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Abstract

Background: Direct measurement of the electric dipole moment (EDM) of the neutron lies

in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus

for which exact model calculations are feasible. Purpose: We explore the model dependence of

deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamilto-

nian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interac-

tion. We write the EDM as the sum of two terms, the first depending on the target wave function

with plane-wave intermediate states, and the second depending on intermediate multiple scatter-

ing in the 3P1 channel, the latter being sensitive to the off-shell behavior of the 3P1 amplitude.

Results: We compare the full calculation with the plane-wave approximation result, examine

the tensor force contribution to the model results, and explore the effect of short range repulsion

found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-

pion exchange dominates the EDM calculation, separable potential model calculations will provide

an adequate description of the 2H EDM until such time as a better than 10% measurement is

obtained.
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I. INTRODUCTION

With the discovery of parity (P ) violation, which was suggested by Lee and Yang [1],

Landau [2] deduced that charge conjugation and parity (CP ) invariance implies that the

electric dipole moment (EDM) of particles, e.g. the neutron, should be zero. If the CPT

theorem is valid, which is the case for gauge theories, then any CP violation would also

imply a corresponding time reversal (T ) invariance violation. Predating the discovery of

parity violation in the weak interaction, Purcell and Ramsey [3] had pointed out that there

was lacking any experimental test of parity conservation in the strong interaction. With

their student Smith [4] they set limits on the EDM of the neutron of the order of dn <

5× 10−20 e cm. The Standard Model of fundamental interactions predicts values for EDMs

(due to second order W boson exchange) which are significantly smaller than contemporary

experiments can detect, of the order of 10−31 e cm. Therefore, an unambiguous observation

of a nonzero EDM at current capabilities would imply a yet to be discovered source of CP

violation [5, 6]. The new physics could arise in the strong interaction sector (e.g., the θ term),

or in the weak interaction sector [e.g., Super Symmetric models or Left/Right (boson mass)

symmetry breaking]. Current limits on the nucleon EDM are of the order of 10−26 e cm.

Even were one to establish a nonzero neutron and proton EDM, those two results would at

best determine the isoscalar and isotensor components but would not isolate any isovector

component. Thus, one would need a third measurement, such as the deuteron EDM, to fully

elucidate the isospin nature of the EDM operator. Both PT violating and P conserving, T

violating potentials may give rise to an EDM [5], but one-pion exchange contributes only

to the former. We concentrate here upon the effects due to PT invariance violation in the

nuclear potential.

The deuteron is attractive as the focus of an EDM investigation, both theoretically and

experimentally, because a method has been proposed to directly measure the EDM of charged

ions in a storage ring [7–10]. A permanent EDM can arise because a PT violating interaction

can induce a small P-state admixture in the deuteron wave function, one which produces a

non vanishing matrix element of the charge dipole operator τ z−e~r. Although this two-body

EDM contribution must be disentangled from the one-body contributions of the neutron and

proton, the neutron and proton EDMs tend to cancel in the case of the isospin zero 2H. (If the

nucleon EDM were a pure isoscalar as is the case in the θ model, then this cancellation would
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be exact.) Therefore, the PT violating nucleon-nucleon (NN ) interaction can contribute

significantly to the deuteron EDM. Because the deuteron is reasonably understood and has

been accurately modeled, reliable calculations are possible. Our purpose is to address the

sensitivity of the deuteron EDM to the nuclear physics in the modeling of the nucleon-

nucleon interaction. Beyond understanding the model dependence of the 2H EDM, our

goal is to determine an appropriate model approximation with which one might reliably

calculate the nuclear physics contribution to the 3He and 3H EDMs. Therefore, we examine

the uncertainties in the deuteron EDM calculation arising from the short range repulsion in

the ground state wave function, the dependence on the size of the deuteron D-state, and the

properties of the 3P1 continuum in intermediate states.

For the purpose of completeness and to place our work in context, we note that

Avishai [11] first estimated the two-body deuteron EDM [ see Eq. (2) ] d
(2)
D using a sep-

arable potential model due to Mongan [12]. He reported a value of −0.91 Ae fm when he

utilized the physical pion mass for the exchanged meson. [Note: To exclude the PT violating

and strong coupling constants in the one pion exchange nucleon-nucleon interaction for the

quoted values of the EDM, we have introduced A = ḡ
(1)
πNN gπNN/(16π).] However, there is an

ambiguity in Avishai’s results, in that he states his final result in terms of A/2. Because the

particular separable potentials used by Avishai were not specified, we were unable to fully

confirm his reported numbers. Khriplovich and Korkin [13] later estimated d
(2)
D using a zero-

range approximation in the chiral limit (mπ → 0) and obtained a value of −0.92 Ae fm.

This result does not depend upon the 3P1 interaction and should, therefore, be directly

comparable to our ‘plane wave’ result. Finally, using the Argonne and Nijmegen contem-

porary realistic potential models Av18, Reid93, and Nijm II [14] Liu and Timmermans [15]

obtained for the polarization component of the two-body contribution to the deuteron EDM

d
(2)
D values of −0.72 Ae fm, −0.73 Ae fm, and −0.74 Ae fm, respectively. These relatively

model-independent results suggest that pion exchange is indeed the essential aspect of the

model. The differing degree of softness of the three potentials at intermediate range cor-

relates with the values for d
(2)
D , the Nijm II potential being the softest and producing the

largest EDM. The important conclusion for our purpose is that all three models yield essen-

tially the same result; within the range of uncertainty defined by the three models utilized,

the value of the polarization component of d
(2)
D can be said to be ≈ −0.73 ± .01 Ae fm.

Moreover, Liu and Timmermans estimated that the meson exchange current contribution
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was substantially smaller, calculated to be less than 5% of the potential model contribution.

In any case, our goal is to determine an appropriately simple model with which one can

calculate reliably the 2H, 3He, and 3H EDMs, so that our numerical comparisons will be

made with the −0.73± .01 Ae fm value.

II. NUCLEON CONTRIBUTIONS

The total one-body contribution d
(1)
D to the deuteron EDM due to the neutron and proton

is the sum of the individual nucleon EDMs:

d
(1)
D = dn + dp , (1)

whereas the total deuteron EDM is the sum of this one-body contribution and the two-body

contribution d
(2)
D ,

dD = d
(1)
D + d

(2)
D = (dn + dp) + d

(2)
D . (2)

As has been noted, the neutron and proton EDMs can arise from a variety of sources.

Because we have nothing new to add to prior analyses of the nucleon EDM, we adopt the

approach advanced by Liu and Timmermans [15]:

d
(1)
D ' 0.22× 10−2Ḡ(1)

π +O(Ḡ(0,2)
π , Ḡρ,ω,η) , (3)

which is expressed in terms of Ḡ
(i)
X , the product of the strong coupling constant gXNN

and the associated PT violating meson-nucleon coupling constant ḡ
(i)
X . (For example,

Ḡ(1)
π = ḡ

(1)
πNN gπNN .) As noted in Ref. [15], the contributions from the neutron and pro-

ton EDMs have a sizable theoretical uncertainty, but the significant cancellation between dn

and dp is clear. For the two-body contribution to d
(2)
D the mean value obtained by Liu and

Timmermans can be expressed as

d
(pol)
D = 1.45× 10−2Ḡ(1)

π ; (4)

this corresponds to the EDM value of −0.73 Ae fm. Hence, for the deuteron there can be

little doubt that the nuclear physics contribution to d
(2)
D dominates. Even an uncertainty

of 50% in d
(1)
D contributes only in a minor way. It is the nuclear model aspects of the d

(2)
D

dominant term in the 2H EDM that we investigate below in detail.
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III. TWO-BODY CONTRIBUTIONS

The interaction Hamiltonian for the ground state of the system consists of two compo-

nents: (i) The strong interaction component v based on nucleon-nucleon potentials with

parameters adjusted to fit the experimental phase shifts. (ii) The PT violating component

V which we parametrize in terms of one pion exchange (OPE) with one strong interaction

vertex gπNN and a PT violating vertex ḡ
(1)
πNN . As a result our Hamiltonian takes the form

H = HS +HPT where HS = H0 + v and HPT = V . (5)

Because HPT will mix different parity states, i.e., for the deuteron we get coupling between

the 3S1-
3D1 large component and the 3P1 small component, we can write the Schrödinger

equation for the Hamiltonian in Eq. (5)

H |Ψ〉 = E |Ψ〉 (6)

as a set of coupled equations of the form

(E −H0) |ΨL〉 = v |ΨL〉+ V |ΨS〉 (7)

(E −H0) |ΨS〉 = v |ΨS〉+ V |ΨL〉 , (8)

where the total wave function is the sum of the large and small components: |Ψ〉 = |ΨL〉+

|ΨS〉.

Because V � v, we have that V |ΨS〉 � v |ΨL〉, and we can, to a good approximation,

write Eq. (7) as

(E −H0) |ΨL〉 = v |ΨL〉 , (9)

which is the Scrödinger equation for the ground state of the system in the absence of the PT

violating interaction. On the other hand, the small component of the wave function |ΨS〉 is

given by the solution of Eq. (8) in terms of the amplitude t(E) for the strong potential v as

|ΨS〉 = G(E)V |ΨL〉 with G(E) = G0(E) +G0(E) t(E)G0(E) , (10)

where G0(E) = (E − H0)
−1 is the free Green’s function, and t(E) is the amplitude in the

partial wave of the small component of the wave function, e.g., for the deuteron t(E) is the

amplitude in the 3P1 partial wave at the ground state energy.
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Because the dipole operator

Od =
e

2

∑
i

~ri τz(i) (11)

is odd under parity, we can write the two-body deuteron EDM (d
(2)
D ) in terms of the total

ground state wave function |Ψ〉 = |ΨL〉+ |ΨS〉 as

d
(2)
D = 〈Ψ|Od |Ψ〉 = 〈ΨL|Od |ΨS〉+ 〈ΨS|Od |ΨL〉 , (12)

where the matrix element of the dipole operator between the small and large component of

the wave function can be written in terms of the charge e and the constant A as

〈ΨL|Od |ΨS〉 = 〈ΨL|OdG0(E)V |ΨL〉+ 〈ΨL|OdG0(E) t(E)G0(E)V |ΨL〉 (13)

≡ e

2
[dPW + dMS] A with A ≡ ḡ

(1)
πNN gπNN

16π
. (14)

In Eq.(13) the first term on the right hand side (rhs) involves a complete set of intermediate

plane wave states and is, up to a constant, the ‘plane wave’ contribution dPW . The second

term on the rhs of Eq. (13) involves multiple scattering via the amplitude t(E) and is the

‘multiple scattering’ contribution dMS. One should note that E < 0 is the ground state

energy, and as a result we need the amplitude t(E) at an unphysical point corresponding to

the 2H bound state energy.

IV. NUMERICAL RESULTS

The primary motivation for the present investigation is: (i) to determine the sensitivity

of d
(2)
D to properties of the deuteron, e.g. the D-state probability and the short range

behavior of the deuteron wave function. (ii) to determine the relative importance of dPW

and dMS. This will suggest the significance of multiple scattering terms as one proceeds to

heavier nuclei. (iii) The role of the 3P1 interaction in determining the magnitude of dMS

and therefore the appropriateness of the dPW approximation in heavier nuclei. Before we

proceed to illustrate the sensitivity of the deuteron EDM to nuclear structure effects due

to the nuclear interaction, we should detail our choice of nucleon-nucleon interactions and

their fit to those aspects of the two-body data relevant to the determination of the EDM.

6



A. Two-body potentials

The input two-body interactions consists of: (i) The PT violating one pion exchange

potential. (ii) The deuteron wave function in the absence of the PT violating interaction.

(iii) The 3P1 interaction that couples to the deuteron 3S1-
3D1 potential as a result of the

introduction of the PT violating potential. The choice of these interactions is motivated by

the questions raised regarding the sensitivity of the EDM to nuclear structure effects and

the hope of extending the analysis to 3H and 3He using the dPW approximation.

For the PT violating interaction we have chosen the standard isovector one-pion exchange

given by [16]

V = −A
[
(~σ(−) · r̂) τ (+)

z + (~σ(+) · τ (−)z

]
f(r) , (15)

where the radial dependence is given by

f(r) = − 1

mπ

d

dr

(
e−mπr

r

)
, (16)

with mπ being the pion mass. Here we have combined the strength of the strong and PT

violating vertices in the constant A given in Eq. (14). This allows us to express the numerical

value of the EDM in terms of Ae with e the charge on the proton. Finally, the spin and

isospin operators in Eq. (15) are given by ~σ(±) = (~σ(1) ± ~σ(2)) and τ (±)z = (τ (1)z ± τ (2)z ).

The strong 3S1-
3D1 interaction basically defines the deuteron wave function. Here we

resort to a separable representation of the interaction to simplify the computation when we

proceed to the EDM for the three-nucleon system. As a result the partial wave expansion

of the strong interaction in momentum space is written as

〈~k| v |~k′〉 =
∑
Sjtm

∑
``′
〈k̂|Y t(`S)jm〉 v

Sjt
``′ (k, k′) 〈Y t(`′S)jm|k̂′〉 , (17)

with |Y t(`S)jm〉 eigenstates of the orbital angular momentum `, spin S, total angular mo-

mentum j and isospin t. The separability of the potential is defined by the requirement

that

vα``′(k, k
′) = gα` (k) λα``′ g

α
`′(k

′) , (18)

where α = (Sjt). Here we wish to examine the role of the D-state probability and short

range nature of the nucleon-nucleon interaction. For that we consider two classes of inter-

actions: (i) The Yamaguchi and Yamaguchi (YY) [17] separable potential with 4% and 7%

D-state probability. Each has a different D-state probability and no short range repulsion.
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(ii) The Unitary Pole Approximation (UPA) [18, 19] to the original Reid soft core potential

(Reid68) [20] and the Nijmegen modified Reid potential (Reid93) [14]. The UPA poten-

tial by definition generates the same deuteron wave function as the original potential [19]

that provided the optimum fit to the available data at the time the potentials were con-

structed and includes short range repulsion. In addition the models have different D-state

probabilities for the deuteron.

For the Yamaguchi and Yamaguchi potentials [17] the form factor gα` (k) is given by

g`(k) =
k`

(k2 + β2
` )

(`+2)/2
, (19)

where the parameters β` and λ``′ are detailed in Table I. Also included in this table are the

binding energy εD and the quadrupole moment QD for these two potentials.

TABLE I: Parameters for the Yamaguchi-Yamaguchi potentials [17] with 4% and 7% D-state

probability for the deuteron. Also included are the binding energy and quadrupole moments.

D-state β0 β2 λ00 λ02 λ22 εD (MeV) QD

4% 1.3134 1.5283 -0.6419 1.0849 -1.8320 2.2234 0.2821

7% 1.2410 1.9480 -0.3776 1.6975 -7.6301 2.2265 0.2826

TABLE II: The strength λ``′ for the UPA approximation to the Reid68 [20]. and Reid93 [14]

potentials

potential λ00 λ02 λ22

Reid68 -5.2896725E-02 -2.4385786E+00 1.1850926E+00

Reid93 -4.7704789E-01 -1.8111764E+00 2.5825467E-01

In constructing the UPA to the Reid68 [20] and Reid93 [14] we have used the method of

moments [19] to solve the Schrödinger equation for the deuteron wave function in coordinate

space using the original potentials. This was achieved by taking the form factors such that

the resultant deuteron wave functions for the Reid68 and Reid93 are linear combinations

of the Yamaguchi-Yamaguchi type wave functions with different range parameters βi, and

therefore of the form

g`(k) =
12∑
i=1

ci` k
`

(k2 + β2
i )

(`+2)/2
. (20)
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The strengths of the UPA potential (λ``′), adjusted to reproduce the matrix elements of the

original Reid68 and Reid93 potentials, are given in Table II, while the parameters of the

UPA form factors βi and ci` for ` = 0 and 2 are given in Table III. Here, we have chosen the

range parameters βi to be multiples of the pion mass with the hope of reproducing some of

the analytic structure of the one pion tail in the original Reid potentials.

TABLE III: The form factor parameters of the UPA approximation to the Reid68 [20] and

Reid93 [14] potentials .

Reid68 Reid93

i βi (fm−1) ci0 ci2 ci0 ci2

1 0.7 7.21186419E-03 -2.24457073E-03 6.30646724E-03 -3.08893140E-03

2 1.4 1.78826642E-01 -3.31063031E-01 2.12846533E-01 -3.01564884E-01

3 2.1 1.31260692E+00 -1.04745293E+00 6.05450638E+00 -1.78185516E+00

4 2.8 2.13430424E+00 -1.43628043E+00 -2.57777824E+01 7.87042755E-01

5 4.2 1.46578861E+02 -1.95695256E+01 3.20079733E+02 -2.53483826E+01

6 5.6 -8.10387728E+02 3.12782173E+00 -1.49174373E+03 4.67387261E+01

7 7.0 1.12934549E+03 1.51126963E+02 2.32746050E+03 3.37908596E+01

8 9.8 -5.87779728E+02 -4.26701986E+02 -2.57402658E+03 -2.10353562E+02

9 12.6 -2.27638508E+02 5.92398037E+02 2.53223423E+03 3.41412020E+02

10 15.4 5.33784864E+02 -3.73533199E+02 -1.31246553E+03 -2.42126156E+02

11 21.0 -2.53746105E+02 9.68400708E+01 2.66329930E+02 7.60609941E+01

12 26.6 6.63870056E+01 -2.09513706E+01 -4.84106437E+01 -1.89979113E+01

To establish the quality of the UPA deuteron wave function generated using the method

of moments we present in Table IV the deuteron properties for the original potential and

the UPA for both Reid68 and Reid93. Also included are the effective range parameters to

illustrate the domain of agreement in the scattering amplitude between the original and the

UPA potential. It is clear from these results that the method of moments gives a very good

representation of the original deuteron wave function and can reproduce the effective range

parameters.

Finally, to examine the importance of multiple scattering in determining the deuteron
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TABLE IV: Comparison of the deuteron properties for the original potential and the UPA poten-

tial for both Reid68 and Reid93. Tabulated are the binding energy εD, the asymptotic S-wave

normalization AS , the ratio of the asymptotic D-wave to S-wave η, the quadrupole moment QD,

and the D-state probability PD. Also included are the scattering length at and effective range rt.

Reid68 Reid93

UPA Original UPA Original

εD 2.2246 2.2246 2.2246 2.2246

AS 0.87893 0.87758 0.8863 0.8853

η = AD/AS 0.026556 0.026223 0.02565 0.0251

QD 0.2800 0.27964 0.2709 0.2703

PD 6.4691 6.4696 5.699 5.699

at 5.408 5.390 5.445 5.422

rt 1.752 1.720 1.799 1.755

EDM, we need to introduce a 3P1 interaction to calculate dMS. Here we need to know

how important is the fit to the data and the role of the off-shell amplitude in determining

the magnitude of dMS. To simplify the evaluation of dMS, we have chosen to use separable

potentials with different form factors. The Mongan [12] potentials used by Avishai [11] come

with different form factors, and therefore different off-shell properties. They are either rank

one or rank two to optimize the fit to the data; i.e., the potentials are of the form

v3P1
(k, k′) =

n∑
i=1

gi(k)λi gi(k
′) , (21)

where n = 1 for rank-one potentials and n = 2 for rank-two potentials. For the form factors

gi(k) we will use the four different forms chosen by Mongan (see Table V). Considering the

fact that Mongan adjusted the parameters of his potentials to fit the Livermore data of the

1960’s, we need first compare the phase shifts predicted by the Mongan potentials and those

that we constructed to fit the latest Nijmegen [21] np data. In Fig. 1 we compare the 3P1

phase shifts for rank-one and rank-two Case I form factors for Mongan’s potentials with

those refitted to the Nijmegen data. Also included are the Nijmegen [21] np phase shifts. It

is clear from the the results in Fig. 1 that the original Mongan potentials give a poor fit to

the current data, while the new fits reproduce the data to a much better degree. Since the
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3P1 amplitude required for the determination of dMS is evaluated at the deuteron binding

energy, i.e., below the elastic threshold, it is essential that we fit well the low energy phase

shifts. Because these are small, we have chosen the criteria for a good fit χ2 defined as

χ2 =
n∑
i=1

|δthi − δ
exp
i |2

|δexpi |2
, (22)

where n = 11 is the number of data points below 300 MeV. In Table V we present new fits

to the Nijmegen np data for the different form factors used by Mongan [22]. Included are

rank-one and rank-two potentials and the χ2 for each potential. It is clear from the χ2 that

the rank two potentials give a better fit. This is especially true for the Case I form factor. In

the following discussion of the deuteron EDM we will consider these different 3P1 potentials

to establish the importance of fitting the data and the role of the off-shell behavior of the

amplitude.

FIG. 1: Comparison of the 3P1 phase shifts for the Mongan potentials (Old) with Case I form

factor and rank one (R=1) and rank two (R=2) with the new fit (New) and the experimental

(Exp.) Nijmegen [21] np data.

0 100 200 300
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–40
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–10
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TABLE V: The parameters of the ‘New’ rank-one and rank-two potentials with the different Mon-

gan form factors. The parameters are adjusted by minimizing the χ2 defined in Eq. (22) taking

the experimental phases from the latest Nijmegen [21] np phase shift analysis. The form factor for

Case III is written in terms of Q1(ξ) the Legendre function of the second kind.

Potential form factor gi(k) Rank β1 λ1 β2 λ2 χ2

Case I k/(k2 + β2i ) 1 1.725 0.95 - - 0.62

2 0.90 0.059 3.58 -2.0 0.02

Case II k/(k2 + β2i )3/2 1 2.38 9.35 - - 0.81

Case III

[
1
k2π

Q1(1 +
β2
i

2k2
)

]1/2
1 1.68 60.0 - - 0.19

2 1.20 120.0 4.4 -2.3 0.12

Case IV k/(k2 + β2i )2 1 2.715 147.0 - - 0.78

B. The deuteron EDM

We now turn to the study of the sensitivity of the deuteron EDM to the nuclear struc-

ture effects as defined by the strong nucleon-nucleon interactions detailed above. We first

consider the sensitivity of the two-body deuteron EDM d
(2)
D to the D-state probability (PD).

In Table VI we summarize the contributions to the deuteron EDM for the four different

deuteron wave functions being considered. For the 3P1 interaction we use a rank-two Mon-

gan Case I potential (fitted to the latest Nijmegen phase shifts [21]). Also included are the

results of Khriplovich and Korkin [13]. We observe that in the plane wave approximation

(dPW ) there is little variation with PD, and the short range repulsion incorporated in the

two Reid potential wave functions provides no more than a 10% reduction in dPW . More-

over, the results are effectively consistent with the zero range (chiral limit) approximation of

Khriplovich and Korkin. In particular, the plane wave results for the two YY models suggest

that the dependence upon the deuteron D-state probability is such that an S-state deuteron

result would approach that of Ref. [13]. In contrast, the multiple scattering contribution

(dMS), which is of the opposite sign to the plane wave term, varies considerably depending

upon the short range character of the deuteron wave function. In particular, the two Reid

potentials with different PD values yield quite similar values of dMS, but these are only half

those generated by the YY potentials. The difference between the YY and Reid potential
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models can be understood in light of our knowledge that there is no explicit short range

repulsion in the YY potentials. We will return to this difference when we address the role

of the off-shell behavior of the 3P1 amplitude in determining the magnitude of the multiple

scattering contribution dMS. From these results we may conclude that the strong repulsion

at short distance in realistic nucleon-nucleon potentials reduces the effects of multiple scat-

tering in the matrix element to such an extent that the multiple scattering contribution dMS

is only about 20% of the plane wave contribution dPW . Furthermore, as noted above, the

final results are not particularly sensitive to PD.

TABLE VI: The variation of the two-body EDM with D-state probability of the deuteron. For

the 3P1 interaction we use the ‘New’ fit Case I rank-two potential. Also included are the results of

Khriplovich and Korkin [13].

3S1-
3D1 Pd dPW (Ae fm) dMS(Ae fm) d

(2)
D (Ae fm)

YY 4% 4% -1.035 0.4115 -0.6234

Reid93 5.7% -0.9715 0.2009 -0.7706

Reid68 6.5% -0.9620 0.1718 -0.7902

YY 7% 7% -1.083 0.4271 -0.6564

Khriplovich et al. -0.92

To establish the importance of the multiple scattering contribution (dMS) to the total two-

body deuteron EDM, we turn to the dependence of d
(2)
D on the choice of the 3P1 interaction.

But first we need to examine the sensitivity of the multiple scattering contribution to the 3P1

phase shifts. This can be achieved by comparing the results for the EDM using the ‘Old’

Mongan fit to the 1960’s Livermore phase shift analysis and the ‘New’ fit with the same

separable potential form factors to the latest Nijmegen [21] np data. We have in Table VII

the EDM results for the rank-one separable potentials with Case I and III form factors.

For the deuteron wave function we have used either the UPA to the Reid68 or the YY 4%

potentials. It is clear from these results that the multiple scattering contribution (dMS) is

reduced as a result of the fit to the more recent phase shift analysis (compare rows four

and five or rows six and seven in Table VII). This reduction in dMS is consistent with the

observation that the ‘New’ 3P1 potentials provide less repulsion (i.e. smaller phase shifts,

see Fig. 1) and, therefore, substantially smaller multiple scattering contributions than the
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old fits due to Mongan. This observation is encouraging for extending the above analysis

based on dPW to the three-nucleon EDM, as the new np data suggest a reduced contribution

from the multiple scattering term.

We now return to the role of the short range repulsion in the deuteron wave function on

the magnitude of the multiple scattering term dMS as illustrated in Table VI. In comparing

the results for the Reid68 and 4% YY deuterons (column three and five in Table VII) for the

Case I and Case III 3P1 potentials, we find that the multiple scattering term is suppressed

for both 3P1 potentials. This suggests that the effect tabulated in Table VI might be valid in

general. which implies that the inclusion of multiple scattering will require a more realistic

treatment of the deuteron wave function than is the case for the zero range approximation

employed by Khriplovich and Korkin [13]. In fact for some combination of deuteron wave

function and 3P1 interaction ( 4% YY and Case III Old) the multiple scattering contribution

(dMS) is about the same size as the plane-wave approximation (dPW ) and as a result the

deuteron EDM d
(2)
D is suppressed by an order of magnitude compared to the combination

Reid68 and Case I New.

TABLE VII: Variation in the deuteron EDM with changes in the np phase shifts for two rank-one

separable potentials having different form factors as defined by Mongan [12]. Here ‘New’ refers to

the fit to the latest Nijmegen [21] np phase shifts while ‘Old’ refers to the original Mongan fit.

3S1-
3D1 Reid68 YY 4%

dPW = −0.96 dPW = −1.04

Case χ2 dMS d
(2)
D dMS d

(2)
D

I (New) 0.62 0.21 -0.75 0.57 -0.47

I (Old) 1.90 0.31 -0.66 0.78 -0.26

III (New) 0.19 0.25 -0.71 0.77 -0.27

III (Old) 6.67 0.42 -0.54 1.16 0.12

We now turn to the role of the off-shell behavior of the 3P1 amplitude in the deuteron

EDM. Here again we make use of the different separable potentials with the different form

factors used by Mongan after readjusting the parameters of the potential to fit the latest

Nijmegen [21] np phase shifts. The parameters of these ‘New’ potentials are given in Table V.

In Table VIII we report the multiple scattering contribution dMS and the two-body EDM
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TABLE VIII: The dependence of dMS on the 3P1 separable potential form factor as defined by

Mongan [12] and that are fit to the latest np phase shifts. The Reid93 or the 4% YY deuteron

wave function is used in all cases as indicated.

Reid93 YY 4%

dPW = −0.9715 dPW = −1.035

Case Rank χ2 dMS(Ae fm) d
(2)
D (Ae fm) dMS(Ae fm) d

(2)
D (Ae fm)

I 1 0.62 0.2583 -0.7132 0.5665 -0.4684

I 2 0.02 0.2009 -0.7706 0.4115 -0.6234

II 1 0.81 0.2229 -0.7486 0.3807 -0.6542

III 1 0.19 0.3075 -0.6640 0.7654 -0.2696

III 2 0.12 0.3805 -0.5910 1.108 0.0734

IV 1 0.78 0.2153 -0.7562 0.3277 -0.7072

d
(2)
D for these separable potentials. In each case we have made use of either the Reid93 or

4% YY deuteron wave functions in the calculations. Here we observe that for the Reid93

deuteron there is a smaller variation in d
(2)
D than is the case for the 4% YY deuteron. This

is due to the fact the the multiple scattering contributions, dMS, for the 4% YY deuteron

have a substantially larger variation for the different fits to the np data. This is consistent

with the results in Table VII and is due to the absence of short range repulsion in the YY

potentials. Here we can raise a number of questions regarding the role of the 3P1 amplitude

in determining the magnitude of the multiple scattering contribution dMS. These are:

• Why is dMS almost a factor of two smaller for the Reid93 when compared to that for

the 4% YY potential?

• Why, for the Reid93 deuteron, is dMS about the same for all form factors with the

possible exception of Case III which gives the largest contribution?

• Why is it that for the 4% YY deuteron dMS has a much larger variation than is the

case for Reid93?

To address these questions and to try to correlate the results in Table VIII with the off-shell

behavior of the 3P1 amplitude, we need to examine the analytic continuation of the P -wave
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scattering wave function to the deuteron pole. This is defined in momentum space in terms

of the half off-shell t-matrix as

ψα(k) = G0(−εD, k) tα(k, iκ;−εD)

= G0(−εD, k) gα(k) τα(−εD)g†α(iκ)

≡ Ψα(k) τα(−εD)g†α(iκ) , (23)

where α labels the 3P1 channel, εD = κ2

2µ
is the binding energy of the deuteron, and µ is

the np reduced mass. Here the free Green’s function at the deuteron energy is given by

G0(−εD, k) = −(2µ)(κ2 + k2)−1, while the amplitude tα(k, iκ;−εD) is the half off-shell 3P1

t-matrix evaluated at the deuteron pole. In the second line of Eq. (23) we have written the

off-shell t-matrix in its separable form with

τα(−εD) =

λα + 2µ

∞∫
0

dk k2
g†α(k)gα(k)

κ2 + k2

−1 . (24)

For rank-one potentials τα(−εD) is positive definite since the potential is repulsive (i.e.,

λα > 0). As a result, the scattering wave function can be written as

ψα(k) = χα(k)
√
τα(−εD) gα(iκ) . (25)

This definition of the function χα(k) is motivated in the following discussion of the matrix

elements of the dipole operator Od and the PT violating one pion exchange potential V that

go into the evaluation of dMS.

In Fig. 2 we plot the function χα(k) for all the rank-one potentials used in Table VIII. A

careful inspection of this figure reveals that: (i) The ‘scattered function’ χα(k) for the Case

III form factor is substantially larger for k < 1.0 fm−1 than that of the other three form

factors. (ii) For k > 3 fm−1 the Case III ‘scattered function’ has the longest range followed

by Case I and then Case II and finally Case IV. This is clear from the choice of form factors

as given in Table V.

To establish how this momentum dependence of the 3P1 ‘scattered function’ effects the

multiple scattering contribution dMS to the deuteron EDM, we recall from Eq. (14) that

dMS can be written as

dMS = −2 [Osp + Odp ] τ (−εD) [Vps + Vpd ] , (26)
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FIG. 2: Comparison of the 3P1 ‘scattered function’ χα(k) defined in Eq. (25) for the rank-one

separable potentials that fit the latest Nijmegen [21] np phase shifts.
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where

ODα = 〈ΨD|Od |Ψα〉 and VαD = 〈Ψα|V |ψD〉 , (27)

with D = 3S1 or 3D1 and α =3P1. For rank-one separable potentials we can absorb a factor

of
√
τ(−εD) into the matrix elements, i.e. Oαp ≡ Oαβ

√
τ(−εD) and Vpα ≡

√
τ(−εD)Vpα and

therefore for rank-one potentials we have

dMS = −2 [Osp +Odp ] [Vps + Vpd ] . (28)

The values of Oαp and Vpα for the four different form factors and with a deuteron wave

function given by either the 4% YY or the Reid93 are presented in Table IX. It is clear

from these results that the matrix elements of the dipole operator Od, which is long range in

coordinate space, are to a good approximation independent of the deuteron wave function

and to within 20% independent of the 3P1 potential. On the other hand the matrix elements

of the PT violating one pion exchange potential, which probes the short range behavior of

both the 3P1 and the deuteron wave function, are clearly model dependent. In particular, for
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the Reid93 deuteron with short range repulsion, the variation in Vpα is small with the Case

III form factor giving the largest contribution and Case IV yielding the smallest contribution

followed by Case II and Case I. This is consistent with the observation made in the Fig. 2

insert regarding the asymptotic behavior of the function χα(k). This is also consistent with

the observation in Table VIII for rank-one potentials. On the other hand, for the 4% YY

deuteron, with no short range repulsion, the matrix elements are almost a factor of two larger

with the Case III form factor giving the largest contribution and Case IV the smallest. From

the results in Table IX we may conclude that it is the matrix element of the PT violating one

pion exchange potential that probes the short range behavior of the 3P1 and deuteron wave

functions and, as a result, determines the magnitude of dMS. To that extent it is essential

that one generate those two wave functions in a consistent frame work. On the other hand,

when the deuteron includes the short range behavior dictated by modern nucleon-nucleon

interactions, the contribution of the multiple scattering term dMS is suppressed (≈ 20%)

in comparison to the plane wave contribution dPW . This suggests that one may be able to

evaluate the EDM for the three-nucleon system in the plane wave approximation in such a

model with an error of the order of 20%.

TABLE IX: The matrix elements of the dipole operator Od and the PT violating one pion exchange

potential V for the four different form factors and two different deuteron wave functions.

deuteron Case Osp Odp Vps Vpd

4% YY I -0.4197 -0.05599 0.5533 0.04211

II -0.4039 -0.05422 0.3794 0.03618

III -0.4819 -0.06300 0.6578 0.04444

IV -0.4185 -0.05622 0.3124 0.03276

Reid93 I -0.4221 -0.06069 0.2169 0.09031

II -0.4068 -0.05906 0.1928 0.04641

III -0.4852 -0.06712 0.2269 0.05154

IV -0.4224 -0.06105 0.1793 0.04338

Finally, the results in Table IX for Oαp and Vpα indicate that the contribution from the

D-wave component of the deuteron wave function are an order of magnitude smaller than

the S-wave component. This may suggest that one could neglect the D-wave component in
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the calculating dMS and a simplification of the calculation of the multiple scattering term

in heavier nuclei. This observation is consistent with the results in Table VI where the

changes in the multiple scattering contribution has a variation of about 10% with D-state

probability.

V. CONCLUSIONS

From our analysis we offer the following conclusions: (i) In the absence of multiple scat-

tering (dMS = 0) the variation in d
(2)
D due to differences in the deuteron wave functions is

less than 5%, and the value of dPW is consistent with the zero range (chiral limit) results of

Khriplovich and Korkin [13]. (ii) The contribution from multiple scattering dMS is sensitive

to the short range behavior of the deuteron wave function, and the dMS contribution is

about 20% for realistic parametrizations of the deuteron such as those represented by the

Reid93 potential model. This suggests that we can extend the analysis to heavier nuclei in

the plane wave approximation with an estimated error of ≈ 20%. (iii) As suggested by Liu

and Timmermans, one pion exchange dominates the deuteron EDM calculation. (iv) The

contribution from the 3P1 interaction via dMS depends on the phase shifts in this channel

as well as the off-shell behavior of the amplitude. (v) A comparison of our Reid93 results

with those of Liu and Timmermans [15] indicates that one can use a separable potential

approximation in heavier nuclei, e.g., 3He and 3H, with minimal loss in accuracy. Moreover,

until deuteron EDM experiments attain an uncertainty of less than 10%, simple separable

potential model calculations should provide an adequate description.
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