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We present a new method for determining K→ ππ matrix elements from lattice simulations that
is less costly than direct simulations of K → ππ at physical kinematics. It improves, however,
upon the traditional “indirect” approach of constructing the K→ ππ matrix elements using NLO
SU(3) χPT, which can lead to large higher-order chiral corrections. Using the explicit example
of the ∆I = 3/2 (27,1) operator to illustrate the method, we obtain a value for Re(A2) that agrees
with experiment and has a total uncertainty of∼< 20%. Although our simulations use domain-wall
valence quarks on the MILC asqtad-improved gauge configurations, this method is more general
and can be applied to calculations with any fermion formulation.
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Figure 1: Global fit of the CKM unitarity triangle [5].

1. Motivation

Lattice calculations of K→ ππ matrix elements are important for understanding the Standard
Model and in constraining physics beyond the Standard Model. For example, they are needed to
explain the origin of the ∆I = 1/2 rule and to compute the long-distance contributions to neutral
kaon mixing [1]. Because the lowest-order Standard Model contributions to ε ′/ε are from 1-loop
electroweak penguin diagrams, K → ππ decay is sensitive to physics at very high scales. Many
extensions of the Standard Model lead to new particles that enter the loops, and these contributions
to K→ ππ may be sufficiently large that they can be observed once the hadronic uncertainties in
the weak matrix elements are small enough.

A standard way of searching for new physics in the flavor sector is by overconstraining the
angles and sides of the CKM unitarity triangle [2]. This requires precise experimental measure-
ments and equally well-controlled theoretical calculations of hadronic weak matrix elements using
lattice QCD. For many years improved measurements and calculations have simply confirmed the
Standard Model CKM framework at the few-percent level, but recent N f = 2+ 1 flavor lattice
calculations of BK with ∼ 4% precision [3] have revealed a 2-3σ tension in the CKM unitarity
triangle [1, 4, 5]. This tension, which may be due to kaon or Bd-meson mixing, is illustrated in
Fig. 1. Almost all constraints on the CKM unitarity triangle, however, come from the B-meson
sector. Thus it is essential to place other constraints on the unitarity triangle from the kaon sector
in order to test whether the amount of observed CP-violation in the B-meson sector is the same as
in the kaon sector. Once lattice QCD calculations of K→ ππ matrix elements are sufficiently pre-
cise, they can be combined with the experimental measurement of ε ′K/εK to impose an additional
constraint on the apex of the CKM unitarity triangle.

2. New approach to K→ ππ matrix elements

The Maiani-Testa no-go theorem states that physical matrix elements cannot be extracted from
Euclidean correlation functions with multi-hadron states [6]. Therefore two general approaches
have been developed to evade the Maiani-Testa theorem and allow the determination of K → ππ
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Figure 2: Chiral and continuum extrapolation of BK [11] (left plot) along with convergence of the SU(3)
χPT fit (right plot). Circles (squares) denote a ∼ 0.12 fm (a ∼ 0.09 fm) data. Only degenerate points are
shown, but the fit also includes non-degenerate data. The cyan band is the degenerate quark mass full QCD
curve (mx = my = ml = mh) in the continuum limit. The y-intercept of the band gives the LEC B0, the value
of BK in the SU(3) chiral limit. The right-most point on both plots corresponds to ∼ ms/2.

matrix elements using lattice QCD. The “direct” Lellouch-Lüscher finite-volume method [7] is the
most straightforward to implement, but it is computationally demanding because it requires a large
(∼ 6 fm) box and physical light-quark masses. The “indirect” method constructs K→ ππ matrix
elements using the low-energy constants (LEC’s) of SU(3) χPT obtained from calculating simpler
lattice quantities such as K→ 0 and K→ π . Although it was shown that all LEC’s through next-to-
leading order can be obtained from such “simple” lattice quantities [8], this approach relies on the
use of SU(3) χPT at the kaon mass, where the convergence of the chiral expansion is quite slow.

Li and Christ studied the extraction of K → ππ matrix elements with N f = 2+ 1 dynamical
domain-wall lattice simulations using the “indirect” method in Ref. [9]. They concluded that large
uncertainties in the LO and NLO SU(3) LEC’s and the slow convergence of SU(3) χPT at the
scale of the kaon mass lead to large errors that make the extraction of K → ππ matrix elements
using the “indirect” method unreliable. Our procedure therefore addresses these drawbacks of
the traditional approach and improves upon it in several ways. In the combined chiral-continuum
extrapolation, we use the physical pseudoscalar meson masses and decay constant. This leads to
better fits as measured by the correlated χ2/d.o.f.; nontrivial agreement between the NLO mixed-
action χPT prediction for the isovector scalar correlator and lattice simulation data lends support
to this approach [10]. When the fixed-order (NLO) fit is bad, we approximate higher order terms in
the chiral expansion by polynomials. This leads to larger leading-order terms and hence suggests
better convergence than was found in Ref. [9]. For example, Fig. 2 shows the SU(3) χPT fit of BK

along with the sizes of the various contributions [11]. The NLO corrections are only approximately
1/3 of the LO terms even at ms/2.

Despite these findings, however, NLO χPT corrections can still be 50% or more for some
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Figure 3: Demonstration of the method for fπ (left plot) and fK (right plot). Errors on the circular points only
show the statistical errors in the numerator. Vertical error bands denote the total (statistical plus systematic)

uncertainties in fπ and fK . After the interpolation to the unphysical kinematics point mK = mphys.
K and

mπ = mphys.
K /2, the size of the NLO χPT correction is below 10% for fπ and below 5% for fK .

quantities. Therefore, to achieve the precision needed for K→ ππ we do not rely on the “indirect”
method alone. Rather, we combine indirect and direct methods in a cost-effective way. We bypass
the Maiani-Testa theorem by simulating with both pions at rest. We fit the numerical data to NLO
mixed-action χPT plus higher-order analytic terms, extrapolate to the continuum, and interpolate

to the point at which mK = mphys.
K and mπ = mphys.

K /2. Thus we avoid relying upon SU(3) χPT to
extrapolate to the physical kaon mass, where we expect higher-order corrections to be significant.
We then correct this unphysical kinematics point using fixed-order SU(3) χPT. The low energy
constants needed for this correction can be obtained from simpler quantities such as fK , K0-K̄0,
and K→ π . Since the kaon is tuned to its physical value, terms involving only kaons are correct to
all orders in the SU(3) chiral expansion; we therefore expect higher-order corrections to be small.

We can test this approach using the known quantities fK and fπ ; the results are shown in
Fig. 3. The size of the NLO corrections are quite small (below 10% for fπ and below 5% for fK),
indicating that the systematic uncertainty due to truncating the chiral expansion is under control.

3. Preliminary determination of Re(A2)

We now use our approach to determine the (27,1) ∆I = 3/2 K→ ππ matrix element, which
can be combined with continuum Wilson coefficients [12] to obtain Re(A2).

We compute the matrix element in unquenched lattice QCD using asqtad-improved staggered
sea quarks and domain-wall valence quarks. This mixed-action approach shares the primary ad-
vantages of both staggered and domain-wall lattice simulations. We use the publicly-available 2+1
flavor MILC gauge configurations [13], and simulate with several valence and sea quark masses.
Although our preliminary analysis only uses two lattice spacings, we have generated data at three
lattice spacings (a∼ 0.06, 0.09 and 0.12 fm) and will include all of it in a future publication. Our
lightest taste-pseudoscalar sea-sea pion has mπ,5 = 240 MeV while our lightest valence-valence
pion has mπ = 210 MeV. On the a∼ 0.06 fm ensembles, the heaviest (taste-singlet) sea-sea pion is
also quite light mπ,I = 270 MeV. This gives us good control over our combined chiral-continuum
extrapolation using mixed-action χPT. The approximate chiral symmetry of the valence sector
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Table 1: Data used for the preliminary determination of Re(A2). The columns show the (i) approximate
lattice spacings, (ii) lattice volumes, (iii), nominal up/down (ml) and strange quark (mh) masses in the sea,
(iv) corresponding pseudoscalar taste pion mass, (v) partially quenched valence quark masses (mx), (vi)
lightest available domain-wall pion mass, and (vii) number of configurations analyzed on each ensemble.

sea sector valence sector
a(fm)

( L
a
)3× T

a aml/amh amπ,5 amx amπ Nconf.

0.06 643×144 0.0018/0.018 0.06678(3) 0.0026, 0.0108, 0.033 0.06376(96) 96
0.06 483×144 0.0036/0.018 0.09353(7) 0.0036, 0.0072, 0.0108, 0.033 0.07458(76) 129
0.12 243×64 0.005/0.05 0.15970(13) 0.007, 0.02, 0.03, 0.05, 0.065 0.1718(11) 218
0.12 203×64 0.007/0.05 0.18887(8) 0.01, 0.02, 0.03, 0.04, 0.05, 0.065 0.1968(08) 279

(mres < 3 MeV on all lattice spacings) makes analysis of the mixed-action simulation data sim-
pler than the purely staggered case. Only two additional parameters appear at 1-loop in the mixed
action χPT expressions for mPS, fPS, and BK as compared to the purely domain-wall case [14],
and they can both be obtained from spectrum calculations. Furthermore, nonperturbative renor-
malization using the method of Rome-Southampton [15] can be carried out in a straightforward
manner. Finally, the success of our earlier mixed-action lattice calculation of BK [11] indicates that
the mixed-action method is also a good way to determine K→ ππ matrix elements.

Figure 3 shows the interpolation to the unphysical kinematics point mK = mphys.
K and mπ =

mphys.
K /2. Before the interpolation, we adjust the data points by the known 1-loop finite volume

corrections, which only depend upon the valence quark masses [16]. The interpolation currently
uses LO χPT supplemented by NLO analytic terms, including a term proportional to a2 so that we
can take the continuum limit. We have finished calculating the mixed-action 1-loop chiral logs,
however, and are now working on incorporating them into the fit. We then correct the unphysical
kinematics “2π" point to physical kinematics using SU(3) χPT:

〈π+
π
−|Oi|K0〉phys. = 〈π

+
π
−|Oi|K0〉2π × (1+δχPT) , (3.1)

where the correction factor is given by

δχPT =
(
〈π+

π
−|Oi|K0〉phys.−〈π

+
π
−|Oi|K0〉2π

)
/〈π+

π
−|Oi|K0〉2π . (3.2)

Because we have already interpolated to the physical kaon mass, terms in the χPT expression that
are only functions of the kaon mass cancel in the numerator, and the correction is needed only for
the short extrapolation from mK/2 to mπ . We therefore expect the convergence properties to be
better and the truncation errors to be smaller than if we were to extrapolate up to the kaon mass.

At leading order, the expression for the ∆I = 3/2 (27,1) K→ ππ matrix element is

〈π+
π
−|O∆I=3/2

(27,1) |K
0〉LO = 4iB0 f0(m2

K−m2
π)/3 , (3.3)

where f0 and B0 are the pion decay constant and BK in the chiral limits, respectively. The χPT
correction factor is then

δ
LO
χPT =

[
(mK/2)2−m2

π

]
/
[
m2

K− (mK/2)2] (3.4)
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Figure 4: Left plot: interpolation of Re(A2) to the unphysical kinematics point mK = mphys.
K and mπ =

mphys.
K /2. Circles (squares) denote a ∼ 0.12 fm (a ∼ 0.06 fm) data. Fit lines correspond to the degenerate

mass case and should pass through the filled symbols. Right plot: correction of Re(A2) to physical kinematics
using LO SU(3) χPT.

and is only 23%, which is much smaller than the chiral correction factors observed by Li and Christ
using the standard direct approach [9]. Because the low-energy constants f0 and B0 cancel in the
ratio, there is no ambiguity regarding the choice of SU(3) LEC’s.

The renormalization factor for the (27,1) ∆I = 3/2 operator is the same as BK , so we can use
the result for ZBK from Ref. [11]. We obtain

Re(A2) = 1.568(86)×10−8, (3.5)

where the error is statistical only. This agrees with the experimental measurement, Re(A2)exp =

1.50× 10−8GeV [17]. Table 2 presents an estimated error budget for Re(A2). We assume that
the truncation error due to leaving out NLO corrections is half the size of the LO correction, and
estimate that total uncertainty in our preliminary result is below 20%. This should improve further
with the use of our full data set. The χPT truncation error and error from the uncertainty in the
LEC’s will likely also decrease with the use of the NLO χPT correction factor. We restrict our
lightest valence quark mass to maintain mπL∼> 3.5, and estimate that our finite volume errors are a
few percent using 1-loop FVχPT. We will perform an explicit finite-volume study, however, before
publication. Our preliminary result is renormalized using lattice perturbation theory because we
have not yet completed the nonperturbative renormalization on the a ∼ 0.06 fm ensembles. We
expect these Z-factors to be reliable within systematic uncertainties, however, because we find
good agreement between ZBK computed nonperturbatively and using lattice perturbation theory on
the a∼ 0.12 and a∼ 0.09 ensembles.
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