200. The correction practically converge when accountingfor
the two-photon terms up to 5s-1s and 5d-1s. Also the result for the
3s-1s and 3d-1s two-photon process compares extremely wellwith
our earlier computation (Chluba & Sunyaev 2010b). We conclude
that for practical purposes it is sufficient to include the two-photon
corrections for allns andnd states up ton ∼ 4− 5.

5.4 Corrections caused by Raman processes

The final process we discuss is the effect of Raman scattering,
which was investigated also by Hirata (2008). The result of our
computation is shown in Fig. 5, confirming that Raman scattering
leads to a delay of recombination by∆Ne/Ne ∼ 0.9% atz ∼ 920.
This result is in very good agreement with the analysis of Hirata
(2008). We found that the correction is dominated by the 2s-1s Ra-
man process. Higher level Raman scattering lead to a small ad-
ditional modification, which for practical purposes could be ne-
glected. We recommend including the Raman-corrections forthe
first three shells.

As mentioned above, the Raman correction has two separate
contribution: one from the feedback of Lyman-β photons on the
Lyman-α resonance, which leads to a delay of recombination a
low redshifts, and a second arising because of the accelerated 2s-
1s scattering. The delay and acceleration need to be out-of-phase
in redshift to create a net effect. We find that their individual con-
tributions have amplitudes comparable to∼ 2%, however, partial
cancelation makes them smaller.

5.5 Total correction with respect toRecfast

In Fig. 6 we show the cumulative correction to the ionizationhis-
tory caused by all the processes included into our present recombi-
nation code. The changes during hydrogen recombination found
here are very similar to those presented in Rubiño-Martı́net al.
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Figure 6. Total correction to the ionization history. We compared theout-
put of our effective multi-level recombination code with Recfast v1.4.2
(Wong & Scott 2007). However, we switched all helium flags in Recfast
off.

(2010). The only major difference is visible at low redshifts, since
their analysis was based on the results from a 100-shell hydrogen
recombination model and hence the low redshift freeze-out tail was
overestimated (see Fig. 3 and comments in Chluba et al. (2010)).
However, as argued earlier (Fendt et al. 2009; Rubiño-Martı́n et al.
2010; Chluba et al. 2010), we expect that this additional modifica-
tion does not affect the conclusions of their work at a significant
level. In particular, they showed that the cumulative effect of all
published recombination corrections could lead to biases in the val-
ues ofΩb h2 andnS, that reach∼ −1.7σ and∼ −2.3σ, respectively.
For the analysis of CMB data from the Planck Surveyor these cor-
rections have to be taken into account carefully when answering
queries about different models ofinflation.

6 CONCLUSIONS

In this paper we complete our analysis on the importance of two-
photon transitions and Raman scattering during the cosmologi-
cal recombination epoch. We explicitly solve the radiativetrans-
fer equation for the Hi Lyman-series transport, including all im-
portant processes (e.g. resonance scattering, full time-dependence),
extending our former treatment to account for Raman scattering, as
well as two-photon transition from highly excited levels with n > 3.
Our computations are performed using an effective multi-level ap-
proach for hydrogen to accelerate the recombination calculation,
that without optimization achieves runtimes of∼ 1− 2 minutes.

We find that 2s-1s Raman scattering leads to a small initial
acceleration of recombination at high redshifts, which then turns
into a deceleration of∆Ne/Ne ∼ 0.9% at z ∼ 920. ns-1s and
nd-1s Raman processes from levels withn > 2 only result in a
small additional correction. Two-photon transitions fromns andnd-
states withn > 3 accelerate hydrogen recombination by additional
∆Ne/Ne ∼ −0.08% atz∼ 1200. For practical purposes one only has
to include the two-photon corrections for the first∼ 4− 5 shells.

This work carves a path towards a new cosmological re-
combination code, CosmoRec, that supersedes the physical model
included in Recfast and can be used in the analysis of future
CMB data, e.g. from the Planck Surveyor, Act, Spt, and CmbPol.
The final step will be to perform a detailed code comparison,

and to optimize the implementation of the recombination code,
so that runtimes of seconds can be accomplished, incorporat-
ing all the important physical processes without requiringany
fudge factors. Our final version of CosmoRec will be available at
www.Chluba.de/CosmoRec.
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APPENDIX A: COMPUTING THE TWO-PHOTON
EMISSION AND RAMAN PROFILES

A1 Two-photon emission profiles

We compute the two-photon decay profiles according to
Chluba & Sunyaev (2009b) and Chluba & Sunyaev (2010b). In
their treatment the infinite sum over intermediatenp-states is split
up into levels with principal quantum numbersn > ni andn ≤ ni ,
whereni is the principal quantum number of the initial state. This
makes the sum over resonances (in the case of 3s and 3d only one)
finite and allows to use interpolation or fitting formulae forthe re-
maining contributions to the total matrix element from the infinite
sum.

We tabulate the non-resonant parts of the two-photon ma-
trix elements prior to the computation. The resonances are an-
alytically added afterwards. As explained in Chluba & Sunyaev
(2010b), close to the resonances, the motion of the atoms becomes
important, leading to a broadening of the two-photon profiles. To
include the effect of motion on the shape of the lines close to the
Doppler core, we take the ratio,ρ2γ

i = ϕ
2γ
i /ϕ

ΣΛ
i , of the vacuum

two-photon profiles to the sum of Lorentzians, and tabulate it on
the computational grid in frequency. For every evaluation in time,
we first compute the Voigt-profiles for the resonances of interest
and then sum these with their respective weights to obtain the total
Voigt-profile of the resonance. These are then multiplied byρ2γ

i to
obtain an approximation for the two-photon profile in the labframe.

This procedure also allow us to include the changes in the total
width,Γnp, of the resonances with redshift. In vacuum this width is
related to the total decay rate, however, with the CMB this rate can
change at the level of∼ 10% for the Lyman-n line whenn > 2.

A2 Raman profiles

A ns-1s andnd-1s Raman process has form H∗ + γ → H + γ′,
where H∗ denotes a neutral hydrogen atom in an excitedns/nd-
state. In contrast to the two-photon emission process, H∗ → H +
γ + γ′, the Raman process only works when photons are available.
In vacuum no Raman scattering events occur. Thens-1s andnd-1s
Raman scattering matrix elements are related to thens-1s andnd-1s
two-photon matrix elements bycrossing-symmetry. The energies of
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Figure A1. Frequency dependence of the 2s-1s Raman profile. This profile
has to be interpreted as a scattering cross section, where the electron is in
the excited state. The positions of the Balmer-α, β, γ, andδ resonances are
marked. For comparison the cross section computed as a sum ofLorentzians
are shown. Furthermore, we also show the ratio of these two profiles, indi-
cating that close to the resonances the profile becomes Lorentzian, with
small corrections.

the incoming photon,γ, and the outgoing photon,γ′, are given by
ν + ν j1s = ν

′, wherehν j1s is the excitation energy of the initial state
with respect to the ground state.

Raman scattering profiles can be derived using the formulae
given in Chluba & Sunyaev (2010b). The main difference are: (i) in
the functionsfn(y) andhn(y) (see Eq. (8c) and (10d) in their paper)
y = ν/ν j1s has to be replaced with−y; (ii) the pre-factory3(1 −
y)3 needs to be substituted byy3(1 + y)3; and (iii) the resonances
now appear for intermediatenp-states withn > nj , wherenj is the
principle quantum number of the initial state.

For a given computational frequency grid only a finite number
of resonances appear, say fornj < n ≤ nres. Like in computations
of the two-photon emission profiles, one can therefore splitthe infi-
nite sum over intermediate p-states (including the continuum), into
resonant and non-resonant contributions. The non-resonant contri-
butions come fromn < nj andnres < n, where the non-resonant
matrix element scales like 1/y for y → 0 and (1/[n2

j − 1] − y)−1

towards the ionization threshold,ν → ν jc. One can therefore tab-
ulateMnr y [1/[n2

j − 1] − y] on a grid and add the finite number of
remaining resonances analytically. The pole displacements arising
from the finite lifetime of the intermediate p-state, as mentioned in
Chluba & Sunyaev (2010b), has to be included.

In Fig. A1 and A2 we present some examples of Raman scat-
tering profiles. The electron is assumed to be in the excited state,
so that a low frequency photon can Raman scatter off the atom. In
the recombination problem, these photons will be drawn fromthe
CMB blackbody, as spectral distortions below the Balmer contin-
uum can be neglected. Figures A1 and A2, also show the ratios of
the Raman profiles with respect to the sum of Lorentzians. Close
to the resonances all these ratios are extremely close to unity, as
expected. We use this ratio to include the effect of motion of the
atom on the shape of the resonances close to the Doppler core,as
explained in the previous section.
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Figure A2. Same as Fig. A1, but for the 3s-1s and 3d-1s Raman profiles.
We marked the positions of the Paschen-α, β, andγ resonances.

APPENDIX B: PDE-SOLVER

For this work we implement our own partial differential equation
(PDE) solver in order to fine tune performance and precision.Com-
paring with previous results obtained using the NAG librarycon-
firms the precision of our own implementation.

The PDE describing the radiative transfer problem during re-
combination is of theparabolic type. It is desirable to use an im-
plicit or semi-implicit numerical scheme, to avoid strong limitation
on the step size imposed by stability. Several numerical algorithms
for this type of problems have been discussed, e.g. Crank-Nicolson
method (see Antia 2002).

For the recombination problem it is beneficial to use anon-
uniform grid in frequency as in the vicinity of the resonances one
needs a resolution of∆ν/ν ∼ 10−7−10−5, while a much coarser grid
can be introduced outside this zone. However, this implies that the
spatial discretization that is normally used in the Crank-Nicolson
method is only accurate to first order in the grid spacing. We there-
fore decided to implement a second order scheme in which the first
and second derivatives of the occupation numbernx with respect to
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frequency can be written as

∂nx

∂x
=
∑

i

κi(x) nxi (B1)

∂2nx

∂x2
=
∑

i

Λi(x) nxi (B2)

where the sums run over five grid-points in the neighbourhood
of x. The coefficientsκi(x) andΛi(x) can be easily derived using
Lagrange interpolation formulae (e.g. see Abramowitz & Stegun
1972). These coefficients can then be precomputed and stored once
the grid is chosen. The PDE appearing in the diffusion problem can
thus be written as matrix equation,

Bij nx j = bi , (B3)

where the matrix,Bij , is banded18 with four off-diagonal elements.
Such system can be easily solved withO(M) operations, whereM
denotes the number of grid-points.

For each resonance we typically needed∼ 103 points in fre-
quency. Increasing this number to∼ 104 per resonance did not
make a notable difference for the final correction to the ioniza-
tion history. Our typical step size in redshift was∆z ∼ 1, but we
also tried a ten times smaller time-step, without finding anysignif-
icant modification in the solution. Our tests also showed that even
∆z ∼ 10 should be sufficient for detailed computations of the ion-
ization history.

Furthermore, we tried fully implicit and semi-implicit
schemes (θ-method withθ > 0.5), finding good performance for
θ ∼ 0.6. We also experimented with the distribution of grid points,
and found that it is important to sample the Doppler core well.
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