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Instantaneous interquark potential in generalized Landau gauge in SU(3) lattice QCD:
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We investigate “instantaneous interquark potential”, an interesting gauge-dependent quantity
defined from the spatial correlator 〈Tr[U†

4 (s)U4(s
′)]〉 of the temporal link-variable U4, in detail in

generalized Landau gauge using SU(3) quenched lattice QCD. While the instantaneous potential has
no linear part in the Landau gauge, in the Coulomb gauge, it is expressed by the Coulomb plus linear
potential, where the slope is 2-3 times larger than the physical string tension, and the lowest energy
state is considered to be a gluon-chain state. Using the generalized Landau gauge, we find that the
instantaneous potential can be continuously described between the Landau and the Coulomb gauges,
and it approximately reproduces the physical interquark potential in a specific intermediate gauge,
which we call “λC -gauge”. This λC -gauge is expected to provide a quark-potential-model picture,
where dynamical gluons do not appear. We also investigate T -length terminated Polyakov-line
correlator and its corresponding “finite-time potential” in generalized Landau gauge.

PACS numbers: 12.38.Gc,14.70.Dj,12.39.Jh,12.39.Pn

I. INTRODUCTION

Nowadays, quantum chromodynamics (QCD) is estab-
lished as the fundamental theory of the strong interac-
tion, and perturbative QCD gives a standard framework
to describe high-energy reactions of hadrons. QCD is
a nonabelian gauge theory constructed from quarks and
gluons, and color SU(3) gauge symmetry is one of the
guiding principles in formulating QCD [1, 2]. For actual
perturbative calculations of QCD, the gauge has to be
fixed to remove gauge degrees of freedom. In the low-
energy region, however, QCD exhibits a strong-coupling
nature and the resulting nonperturbative QCD is a very
difficult and complicated theory.

On the other hand, the quark potential model has
been phenomenologically used for the description of low-
energy properties of hadrons in terms of their underly-
ing structure. The quark potential model is a success-
ful nonrelativistic or semi-relativistic framework with a
potential instantaneously acting among quarks, and de-
scribes many hadron properties in terms of quark degrees
of freedom. In this model, there are no dynamical gluons,
and gluonic effects indirectly appear as the instantaneous
interquark potential. (Here, the concept of “instanta-
neous” is to be considered at the scale of the effective
model.)

In spite of a great success of the quark potential model,
its relation to QCD is not yet so clear, and to link the
quark potential model from QCD is one of the important
subjects in hadron physics [3–5]. In principle, the quark
model may be obtained from QCD after integrating out
the gluon degrees of freedom in the path integral formal-
ism. Or, from the viewpoint of “gauge” in QCD, the
quark model without dynamical gluons may be regarded
as a gauge-fixed effective theory of QCD. In fact, the
quark potential model does not have local color SU(3)
symmetry but has global color SU(3) symmetry [3, 6],

since each quark has a color and dynamical gluons are
absent in this model framework.

If so, what gauge of QCD corresponds to the quark
model? Since the quark model has global color SU(3)
symmetry and spatial-rotation symmetry, one may first
consider that the Landau gauge and the Coulomb gauge
would be candidates of such a gauge for the quark
model. Actually, the Coulomb gauge is defined by
minimizing “spatial gluon-field fluctuations” in total, as
will be shown in Sec.II, and therefore one may expect
only a small gluon-field fluctuation appearing in the
Coulomb gauge. Similarly, the Landau gauge is de-
fined by minimizing “total gluon-field fluctuations” in
Euclidean QCD, so that only a small gluon-field fluc-
tuation may be expected in the Landau gauge. Such
a minimal gluonic content in these gauges seems to be
preferable for the modeling only with quarks.

In this paper, we investigate the instantaneous in-
terquark potential in the Landau, the Coulomb, and their
intermediate gauges, i.e., “generalized Landau gauge” (or
“λ-gauge”), in SU(3) lattice QCD, from the viewpoint
of the quark potential model [7]. Here, the generalized
Landau gauge is a natural general gauge to connect the
Landau, the Coulomb, and the temporal gauges, by one
real parameter λ.

Besides the quark-model arguments, it is meaningful to
investigate the connection between the Landau and the
Coulomb gauges, using the generalized Landau gauge.
Actually, these gauges have been often used as the typical
gauge in QCD, but their physical pictures seem to be
rather different for several important arguments in QCD.

As the typical example, the color confinement, which is
an important gauge-invariant QCD phenomenon, can be
explained from various viewpoints in various gauges. In
the Landau gauge, the color confinement is mathemati-
cally investigated by the Kugo-Ojima criterion, in terms
of the BRST charge and the inverse Higgs theorem [8].
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In the Coulomb gauge, the color confinement is argued
from the viewpoint of a large instantaneous Coulomb en-
ergy [9–12], and its resulting gluon-chain picture [13, 14].
Taking the maximally Abelian (MA) gauge, the quark
confinement has been discussed in terms of the dual su-
perconductor picture [15].
Of course, in gauge theories, the physical quantities

never depend on the gauge choice. However, according
to the gauge choice, the physical picture can be changed,
and the role of the gauge field, which is fundamental
field of the gauge theory, can be also changed. Then, it is
important to link the different gauges, and investigate the
role of gluons in each gauge. The role and the properties
of gluons are expected to be clarified by the overview on
the structure of gauge dependence.
One of the aim in this paper is to investigate the glu-

onic properties through a continuous view from the Lan-
dau gauge to the Coulomb gauge, using generalized Lan-
dau gauge. In particular, we clarify the behavior of the
instantaneous potential, as an interesting gluonic corre-
lation.
The organization of this paper is as follows. In Sec.II,

we briefly review the properties of the Landau gauge and
the Coulomb gauge. In Sec.III, we give the formalism
of generalized Landau gauge (λ gauge). In Sec.IV, we
formulate the instantaneous potential in lattice QCD. In
Sec.V, we show the lattice QCD results. In Sec.VI, we
investigate Polyakov-line correlators and its relation to
the potential. Sec.VII will be devoted to Summary and
Discussions.

II. LANDAU GAUGE AND COULOMB GAUGE

In this section, we briefly review the properties of the
Landau gauge and the Coulomb gauge.

A. Landau gauge

The Landau gauge is one of the most popular gauges
in QCD, and its gauge fixing is given by

∂µAµ = 0, (1)

where Aµ(x) ≡ Aa
µ(x)T

a ∈ su(Nc) are gluon fields, with

su(Nc) generator T a(a = 1, 2, . . .N2
c − 1). The Lan-

dau gauge keeps the Lorentz covariance and the global
SU(Nc) color symmetry. These symmetries simplify the
tensor structure of various quantities in QCD. For ex-
ample, the gluon propagator Dab

µν(p) is simply expressed
as

Dab
µν(p) = D(p2)δab

(

gµν − pµpν
p2

)

, (2)

due to the symmetries and the transverse property. Ow-
ing to this advanced feature, the Landau gauge is often

used both in the Schwinger-Dyson formalism [16, 17] and
in lattice QCD studies for quarks and gluons [18, 19].
In Euclidean QCD, the Landau gauge has a global def-

inition to minimize the global quantity,

RL =

∫

d4xTr {Aµ(x)Aµ(x)} =
1

2

∫

d4xAa
µ(x)A

a
µ(x),

(3)
by the gauge transformation. This global definition is
more strict, and the local form in Eq.(1) can be obtained
from the minimization of RL. Since the quantity RL

physically means the total amount of gauge-field fluctu-
ations, and therefore the Landau gauge maximally sup-
presses artificial gauge-field fluctuations originated from
the gauge degrees of freedom.
Here, we comment on non-locality of the gauge fields.

Through the gauge fixing procedure, gauge fields have
non-locality stemming from the Faddeev-Popov determi-
nant. In the Landau gauge, this non-locality of gauge
fields is Lorentz covariant.
Using the Landau gauge, or a covariant and globally

symmetric gauge, the color confinement has been math-
ematically investigated in terms of the BRST charge and
the inverse Higgs theorem, which is known as the “Kugo-
Ojima criterion” [8].

B. Coulomb gauge

The Coulomb gauge is also a popular gauge in QCD,
and its gauge fixing is given by

∂iAi = 0. (4)

This condition resembles the Landau gauge condition
(Eq.(1)), but there are no constraints on A0. In the
Coulomb gauge, the Lorentz covariance is partially bro-
ken, and gauge field components are completely decou-

pled into two parts, ~A and A0: ~A behave as canonical
variables and A0 becomes an instantaneous potential.
Similarly in the Landau gauge, the Coulomb gauge has

a global definition to minimize the global quantity

RCoul ≡
∫

d4xTr {Ai(x)Ai(x)} =
1

2

∫

d4xAa
i (x)A

a
i (x)

(5)
by the gauge transformation. Note here that the Eu-
clidean metric is not necessary for the global definition of
the Coulomb gauge. Note also that there appears no non-
locality in the temporal direction in the Coulomb gauge.
Due to this feature, a hadron mass measurement can be
safely performed using a spatially-extended quark source
in the Coulomb gauge in lattice QCD calculations [20].
In the Coulomb gauge, one of the advantages is the

compatibility with the canonical quantization [21]. The
QCD Hamiltonian is expressed as

H =
1

2

∫

d3x
(

~Ea · ~Ea + ~Ba · ~Ba
)

+
1

2

∫

d3xd3yρa(x)Kab(x, y)ρb(y), (6)
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where ρa is the color charge density, ~Ea and ~Ba are
the color electric and magnetic field, respectively. Here,
Kab(x, y) is the instantaneous Coulomb propagator [11]
defined as

Kab(x, y) = [M−1(−∇2)M−1]abxy, (7)

with the Faddeev-Popov operator

Mac = −∂2δac − εabcAb
i∂i. (8)

The confinement picture in the Coulomb gauge focuses
on the Coulomb energy including the inverse of M . Here,
the Coulomb energy is the non-local second term of the
QCD Hamiltonian (6), and is regarded as the instan-
taneous potential. Near the Gribov horizon, where the
Faddeev-Popov operator M has zero eigenvalues [9], the
Coulomb energy at large quark distance is expected to
be largely enhanced and leads to a confining interquark
potential, which is called as the “Gribov-Zwanziger sce-
nario” [9, 10].
As Zwanziger showed, the Coulomb energy (instanta-

neous potential) VCoul(R) in the Coulomb gauge gives an
upper bound on the static interquark potential Vphys(R)
[22], i.e.,

Vphys(R) ≤ VCoul(R). (9)

This inequality indicates that if the physical interquark
potential is confining then the Coulomb energy VCoul is
also confining. Actually, lattice QCD calculations [11]
show that the Coulomb energy (the instantaneous poten-
tial) between a quark and an antiquark leads to a linear
potential, which characterizes the confinement. However,
the slope of the instantaneous potential is too large, i.e.,
2 ∼ 3 times larger than the physical string tension, and
this Coulomb system turns out to be an excited state.
As for the ground-state of the quark-antiquark sys-

tem, Thorn and Greensite proposed the “gluon-chain pic-
ture” in the Coulomb gauge [13]. In fact, to screen the
large Coulomb energy between the quark and the anti-
quark, chain-like gluons are dynamically generated be-
tween them. This gluon-chain is expected to give the
linear potential between quarks. In other words, QCD
string can be regarded as a “chain” of gluons in the
Coulomb gauge.

III. GENERALIZED LANDAU GAUGE

In this section, we investigate the “generalized Landau
gauge”, or “λ gauge” [23], which continuously connects
the Landau and the Coulomb gauges.
Since the Landau gauge and the Coulomb gauge are

useful gauges and give different interesting pictures in
QCD, it is meaningful to show the linkage of these gauges.
To link these gauges, we generalize the gauge fixing con-
dition (1) as

∂iAi + λ∂4A4 = 0, (10)

by introducing one real parameter λ [23]. The case of
λ = 1 corresponds to the Landau gauge fixing condition,
the Coulomb gauge is achieved at λ = 0, and also tem-
poral gauge for λ → ∞. Therefore, we can analyze gauge
dependence of various properties from the Landau gauge
toward the Coulomb gauge by varying λ-parameter from
1 to 0. λ-gauge keeps the global SU(Nc) color symme-
try, but partially breaks the Lorentz symmetry like the
Coulomb gauge, except for λ=1.
In Euclidean QCD, the global definition of λ-gauge is

expressed by the minimization of

Rλ ≡
∫

d4x [Tr {Ai(x)Ai(x)} + λTr {A4(x)A4(x)}]
(11)

by the gauge transformation. Here, the λ-parameter con-

trols the ratio of the gauge-field fluctuations of ~A and A4.
Lattice QCD is formulated on the discretized Eu-

clidean space-time, and the theory is described with the
link-variable Uµ(x) ≡ eiagAµ(x) ∈ SU(Nc), with the lat-
tice spacing a and the gauge coupling constant g, instead
of gauge fields Aµ(x) ∈ su(Nc). λ-gauge fixing condition
is expressed in terms of the link-variable as the maxi-
mization of a quantity

Rλ
latt[U ] ≡

∑

x

{

∑

i

ReTrUi(x) + λReTrU4(x)

}

(12)

by the gauge transformation of the link-variables,

Uµ(x) → Ω(x)Uµ(x)Ω
†(x+ µ̂), (13)

with the gauge function Ω ∈ SU(3). In the continuum
limit of a → 0, this condition results in the minimization
of Rλ in Eq.(11), and satisfies the local λ-gauge fixing
condition of Eq.(10).
Note here that the gluon-field fluctuation is strongly

suppressed in the generalized Landau gauge with λ 6= 0,
so that one can use the expansion of the link-variable
Uµ(x) ≡ eiagAµ(x) ≃ 1+iagAµ(x)+O(a2) for small lattice
spacing a, and the gluon field Aµ(x) can be defined by

Aµ(x) ≡
1

2iag

[

Uµ(x)− U †
µ(x)

]

traceless
∈ su(Nc) (14)

without suffering from large gluon fluctuations stemming
from the gauge degrees of freedom.

IV. POLYAKOV-LINE CORRELATORS AND

INSTANTANEOUS POTENTIAL

In this section, we formulate Polyakov-line correlators
and instantaneous potential in lattice QCD.
First, we consider the continuum theory to make clear

the physical interpretation of the terminated Polyakov-
line correlator. Considering the source field Jµ(x) which
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couples to the gauge field Aµ(x), the generating func-
tional is given by

Z[J ] ≡ 〈Tr ei
∫
d4xLint〉 = 〈Tr exp{ig

∫

d4xAµ(x)J
µ(x)}〉.

(15)
We consider the color current Jµ(x) of a quark located

at ~x = ~a and an antiquark at ~x = ~b. For the case that
these sources are generated at t = 0 and annihilated at
t = T , the color current Jµ(x) is expressed as

Jµ(x) = δµ4

[

δ(~x− ~a)− δ(~x−~b)
]

θ(T − t)θ(t). (16)

In this case, the current Jµ is not conserved, and it breaks
the gauge invariance. In the presence of Jµ(x), the gen-
erating functional is expressed as

Z[J ] = 〈TrL(~a, T )L†(~b, T )〉 (17)

using the terminated Polyakov-line

L(~x, T ) ≡ exp

(

ig

∫ T

0

dx4A4(~x, x4)

)

. (18)

From the formal relation Z[J ] ∝ e−EJT , the “energy”
between the two sources is expressed with the Polyakov-
line correlator as

V (R, T ) = − 1

T
ln〈TrL(~a, T )L†(~b, T )〉 (19)

with R = |~a−~b|.
Next, we consider Nx × Ny × Nz × Nt lattice with

the lattice spacing a. Using temporal link-variables, the
terminated Polyakov-line with length T is defined as

L(~x, T ) = U4(~x, a)U4(~x, 2a) · · ·U4(~x, T ). (20)

The terminated Polyakov-line is generally gauge variant,
and its expectation value depends on the choice of gauge.
Only for T = Nt, the trace of the Polyakov-line coin-
cides the Polyakov loop, which is gauge invariant. In the
Coulomb gauge, the expectation value of the terminated
Polyakov-line is zero due to the remnant symmetry. (See
Appendix A.)
In this paper, we consider the Polyakov-line correlator

in generalized Landau gauge denoted by

Gλ(R, T ) = 〈Tr[L†(~x, T )L(~y, T )]〉 (21)

with R = |~x− ~y|. From this correlator, we define “finite-
time potential”,

Vλ(R, T ) ≡ − 1

T
lnGλ(R, T ). (22)

Especially for T = a, we call

Vλ(R) ≡ Vλ(R, a) = −1

a
ln〈Tr

[

U †
4 (~x, a)U4(~y, a)

]

〉 (23)

as “instantaneous potential”.
Here, these quantities depend on λ-parameter. In the

Coulomb gauge, the instantaneous potential Vλ=0(R) (or
the Coulomb energy) gives a linear potential, but its slope
is about 2 ∼ 3 times larger than the physical string ten-
sion [11]. In the Landau gauge, the instantaneous po-
tential Vλ=1(R) has no linear part [24], which is also ex-
pected from the exponential reduction of the gluon prop-
agator [19] and the Lorentz symmetry. In Sec.VII, we
will discuss the relation between the gluon propagator
and the instantaneous potential in the Landau gauge.

V. LATTICE QCD RESULTS

We perform SU(3) lattice QCD Monte Carlo calcula-
tions at the quenched level. We use the standard pla-
quette action with the lattice parameter β ≡ 2Nc

g2 = 5.8

on a 164-size lattice. The lattice spacing a is 0.152 fm,
which is determined so as to reproduce the string tension
as

√
σ = 427 MeV [25].

We use the gauge configurations, which are picked
up every 1000 sweeps after a thermalization of 20000
sweeps. After the generation of gauge configurations, we
perform gauge fixing by maximizing Rλ

latt[U ]. In this
paper, we use the Landau gauge (λ=1), the Coulomb
gauge (λ=0), and their intermediate gauges with λ =
0.75, 0.50, 0.25, 0.10, 0.05, 0.04, 0.03, 0.02, 0.01. We inves-
tigate in detail the region near the Coulomb gauge (λ=0),
since the behavior of the instantaneous potential largely
changes for λ ∼0, as will be shown later. The number
of gauge configurations is 50 for each λ. We adopt the
jackknife method to estimate the statistical error.
Here, we comment on λ-gauge fixing convergence. We

fix the gauge by maximizing the quantity Rλ
latt[U ] in

Eq.(12), which corresponds to ∂iAi +λ∂4A4 = 0. There-
fore, to check the convergence of gauge fixing, we evaluate
ǫλ defined by

ǫλ ≡ 〈(∂iAa
i + λ∂4A

a
4)

2〉

≡ 1

(N2
c − 1)Nsite

Nsite
∑

x=1

N2

c−1
∑

a=1

{

3
∑

i=1

[

Aa
i (x) −Aa

i (x − î)
]

+ λ
[

Aa
4(x) −Aa

4(x − 4̂)
]

}2

, (24)

with the gluon field Aµ(x) = Aa
µ(x)T

a given in Eq.(14).

We iterate the gauge transformation to satisfy ǫλ < 10−12

finally. As for the instantaneous potential Vλ(R), this
convergence condition is very strict. Actually, we can
obtain stable the lattice data of Vλ(R) even with ǫλ <
10−4.
Also, we comment that the calculation cost of the

gauge fixing is rapidly increasing as λ approaches to zero,
while the Coulomb gauge (λ = 0) itself can be easily
achieved. Considering this critical slowing down of the
gauge fixing [23, 26], we adopt a relatively small-size lat-
tice of 164 with β = 5.8, although its physical volume
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FIG. 1: “Instantaneous potential” Vλ(R) in generalized Lan-
dau gauge for typical values of λ. The symbols denote lattice
QCD results, and the curves fit-results using Coulomb plus
linear form, Vλ(R) = −Aλ/R + σλR + Cλ, in the region of
R . 0.8 fm. For λ = 1 ∼ 0.1, the potential has almost no
linear part. For λ . 0.1, the linear potential grows rapidly,
and σλ ≃ 2.6σphys at λ = 0.

∼ (2.4fm)4 is large enough to extract the relevant region
for the interquark potential.

A. “Instantaneous inter-quark potential” in

generalized Landau gauge

We investigate the instantaneous potential Vλ(R) de-
fined by Eq.(23) in generalized Landau gauge. Figure 1
shows lattice QCD results of Vλ(R) for typical values of
λ. In this figure, the statistic error is small and the error
bars are hidden in the symbols.
In the Coulomb gauge (λ = 0), the instantaneous po-

tential shows linear behavior, while there is no linear part
at all in the Landau gauge (λ = 1). Thus, there is a large
gap between these gauges in terms of the instantaneous
potential. In our framework, however, these two gauges
are connected continuously. By varying the λ-parameter
from 1 to 0 in the generalized Landau gauge, we find
that the instantaneous potential Vλ(R) changes contin-
uously, and the infrared slope of the potential Vλ(R) at
R ≃ 0.8fm grows monotonically, from the Landau gauge
to the Coulomb gauge, as shown in Fig. 1. Note here
that, and the growing of the infrared slope of Vλ(R) is
quite rapid for λ . 0.1, near the Coulomb gauge, while
the infrared slope is rather small and almost unchanged
for λ = 0.1 ∼ 1.
To analyze the instantaneous potential Vλ(R) quanti-

tatively, we fit the lattice QCD results using the Coulomb
plus linear Ansatz as

Vλ(R) = −Aλ

R
+ σλR+ Cλ, (25)

where Aλ is the Coulomb coefficient and Cλ a con-
stant. Here, σλ is the infrared slope of the potential,

TABLE I: Best-fit parameters on the instantaneous potential
using Vλ(R) = −Aλ/R + σλR + Cλ, and the ratio of the
slope σλ to the physical string tension σphys. The standard
parameters of the physical interquark potential are Aphys ≃
0.27 and σphys ≃ 0.89GeV/fm [25]. The string tension σλ is
rather small for λ = 0.1 ∼ 1.

λ fit-range [fm] Aλ σλ [GeV/fm] Cλ [GeV] σλ/σphys

0.00 0.1-1.0 0.167(11) 2.283(35) -0.881(20) 2.57(4)

0.01 0.1-0.8 0.287(27) 1.476(78) -0.617(46) 1.66(9)

0.02 0.1-0.8 0.346(32) 1.005(90) -0.481(54) 1.13(10)

0.03 0.1-0.8 0.372(32) 0.728(86) -0.416(53) 0.82(10)

0.04 0.1-0.8 0.382(30) 0.557(79) -0.386(50) 0.63(9)

0.05 0.1-0.8 0.386(29) 0.441(73) -0.372(47) 0.50(8)

0.10 0.1-0.8 0.365(20) 0.169(46) -0.390(31) 0.19(5)

0.25 0.1-0.8 0.281(6) -0.005(13) -0.544(9) -0.01(1)

0.50 0.1-0.8 0.198(0) -0.042(1) -0.724(1) -0.05(0)

0.75 0.1-0.8 0.152(1) -0.043(3) -0.839(2) -0.05(0)

1.00 0.1-0.8 0.123(2) -0.040(3) -0.917(3) -0.04(0)

which we call as “instantaneous string tension”. Besides
the Coulomb plus linear Ansatz, we try several candi-
dates of the functional form, −A/R + σ(1 − e−εR)/ε,
−A exp(−mR)/R, −A/R+σRd, and −A/Rd apart from
an irrelevant constant, but they are less workable. The
curves in Fig. 1 are the best-fit results using Eq.(25).
The Coulomb plus linear Ansatz works well at least for
R . 0.8fm, which is relevant region for hadron physics.
We note that the Yukawa form of −Ae−mR/R also works
well near the Landau gauge, which will be discussed in
relation to the gluon-propagator behavior in Sec.VI-C.

We summarize the best-fit parameters and the fit-
range in Table I. While the Coulomb coefficient Aλ

has a relatively weak λ-dependence, the instantaneous
string tension σλ shows a strong λ-dependence near the
Coulomb gauge, i.e., λ . 0.1.

We comment on the asymptotic value of the instan-
taneous potential σλ. In the deep IR limit, R → ∞,
Vλ(R) goes to a saturated value, except for λ = 0. This
feature is closely related to the property of the tempo-

ral link-variable correlator 〈Tr{U †
4(x)U4(y)}〉, as will be

discussed in Sec.VI.

Now, we focus on the λ-dependence of instantaneous
string tension σλ in Fig. 2. For 0.1 . λ ≤ 1, including
the Landau gauge (λ=1), σλ is almost zero, so that this
region can be regarded as “Landau-like.” For λ . 0.1,
Vλ(R) is drastically changed near the Coulomb gauge,
and σλ grows rapidly in this small region. Finally, in
the Coulomb gauge (λ=0), one finds σλ ≃ 2.6σphys, with
σphys ≃ 0.89GeV/fm.

Note that the instantaneous string tension σλ contin-
uously changes from 0 to (2 ∼ 3)σphys, according to the
change from the Landau gauge to the Coulomb gauge,
and therefore there exists some specific λ-parameter of
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FIG. 2: Instantaneous string tension σλ, the slope of the
linear part in the instantaneous potential Vλ(R) in the gen-
eralized Landau gauge. The right upper figure is a close-
up near the Coulomb gauge (λ=0). For 0 ≤ λ . 0.1, σλ

changes rapidly from 2.6σphys to 0, while σλ is rather small
for 0.1 . λ ≤ 1. The instantaneous string tension σλ coin-
cides with the physical value around λC ≃ 0.02.

λC ∈ [0, 1] where the slope of the instantaneous po-
tential Vλ(R) coincides with the physical string tension
σphys. Since the instantaneous potential generally de-
pends on the lattice parameter β, i.e., the lattice spacing
a [7, 11], the value of λC is β-dependence, although its
dependence would be rather weak, as will be discussed in
Sec.VI. However, from the continuity between the over-
confining potential in the Coulomb gauge and the sat-
urated potential in the Landau gauge, there must exist
λC ∈ [0, 1] where the instantaneous string tension σλ co-
incides with σphys for each lattice spacing. We call this
specific gauge as “λC-gauge”. From Fig.2, the value of
λC is estimated to be about 0.02 at β=5.8. Note here
that λC ≃ 0.02 ≪ 1 is very small, and then the λC -
gauge is close to the Coulomb gauge, which indicates the
small temporal non-locality.
Figure 3 shows the instantaneous potential Vλ(R) at

λ = 0.02 ≃ λC and the physical static interquark po-
tential Vphys(R). In this λC -gauge, Vphys(R) is found to
be approximately reproduced by VλC

(R) for R . 0.8fm.
While the physical static potential Vphys(R) is derived
from the large-T behavior of the Wilson loop W (R, T )
[27] as

Vphys(R) = − lim
T→∞

1

T
ln〈W (R, T )〉, (26)

only instantaneous correlation of the temporal link-
variable U4 approximately reproduces Vphys(R) in the
λC -gauge, i.e.,

Vphys(R) ≃ VλC
(R)

= −1

a
ln〈TrU †

4 (~x, a)U4(~y, a)〉λC
, (27)

as is schematically illustrated in Fig.4.
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FIG. 3: The comparison between the instantaneous po-
tential Vλ(R) at λ = 0.02(≃ λC) (black dots), and the
physical interquark potential Vphys(R) (solid line). In λC -
gauge, Vphys(R) = − limT→∞

1

T
ln〈W (R,T )〉 ≃ −Aphys/R +

σphysR (Aphys ≃ 0.27, σphys ≃ 0.89GeV/fm) is approxi-
mately reproduced by the instantaneous potential VλC

(R) =

− 1

a
ln〈TrU†

4 (~x, a)U4(~y, a)〉λC
.

FIG. 4: The schematic illustration of the physical interquark
potential Vphys(R) and the instantaneous potential Vinst(R).
In λC-gauge, the instantaneous potential VλC

(R) approxi-
mately reproduces the physical potential Vphys(R).

On the relation to the confinement, which is a gauge
independent phenomenon, the role of gluons generally
depends on the choice of gauges, and the physical pic-
ture of the confinement would be changed according to
gauges. For example, in the Coulomb gauge, the instan-
taneous Coulomb energy gives an overconfining poten-
tial, and the ground-state of the quark-antiquark system
is described as the gluon-chain state. On the other hand,
in the Landau gauge, the instantaneous potential has no
linear part, and the ghost behavior in the deep-infrared
region would be more important for the confinement.

In the λC -gauge, the physical interquark potential
Vphys(R) is approximately reproduced by the instanta-
neous potential VλC

(R). This physically means that all
other complicated effects including dynamical gluons and
ghosts are approximately cancelled in the λC -gauge, and
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therefore we do not need to introduce any redundant glu-
onic degrees of freedom. The absence of dynamical gluon
degrees of freedom would be a desired property for the
quark model picture.

B. “Finite-time potential” and “finite-time string

tension”

In the previous subsection, we investigated the in-
stantaneous potential Vλ(R), which is defined by the
Polyakov-line correlator with a minimum length on the
lattice. For the quark-potential model, it is desired
that the interquark potential does not have large depen-
dence on the temporal length T of the typical reaction
scale. From this viewpoint, we investigate the “finite-
time potential” Vλ(R, T ) defined by Eq.(19) in Sec.IV,
and its temporal-length dependence. Here, Vλ(R, T ) is
expressed by T -length terminated Polyakov-line L(~x, T )
in Eq.(18), and a generalization of the instantaneous po-
tential Vλ(R).
First, we consider the Coulomb gauge [7, 11]. Fig-

ure 5 shows the lattice QCD result for Vλ(R, T ) in the
Coulomb gauge. Similar to the instantaneous potential,
Vλ(R, T ) is well reproduced by the Coulomb plus linear
form. However, the parameter values are changed accord-
ing to T -length. In particular, the slope of the potential
becomes smaller as T becomes larger, which shows an
“instability” of Vλ(R, T ) in terms of T in the Coulomb
gauge.
For general λ, finite-time potential Vλ(R, T ) is found

to be reproduced by the Coulomb plus linear form as

Vλ(R, T ) = −Aλ(T )

R
+ σλ(T )R+ Cλ(T ), (28)

at least for R . 0.8fm, similarly for the instantaneous
potential.
Since our main interest is linear part of the potential,

we focus on “finite-time string tension” σλ(T ), the slope
of Vλ(R, T ). Figure 6 shows σλ(T ) in generalized Landau
gauge for typical values of λ. In Table II, we summarize
the best-fit parameters of σλ(T ) at T = 1, 2, . . . , 6, and
the ratio of σλ(1)/σλ(6), σλ(1)/σphys, and σλ(6)/σphys,
respectively.
On the T -dependence of the finite-time string tension

σλ(T ), there are three groups of the λ-parameter region:
(i) Coulomb-like region (0 ≤ λ ≪ λC), (ii) Landau-like
region (λC ≪ λ ≤ 1), and (iii) λC -like region (λ ∼ λC).
(i) The first category is the Coulomb-like region of

0 ≤ λ ≪ λC , i.e., 0 ≤ λ . 0.01. In this region, the
instantaneous string tension σλ ≡ σλ(T = 1) is larger
than the physical string tension σphys, and the instanta-
neous potential Vλ(R) ≡ Vλ(R, T = 1) gives an overcon-
fining potential. The ground-state of the quark-antiquark
system is considered as the gluon-chain state. As the
temporal length T of the Polyakov-line increases, finite-
time string tension σλ(T ) decreases and approaches to
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FIG. 5: “Finite-time potential” Vλ(R,T ) in the Coulomb
gauge (λ = 0) for T=1,2,3,4,5. Here, for the comparison,
an irrelevant constant is shifted for each T . The curves de-
note the fit-results using the Coulomb plus linear form. The
slope of Vλ(R, T ) is clearly changed according to T .

 0
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λ
 (
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λ = 0.02
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FIG. 6: T -length dependence of “Finite-time string tension”
σλ(T ), the infrared slope of finite-time potential Vλ(R, T ), in
generalized Landau gauge for several typical λ-values. Near
the Coulomb gauge, e.g., for λ . 0.03, σλ(T ) goes to the same
value for large T ∼ 1fm. For λ & 0.1, σλ(T ) is an increasing
function of T . In fact, even though the instantaneous poten-
tial has no linear part, the linear part of Vλ(R,T ) appears
and gradually grows, as the Polyakov-line grows.

the physical string tension σphys. This decreasing behav-
ior is interpreted that the component of the ground-state,
i.e., the gluon-chain state, becomes dominant as T -length
becomes large. Thus, this region would not be compati-
ble with the quark potential picture, because of the large
T -dependence of the confining force σλ(T ) in addition to
the dynamical generation of the gluon-chain.

(ii) The second category is the Landau-like region of
λC ≪ λ ≤ 1, i.e. 0.1 . λ ≤ 1. In this region, the
instantaneous string tension is almost zero, i.e., σλ ≃
0, and finite-time string tension σλ(T ) is an increasing
function of T . Although its asymptotic value is unclear
for T ∼ 0.8 fm, σλ(T ) seems to approach to the physical
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TABLE II: Finite-time string tension σλ(T ) in generalized Landau gauge for T = 1, 2, . . . , 6, together with the ratio, σλ(1)/σλ(6),
σλ(1)/σphys, and σλ(6)/σphys. The fit-range is the same as that listed in Table I.

σλ(T ) [GeV/fm]

λ T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 σλ(1)/σλ(6) σλ(1)/σphys σλ(6)/σphys

0.00 2.283(35) 1.704(11) 1.463(8) 1.322(16) 1.244(24) 1.147(75) 1.99(13) 2.57(4) 1.29(8)

0.01 1.476(78) 1.466(30) 1.348(17) 1.252(16) 1.191(27) 1.181(43) 1.25(8) 1.66(9) 1.33(5)

0.02 1.005(90) 1.225(55) 1.225(31) 1.176(20) 1.135(25) 1.119(53) 0.90(9) 1.13(10) 1.26(6)

0.03 0.728(86) 1.034(67) 1.119(43) 1.113(30) 1.104(30) 1.086(40) 0.67(8) 0.82(10) 1.22(5)

0.04 0.557(79) 0.896(72) 1.030(51) 1.057(35) 1.053(30) 1.019(53) 0.55(8) 0.63(9) 1.15(6)

0.05 0.441(73) 0.785(76) 0.947(59) 1.002(43) 1.021(35) 1.020(44) 0.43(7) 0.50(8) 1.15(5)

0.10 0.169(46) 0.467(71) 0.684(70) 0.811(58) 0.872(50) 0.875(56) 0.19(5) 0.19(5) 0.98(6)

0.25 -0.005(13) 0.152(42) 0.324(60) 0.474(65) 0.586(62) 0.690(48) -0.01(2) -0.01(1) 0.78(5)

0.50 -0.042(1) 0.015(21) 0.111(41) 0.218(57) 0.320(69) 0.423(79) -0.10(2) -0.05(0) 0.48(9)

0.75 -0.043(3) -0.025(11) 0.028(27) 0.100(44) 0.181(58) 0.275(69) -0.16(4) -0.05(0) 0.31(8)

1.00 -0.040(3) -0.041(5) -0.012(18) 0.039(32) 0.104(45) 0.180(56) -0.22(7) -0.04(0) 0.20(6)
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FIG. 7: Finite-time potential Vλ(R,T ) at λ = 0.02(≃ λC).
For the comparison, an irrelevant constant is shifted for each
T . The slope of Vλ(R, T ) is almost the same for T = 1, 2, · · · 5,
and thus the shape of Vλ(R, T ) is rather stable against the
temporal length T .

string tension σphys, which will be discussed in Sec.VI.

(iii) The third category is the λC -like region of λ ∼ λC ,
i.e., 0.01 . λ . 0.1. In this region, the instantaneous
string tension σλ is approximately equal to the physical
string tension, i.e., σλ ≃ σphys(≃ 0.89GeV/fm), and the
instantaneous potential Vλ(R) approximately reproduces
the physical static potential Vphys(R), as shown in Fig. 3.
As the temporal length T increases, finite-time string ten-
sion σλ(T ) is slightly changed and takes a little larger
value (≃ 1.1GeV/fm) around T ≃ 0.8fm. In particular,
near λC ≃ 0.02, σλ(T ) shows only a weak T -dependence,
while σλ(T ) largely changes as T in the Coulomb gauge.
As a whole, finite-time potential Vλ(R, T ) has small T -
dependence, as shown in Fig. 7. This is also a desired
feature for the linkage to the quark potential model.

When the length T of the Polyakov-line increases, λ-

dependence of σλ(T ) is weakened, and σλ(T ) seems to
converge to the physical string tension σphys for enough
large T , as indicated in Fig.6.
There are two ingredients on the above gauge-

dependence (λ-dependence): one is the large excess of
the Coulomb energy in the Coulomb gauge, the other
is the non-locality from the Faddeev-Popov determinant.
From the fixing condition of generalized Landau gauge in
Eq.(10), one finds that the λ-parameter controls the non-
locality in the temporal direction. In the Landau gauge,
the non-locality appears equally in spatial and tempo-
ral directions, while temporal non-locality disappears in
the Coulomb gauge. If the Coulomb-energy excess can be
neglected, e.g., for large λ, Vλ(R, T ) is expected to repro-
duce the static potential Vphys(R), when T -length and R
are large enough to neglect the non-locality scale. Owing
to the λ-dependence of the non-locality, such a T -length
exceeding the non-locality is to be larger for larger λ in
the Landau-like region.
Near the λC -gauge, finite-time potential Vλ(R, T ) has

only weak T -length dependence. In other words, this can
be regarded as an approximate “fixed point” against T
around λC ≃ 0.02. We conjecture that this is due to the
approximate cancellation between the Coulomb-energy
excess and the non-locality. Actually, in contrast to the
large T -dependence of Vλ(R, T ) in the Coulomb gauge
as shown in Fig.5, VλC

(R, T ) is rather stable against T -
length in the λC -gauge, as shown in Fig.7.

VI. TERMINATED POLYAKOV-LINE

CORRELATOR AND POTENTIALS

In the previous section, we investigated instantaneous
potential Vλ(R) and finite-time potential Vλ(R, T ), which
are derived from the correlation of terminated Polyakov-
line L(~x, T ). In this section, we investigate properties
of the Polyakov-line correlator, and clarify its relation to
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Vλ(R) and Vλ(R, T ).

A. Asymptotic behavior of link-variable correlator

and instantaneous potential

First, we investigate the spatial correlator Gλ(R) of
the temporal link-variable U4, and the relation to the
instantaneous potential Vλ(R) ≡ − 1

a
lnGλ(R). For the

large spatial separation of R ≡ |~x − ~y| → ∞, Gλ(R)
behaves asymptotically as

Gλ(R) ≡ 〈Tr [U †
4 (~x, t)U4(~y, t)]〉

→ 〈(U4)
∗
ij〉〈(U4)ij〉 =

1

3
〈Tr U4〉2, (29)

where 〈(U4)ij〉 = 1
3 〈Tr U4〉δij ∈ R from the global color

symmetry. Here, 1
3 〈Tr U4〉2 is found to give the lower

bound ofGλ(R). If 〈Tr U4〉 takes some finite value, Vλ(R)
inevitably saturates for large R. Then, 〈Tr U4〉 = 0 is
a necessary condition for the deep-infrared confinement
feature of Vλ(R = ∞) = ∞.
In the Coulomb gauge, 〈Tr U4〉 is zero due to the rem-

nant symmetry, as is shown in Appendix. Therefore, as
R → ∞, the correlator Gλ(R) converges to zero, and
Vλ(R) ≡ − 1

a
lnGλ(R) → +∞, which corresponds to the

deep-infrared confinement.
For the general case of λ 6= 0, however, 〈Tr U4〉 has

a non-zero value, and Gλ(R) approaches to some finite
constant. The finiteness of 〈Tr U4〉 gives a saturation of
Vλ(R), which leads to the absence of its linear part in the
case of rapid convergence.
Figure 8 shows Gλ(R) and its asymptotic value

1
3 〈Tr U4〉2 in the Landau and the Coulomb gauges. In
the Landau gauge, 〈Tr U4〉 has a large expectation value,
according to the maximization of

∑

x Re Tr Uµ(x), and
Gλ(R) rapidly converges to a finite constant for R &
0.4fm, which leads to a rapid saturation of the instanta-
neous potential Vλ(R). In the Coulomb gauge, we find
〈Tr U4〉 = 0, and Gλ(R) decreases monotonically to zero
as R, which leads to Vλ(R) = +∞ for R = ∞.
Figure 9 shows λ-dependence of 1

3 〈Tr U4〉 in general-
ized Landau gauge. For λ 6= 0, 〈Tr U4〉 takes a non-
zero real value, and it approaches to zero continuously
as λ → 0. Here, it largely changes in the small region of
0 ≤ λ . 0.1. The finiteness of 〈Tr U4〉 is directly related
to the infrared damping of the correlator Gλ(R) and the
infrared form of the instantaneous potential Vλ(R).

B. Asymptotic behavior of Polyakov-line correlator

and T -length potential

Next, we consider T -length terminated Polyakov-line
correlator Gλ(R, T ), which behaves asymptotically as

Gλ(R, T ) ≡ 〈TrL†(~x, T )L(~y, T )〉

→ 1

3
〈Tr L(T )〉2 (30)
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FIG. 8: The spatial correlator Gλ(R) ≡ 〈Tr U†
4 (~x, a)U4(~y, a)〉

(R = |~x − ~y|) in the Landau gauge (open circles) and the
Coulomb gauge (open triangles), together with its asymptotic
value of 1

3
〈Tr U4〉

2 (solid lines and cross symbols). In the Lan-
dau gauge, 〈Tr U4〉 6= 0, and Gλ(R) rapidly converges to a
constant for R & 0.4fm, which leads to a rapid saturation
of the instantaneous potential Vλ(R) ≡ − 1

a
lnGλ(R). In the

Coulomb gauge, 〈Tr U4〉 = 0, and Gλ(R) decreases monoton-
ically to zero as R, which leads to Vλ(R) = +∞ for R = ∞.
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FIG. 9: The expectation value of 1

3
〈Tr U4〉 in generalized

Landau gauge. For λ 6= 0, 〈Tr U4〉 takes a non-zero value,
and it approaches to zero continuously as λ → 0. The value
of 〈Tr U4〉 relates to the infrared behavior of the correlator
Gλ(R) and the instantaneous potential Vλ(R).

for large separation of R = |~x−~y|. As well as the instan-
taneous potential, 1

3 〈Tr L(T )〉2 is found to give the lower
bound of the correlator Gλ(R, T ), and the finiteness of
〈Tr L(T )〉 is responsible for the infrared saturation of the
finite-time potential Vλ(R, T ).

Figure 10 shows T -dependence of the terminated
Polyakov-line 1

3 〈Tr L(T )〉 in generalized Landau gauge
for typical values of λ. In the Coulomb gauge (λ=0),
〈Tr L(T )〉 is always zero as well as 〈Tr U4〉, which means
that Vλ(R = ∞, T ) = − 1

T
lnGλ(R = ∞, T ) = +∞ for

any values of T . Actually, finite-time potential Vλ(R, T )
always has a linear part in the Coulomb gauge, as shown
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3
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in Fig.5.
For λ 6= 0, 〈Tr L(T )〉 is a decreasing function of T , and

it converges to zero in large-T limit. At T = Nt, the T -
length terminated Polyakov-line 〈Tr L(T )〉 results in the
Polyakov loop, and 〈Tr L(Nt)〉 = 0 in the confinement
phase. Therefore, 〈Tr L(T )〉 converges to zero as T →
Nt, and then one finds

Gλ(R = ∞, Nt) = 0, (31)

Vλ(R = ∞, Nt) = − 1

T
lnGλ(∞, Nt) = +∞, (32)

which gives a confinement potential. From Fig.10, this
convergence is found to be fast for smaller λ-value, and
such a convergence is closely related to the growing of
finite-time string tension σλ(T ).

C. Gluon propagator and instantaneous potential

in the Landau gauge

In this subsection, we discuss the relation between the
gluon propagator and the instantaneous potential in the
Landau gauge.
The gluon propagator is a two-point function of the

gauge field Aµ(x), and is defined in Euclidean QCD as

Dµν(x, y) ≡ 〈TrAµ(x)Aν(y)〉, (33)

where the trivial color structure is dropped off by taking
the trace. In the Landau gauge, we use the expression of
Aµ in terms of Uµ as

A4(x) =
1

2iag
[U4(x) − U †

4 (x)] +O(a2). (34)

Note that this expression is only justified in the Landau
gauge, or more generally in large-λ gauges, where the
fluctuation of A4 is highly suppressed.

Then, the gluon propagator Dµν is expressed using
link-variables, e.g.,

a2g2D44(x, y) = a2g2〈TrA4(x)A4(y)〉

≃ −1

4
〈Tr[U4(x)− U †

4 (x)][U4(y)− U †
4 (y)]〉

= 〈Tr[U4(x)U
†
4 (y)]〉

−1

4
〈Tr[U4(x) + U †

4 (x)][U4(y) + U †
4 (y)]〉. (35)

The last term in Eq.(35) has only O(a4)-order (x − y)-
dependence, and actually it changes only a few % in the
Landau gauge at β=5.8, so that we here approximate this
term as a constant C. Thus, Eq.(35) reduces

a2g2D44(x, y) ≃ 〈Tr[U4(x)U
†
4 (y)]〉 − C, (36)

and we calculate the instantaneous potential Vinst(R) as

Vinst(R) = −1

a
ln〈Tr[U4(~x, a)U

†
4 (~y, a)]〉

= −1

a
ln
[

C + a2g2D44(R)
]

≃ −ag2

C
D44(R) + const. (37)

In this way, the instantaneous potential Vinst(R) is ex-
pressed by using the 44-component of the gluon propa-
gator in the Landau and large-λ gauges.
In the previous work [19], we have found that the

Landau-gauge gluon propagator is well reproduced by the
four-dimensional Yukawa-function as

D(r) ≡ Dµµ(r) ∝
1

r
e−mr, (38)

with the Yukawa mass-parameter m ≃ 0.6GeV, in the
region of r = 0.1 ∼ 1 fm. Apart from a pre-factor from
the tensor factor, D44(R) approximately behaves as the
Yukawa-function, and therefore the instantaneous poten-
tial is expressed as

Vinst(R) ≃ −A

R
e−mR + const. (39)

in the Landau gauge.
Figure 11 shows the two fit-results of instantaneous

potential in the Landau gauge, using the Coulomb plus
linear form VCoul.+lin.(R) = −A/R+σR and the Yukawa-
function form VYukawa(R) = −A exp(−mR)/R. Both
functions well reproduce the lattice QCD result. The
best-fit Yukawa mass-parameter is m=0.634(3)GeV, and
this value coincides with the infrared effective gluon mass
obtained from the Landau-gauge gluon propagator [19].
We note again that this relation is only valid in the

Landau and large-λ gauges, where the temporal link-
variable U4 can be expanded in terms of lattice spacing
a, and the last-term in Eq.(35) is almost constant.
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FIG. 11: Fit-result of the instantaneous potential Vinst(R) in
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reproduce lattice QCD result. The best-fit parameter of the
Yukawa mass is m = 0.634(3)GeV, which coincides with the
infrared effective gluon mass obtained from the Landau-gauge
gluon propagator [19].

VII. SUMMARY AND DISCUSSION

In this paper, aiming to grasp the gauge dependence of
gluon properties, we have investigated generalized Lan-
dau gauge and applied it to instantaneous interquark po-
tential in SU(3) quenched lattice QCD at β=5.8. In the
Coulomb gauge, the instantaneous potential is expressed
by the sum of Coulomb potential and linear potential
with 2-3 times larger string tension. In contrast, the in-
stantaneous potential has no linear part in the Landau
gauge. Thus, there is a large gap between these two
gauges. Using generalized Landau gauge, we have found
that the instantaneous potential Vλ(R) is connected con-
tinuously from the Landau gauge towards the Coulomb
gauge, and the linear part in Vλ(R) grows rapidly in the
neighborhood of the Coulomb gauge.
Since the slope σλ of the instantaneous potential Vλ(R)

grows continuously from 0 to 2-3σphys, there must exist
some specific intermediate gauge where the slope σλ co-
incides with the physical string tension σphys. From the
lattice QCD calculation, the specific λ-parameter, λC , is
estimated to be about 0.02. In this λC -gauge, the physi-
cal static interquark potential Vphys(R) is approximately
reproduced by the instantaneous potential Vλ(R).
We have also investigated T -length terminated

Polyakov-line correlator, and its corresponding finite-
time potential Vλ(R, T ), which is a generalization of
the instantaneous potential Vλ(R), in generalized Lan-
dau gauge. The behavior of the slope σλ(T ) of the
finite-time potential is classified into three groups: the
Coulomb-like gauge (0 ≤ λ . 0.01), the Landau-like
gauge (0.1 . λ ≤ 1), and neighborhood of λC -gauge
(λ ∼ λC ≃ 0.02). In the Coulomb-like gauge, the slope
σλ(T ) is a decreasing function of T , and seems to ap-
proach to physical string tension σphys for large T . In

the Landau-like gauge, σλ(T ) is an increasing function.
Around the λC -gauge, σλ(T ) has a weak T -length depen-
dence. We have also investigated T -length terminated
Polyakov-line correlator and its relation to the finite-time
potential.

Finally, we consider a possible gauge of QCD to de-
scribe the quark potential model from the viewpoint of
instantaneous potential. The quark potential model is a
successful nonrelativistic framework with a potential in-
stantaneously acting among quarks, and describes many
hadron properties in terms of quark degrees of freedom.
In this model, there are no dynamical gluons, and gluonic
effects indirectly appear as the instantaneous interquark
potential.

As for the Coulomb gauge, the instantaneous potential
has too large linear part, which gives an upper bound
on the static potential [22]. It has been suggested by
Greensite et al. that the energy of the overconfining
state is lowered by inserting dynamical gluons between
(anti-)quarks, which is called “gluon-chain picture”. This
gluon-chain state is considered as the ground-state in
the Coulomb gauge [11–13]. Therefore, dynamical gluon
degrees of freedom must be also important to describe
hadron states in the Coulomb gauge.

For λC -gauge, the physical interquark potential
Vphys(R) is approximately reproduced by the instanta-
neous potential VλC

(R) unlike the Coulomb gauge, as
schematically shown in Fig.12. This physically means
that all other complicated effects including dynamical
gluons and ghosts are approximately cancelled in the λC -
gauge, and therefore we do not need to introduce any
redundant gluonic degrees of freedom. The absence of
dynamical gluon degrees of freedom would be a desired
property for the quark model picture. The weak T -length
dependence of σλ(T ) around the λC -gauge (T -length sta-
bility) is also a suitable feature for the potential model.

In this way, as an interesting possibility, the λC -gauge
is expected to be a useful gauge in considering the link-
age from QCD to the quark potential model. In addi-
tion, since λC ≃ 0.02 ≪ 1 is a very small parameter in
this framework, it is interesting to apply the perturba-
tive technique in terms of λC for the calculation of the
Faddeev-Popov determinant and so on.
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FIG. 12: The schematic illustration of the Coulomb gauge
and the λC-gauge. In the Coulomb gauge, the instantaneous
potential gives an “overconfining state” as an excited-state for
the quark-antiquark system. The ground-state is considered
as the gluon-chain state, which contains dynamical gluons be-
tween static sources. In the λC-gauge, the instantaneous po-
tential gives the physical interquark potential approximately,
and dynamical gluons need not appear.

Appendix A: On the Coulomb gauge

In this appendix, we briefly discuss the correspondence
between the Coulomb gauge and the λ → 0 limit of gen-
eralized Landau gauge.

1. Residual gauge degrees of freedom in the

Coulomb gauge

We comment on the residual gauge degrees of freedom
in the Coulomb gauge. In lattice QCD, the Coulomb
gauge fixing condition is expressed by the maximization
of the quantity

RCoul[U ] ≡
∑

~x,t

3
∑

i=1

Re Tr Ui(~x, t) (A1)

by the gauge transformation.
Now, we consider the spatially-global gauge transfor-

mation as

Ui(~x, t) → Ω(t)Ui(~x, t)Ω
†(t), (A2)

U4(~x, t) → Ω(t)U4(~x, t)Ω
†(t+ 1), (A3)

with the gauge function Ω(t) ∈ SU(Nc). RCoul[U ] is in-
variant under this transformation,

RCoul[U ] ≡
∑

~x,t

3
∑

i=1

Re Tr Ui(~x, t)

→
∑

~x,t

3
∑

i=1

Re Tr Ω(t)Ui(~x, t)Ω
†(t)

=
∑

~x,t

3
∑

i=1

Re Tr Ui(~x, t). (A4)

Therefore, the Coulomb gauge has the corresponding
residual gauge degrees of freedom.
Under this residual symmetry, however, Tr U4 is gauge-

variant as

Tr U4(~x, t) → Tr Ω(t)U4(~x, t)Ω
†(t+ 1) (A5)

so that the expectation value of Tr U4 is to be zero in the
Coulomb gauge.
In the generalized Landau gauge with non-zero λ-

parameter, this residual symmetry does not exist, and
hence Tr U4 has a finite expectation value. (See Fig.9.)

2. Convergence into Coulomb gauge

We here investigate the convergence of the generalized
Landau gauge into the Coulomb gauge in the limit of λ →
0. To check the convergence, we evaluate the quantity
〈(∂iAa

i )
2〉,

〈(∂iAa
i )

2〉 ≡ 1

(N2
c − 1)Nsite

×
Nsite
∑

x=1

N2

c−1
∑

a=1

{

3
∑

i=1

[

Aa
i (x)−Aa

i (x− î)
]}2

.(A6)

In the Coulomb gauge, 〈(∂iAa
i )

2〉 is equal to zero.
Figure 13 shows the lattice QCD result of 〈(∂iAa

i )
2〉,

which is monotonically decreasing toward zero by varying
λ from 1 to 0. This result supports that the generalized
Landau gauge approaches to the Coulomb gauge in the
λ → 0 limit.
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 0  0.2  0.4  0.6  0.8  1

(∂
iA

ia
)2

λ

(∂
i
A

i

a
)
2

FIG. 13: The lattice QCD result of 〈(∂iA
a

i )
2〉 in the gener-

alized Landau gauge. As λ → 0, this quantity goes to zero
monotonically.
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