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We study some properties of the non-Abelian vacuum induced by strong external magnetic field.

We perform calculations in the quenched SU(3) lattice gaugetheory with tadpole-improved

Lüscher-Weisz action and chirally invariant lattice Diracoperator. The following results are ob-

tained: The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate

depends on the strength of the applied field as a power function with exponentν = 1.6± 0.2.

There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other

magnetic properties are calculated and compared with the theoretical estimations. There are non-

zero local fluctuations of the chirality and electromagnetic current, which grow with the magnetic

field strength. These fluctuations can be a manifestation of the Chiral Magnetic Effect (CME).
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1. Introduction

The modern experiments provide a possibility to discover new physical effects caused by pres-
ence of the strong (hadronic scale) magnetic field. At the Relativistic Heavy Ion Collider (RHIC) at
the first moments (τ ∼ 1 fm/c) of noncentral collision the very strong (B∼ 1015T,

√
eB∼ 300 MeV)

magnetic fields appear[1, 4]. Such strong magnetic fields canbe also created in ALICE experiment
at LHC, at the Facility for Antiproton and Ion Research (FAIR) at GSI and in the experiment NICA
in Dubna. The additional motivation for the study of the effects induced by the strong magnetic
field could also come from the physics of the early Universe, where the strong fields (B ∼ 1016T,√

eB ∼ 1 GeV) could have been produced after the electroweak phase transition[6]. Due to the
nonperturbative nature of the effects we perform the calculations in the lattice gauge theory. We
use quenched approximation and show that for some problems it provides rather reasonable values
of the physical quantities.

This work has been done analogously to the previous SU(2) lattice studies[7, 8, 9, 10]. The
list of considered effects induced by the magnetic field is the following.

The strong magnetic field can enhance the chiral symmetry breaking. There are various models
(see Sec.3) which predict the growing of the chiral condensate.

The second effect is the chiral magnetization of the QCD vacuum. This effect has a param-
agnetic nature. The vacuum magnetization is related to the nucleon magnetic moments[21] and
other nonperturbative effects of hadrons[23]. We calculate the magnetic susceptibility and other
quantities in Sec.4.

The quarks develop an electric dipole moment along the field due to the local fluctuations of
the topological charge[9]. We study this effect in Sec.5.

Finally, the fluctuations of the topological charge can be a source of the asymmetry between
numbers of quarks with different chiralities created in heavy-ion collisions. The so called “event-
by-event P- and CP-violation”[1] can be explained by this asymmetry and observed at RHIC. So,
our aim is also to see any evidences of this effect in SU(3) lattice simulations, nevertheless they are
similar to SU(2) lattice results[10].

2. Technical details

We use the quenchedSU(3) lattice gauge theory with tadpole-improved Lüscher-Weiszaction
[11]. To generate the statistically independent gauge fieldconfigurations we use the Cabibbo-
Marinari heat bath algorithm. The lattice size is 144, and lattice spacinga = 0.105f m. All
observables we discuss later have a similar structure:〈Ψ̄OΨ〉 for VEV of a single quantity or
〈Ψ̄O1Ψ Ψ̄O2Ψ〉 for dispersions or correlators. HereO, O1, O2 are some operators in spinor and
color space. These expectation values can be expressed through the sum overM low-lying1 but
non-zero eigenvaluesiλk of the chirally invariant Dirac operatorD (Neuberger’s overlap Dirac

1We believe that the IR quantities are insensitive to the UV cutoff realized by selecting some finite number of the
eigenmodes[13]
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operator[12]):

〈Ψ̄OΨ〉= ∑
|k|<M

ψ†
k Oψk

iλk +m
(2.1)

and

〈Ψ̄O1Ψ Ψ̄O2Ψ〉= ∑
k,p

〈k|O1|k〉〈p|O2|p〉− 〈p|O1|k〉〈k|O2|p〉
(iλk +m)(iλp +m)

, (2.2)

where all spinor and color indices are contracted and we omitthem for simplicity. Theλk are
defined by the equation

Dψk = iλkψk, (2.3)

whereψk are the corresponding eigenfunctions and the uniform magnetic field F12 = B3 ≡ B is
introduced as described in[7]. To perform calculations in the chiral limit one calculates the expres-
sion (2.1) or (2.2) for some non-zerom and averages it over all configurations of the gauge fields.
Then one repeats the procedure for other quark massesm and extrapolates the VEV tom → 0 limit.

3. Chiral condensate

In this section we present our results for the chiral condensate

Σ ≡−〈0|Ψ̄Ψ|0〉, (3.1)

as a function of the magnetic fieldB. The general tendency forΣ to grow with B was already
obtained in various models: in the chiral perturbation theory [14, 15] (Σ ∝ B for weak fields,Σ ∝
B3/2 for strong fields), in the Nambu-Jona-Lasinio model [16] (Σ ∝ B2), in a confining deformation
of the holographic Karch-Katz model [17] (Σ ∝ B2), in D3/D7 holographic system [18] (Σ ∝ B3/2

for low temperatures,Σ ∝ B for high temperatures) and in SU(2) lattice calculations [7](Σ ∝ B).
Here our aim is to see how the chiral condensate behaves in theSU(3) quenched gluodynamics.

We use the Banks-Casher formula [19], which relates the condensate (3.1) with the density
ρ(λ ) of near-zero eigenvalues of the Dirac operator:

Σ = lim
λ→0

πρ(λ )
V

, (3.2)

whereV is the four-volume of the Euclidean space-time. The result is shown in Fig.1(a).
We perform the fit of the results by the following function:

Σ f it(B) = Σ0

[

1+

(

eB

Λ2
B

)ν]

, (3.3)

whereΣ0 ≡ Σ(0). The obtained fitting parameters are

Σ0 = [(228±3)MeV ]3 , ΛB = (1.31±0.04)GeV, ν = 1.57±0.23. (3.4)
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Figure 1: Chiral condensate

It is interesting to compare quantitatively the condensateobtained by the Banks-Casher for-
mula and that one calculated by the expression (2.1) withO = 1. The result is shown in Fig.1(b).
The value of the condensate in absence of the magnetic field equals Σ(0) = [(230±5)MeV ]3

which is not so far away from the value, which can be estimatedby the Gell-Mann-Oakes-Renner
formula[20]:

Σ(0) =
F2

π m2
π

2(mu +md)
≃ [(240±10)MeV ]3 . (3.5)

4. Chiral magnetization and susceptibility

In this section we calculate the quantity

〈Ψ̄σαβ Ψ〉= χ(F)〈Ψ̄Ψ〉qFαβ , (4.1)

whereσαβ ≡ 1
2i

[

γα ,γβ
]

and χ(F) is some coefficient of proportionality (susceptibility), which

depends on the field strength.
This quantity was introduced in[21] and can be used to estimate the spin polarization of the

quarks in external magnetic field. The magnetization can be described by the dimensionless quan-
tity µ = χ ·qB, so that

〈Ψ̄σ12Ψ〉= µ〈Ψ̄Ψ〉 . (4.2)

The expectation value (4.1) can be calculated on the latticeby (2.1) withO = σαβ . The result
is shown in Fig.2(a) (here for comparison we also plot seriesfor some finite quark mass). We can
see, that the 12-component grows linearly with the field, which agrees with[21]. This allows us to
find the chiral susceptibilityχ(0) ≡ χ0. After making a linear approximation〈Ψ̄σ12Ψ〉 = Ω f iteB,
where2

Ω f it ≡−1
3

χ f it
0 Σ0 , (4.3)

2in our simulation we calculate the magnetization of the d-quark condensate, thusq =
∣

∣− e
3

∣

∣
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Figure 2: Expectation values of̄Ψσαβ Ψ and their square

we obtainΩ f it = (172.3±0.5)MeV andχ f it
0 (see below).

The corresponding theoretical value can be expressed as[22]:

χ th
0 =− cχNc

8π2F2
π
, (4.4)

wherecχ is a dimensionless parameter, according to the pion dominance[22] it can be chosen as
cχ = 2. Fπ = 130.7MeV is the pion decay constant forNc = 3. Comparing this value with our
result we find a good agreement:

χ th
0 ≃−4.46GeV−2, χ f it

0 ≃−4.24GeV−2 , (4.5)

The other interesting phenomenological quantity is the product of the chiral susceptibilityχ
and the condensate〈Ψ̄Ψ〉[23]. In our calculations it is equal to

−χ f it
0 〈Ψ̄Ψ〉 ≃ 52MeV, (4.6)

while from the QCD sum rules one can estimate this quantity asapproximately 50 MeV [24], which
is also close to our value.

5. Electric dipole moment

The other interesting effect due to the magnetic field is a quark local electric dipole moment
along the field[9]. This quantity corresponds to thei0-components of the (4.1):

di(x)≡ Ψ̄(x)σi0Ψ(x), i = 1,3 (5.1)

In the real CP-invariant vacuum the VEV of this quantity should be zero: 〈di(x)〉 = 0, that we
actually see in our results (Fig.2(a)). At the same time the fluctuations ofdi(x) can be sufficiently
strong. We measure VEV’s (2.2) withO1 =O2 = σαβ . In the case ofi0-components it corresponds
to dispersions of~d. The result is shown in Fig.2(b), we see that the longitudinal fluctuations of the
local dipole moment grow with the field strength, while transverse fluctuations are absent. Here
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Figure 3: Fluctuations of the chirality and electromagnetic current/charge

and after we use the “IR” subscript to emphasize, that we subtract from the quantity its value at
B = 0:

〈Y 〉IR(B) =
1
V

∫

V

d4x〈Y (x)〉B −
1
V

∫

V

d4x〈Y (x)〉B=0 (5.2)

6. Some evidences of the Chiral Magnetic Effect

The nontrivial topological structure of QCD is due to some nontrivial effects in the presence of
the strong magnetic field. One example of a such effect is the Chiral Magnetic Effect (CME), which
generates an electric current along the field in the presenceof the nontrivial gluonic background[1,
2]. This effect was probably been observed by the STAR collaboration at RHIC[3, 5] in heavy-ion
collisions. A lattice evidence of the effect can be found in[10, 25, 26]. Here we implement the
same procedure for theSU(3) case and study the local chirality

ρ5(x) = Ψ̄(x)γ5Ψ(x) ≡ ρL(x)−ρR(x) (6.1)

and the electromagnetic current

jµ(x) = Ψ̄(x)γµ Ψ(x). (6.2)

The expectation value of the first quantity can be computed by(2.1) withO = γ5 and withO = γµ

for the second quantity. The both VEV’s are zero, as expected, but the corresponding fluctuations
obtained from (2.2) are finite and grow with the field strength(see Fig.3).
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