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INVERSE SCATTERING TRANSFORM

FOR THE DEGASPERIS–PROCESI EQUATION:

A RIEMANN–HILBERT APPROACH

ANNE BOUTET DE MONVEL∗ AND DMITRY SHEPELSKY†

Abstract. We present the inverse scattering transform approach to the Cauchy problem
on the line for the Degasperis–Procesi equation

utxx − 2ux + 2uxuxx + uuxxx = 0

in the form of an associated Riemann–Hilbert problem. This approach allows us to give
a representation of the solution to the Cauchy problem, which can be efficiently used in
studying its long-time behavior.

1. Introduction

In this paper we present the inverse scattering approach, based on an appropriate Riemann–
Hilbert problem formulation, for the initial value problem for the Degasperis-Procesi (DP)
equation [17, 16]

ut − utxx + 3ωux + 4uux = 3uxuxx + uuxxx, −∞ < x <∞, t > 0, (1.1)

u(x, 0) = u0(x), (1.2)

where ω is a positive parameter. The DP equation arises as a model equation describing the
shallow-water approximation in inviscid hydrodynamics in the so-called “moderate amplitude
regime”: introducing two small parameters, the wave-amplitude parameter ε (characterizing
the smallness of the wave amplitude) and the long-wave parameter δ (characterizing the
smallness of the typical wavelength with respect to the water depth), in this regime we
assume that δ ≪ 1 and ε ∼ δ. This regime can be characterized as to be more nonlinear
than dispersive, which, in particular, allows “wave breaking”. This is in contrast with the
so-called “shallow water regime” (δ ≪ 1 and ε ∼ δ2), where nonlinearity and dispersion are so
balanced that the solution of the initial value problem for the associated nonlinear equation
(the Korteweg–de Vries equation) exists globally for all times, for all “nice” (sufficiently
decaying and smooth) initial data.

Among the models of moderate amplitude regime, only two are integrable (admitting a
bi-Hamiltonian structure and a Lax pair representation): they are the Camassa–Holm (CH)
equation and the DP equation. Also, they are the only two integrable equations from the
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“b-family” of equations

ut − utxx + bωux + (b+ 1)uux = buxuxx + uuxxx.

The CH and DP equations correspond to b = 2 and b = 3, respectively.
The analysis of the CH equation by using the inverse scattering approach were started in

[12, 15, 20]. A version of the inverse scattering method based on the Riemann–Hilbert (RH)
factorization problem was proposed in [5, 7] (another Riemann–Hilbert formulation of the
inverse scattering transform is presented in [13]). The RH approach has proved its efficiency
in the study of the long-time behavior of solutions of both initial value problems [6, 4, 3] and
initial boundary value problems [8].

In the present paper we develop the Riemann–Hilbert (RH) approach to the DP equation,
following the main ideas developed in [7].

A major difference between the implementations of the Riemann–Hilbert method to the
CH equation and the DP equation is that in the latter case, the spatial equation of the
Lax pair is of the third order, which implies that in the matrix form one has to deal with
3 × 3 matrix-valued equations, while in the case of the CH equation, they have a 2 × 2
matrix structure, as in the cases of the most known integrable equations (KdV, modified
KdV, nonlinear Schrödinger, sine–Gordon, etc.) Hence, the construction and analysis of the
associated RH problem become considerably more complicated.

In a recent paper [14], the inverse scattering method for the DP equation based on a 3× 3
matrix RH problem in the spectral k-plane is proposed, where the solution of the DP equation
is extracted from the large-k behavior of the solution of the RH problem. Also, the dressing
procedure is given for constructing N -soliton solutions, which is illustrated, particularly, by
the explicit construction (in parametric form) of the 1-soliton solutions.

In our approach, we propose a different Riemann–Hilbert problem and give a different
representation of the solution u(x, t) of the initial value problem (1.1) in terms of a solution
of this problem evaluated at a distinguished finite point of the plane of the spectral parameter.
Remarkably, the formulae for u(x, t) have the same structure as the parametric formulae for
pure multisoliton solutions obtained in [21].

2. Lax pair and eigenfunctions

We assume that the initial function u0(x) in (1.2) is sufficiently smooth and decay fast as
|x| → ∞. Letting u(x, t) be the solution of the DP equation, we introduce the “momentum”
variable

m = m(x, t) ≡ u− uxx.

It is known that, similarly to the case of the CH equation (see, e.g., [12]), the condition
m(x, 0) +ω > 0 for all x provides the existence of m(x, t) for all t; moreover, m(x, t) +ω > 0
for all x ∈ R and all t > 0. This justifies the form

(

3
√
m+ ω

)

t
= −

(

u 3
√
m+ ω

)

x
(2.1)

of the DP equation, which will be used in our constructions below.
The linear dispersion parameter ω can be scaled out to ω = 1. Hence, in what follows, for

simplicity, we assume ω = 1.
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2.1. Lax pairs.

Scalar Lax pair. The DP equation admits a Lax representation: this equation is actually the
compatibility condition of two linear equations [16]

ψx − ψxxx = −z3(m+ 1)ψ, (2.2a)

ψt =
(

ux −
c

z3

)

ψ − uψx +
1

z3
ψxx, (2.2b)

where z is a spectral parameter, ψ = ψ(x, t, z), and c is an arbitrary constant. In what follows
we will see that it is convenient to choose c = 2

3 .

1st matrix form. In order to control the behavior of solutions to (2.2) as functions of the
spectral parameter z (which is crucial for the Riemann–Hilbert method), it is convenient to
rewrite the Lax pair in matrix form. Introducing Φ = Φ(x, t, z) by

Φ =





ψ
ψx

ψxx





transforms the scalar Lax pair (2.2) into a Lax pair

Φx = UΦ, (2.3a)

Φt = V Φ, (2.3b)

where

U(x, t, z) =





0 1 0
0 0 1

z3q3 1 0



 , (2.3c)

V (x, t, z) =





ux − c
z3 −u 1

z3

u+ 1 − c−1
z3

−u
ux − z3uq3 1 −ux − c−1

z3



 , (2.3d)

with

q = q(x, t) = (m+ 1)1/3. (2.3e)

From now on, (2.3) will be seen as a 3× 3 matrix-valued linear system: a “matrix” solution

of (2.3) is a collection Φ = (Φ(1) Φ(2) Φ(3)) of three “vector” solutions Φ(j). Now we notice
that if c = 2

3 , then V is traceless. Thus in this case the determinant of a matrix solution to
the equation Φt = V Φ is independent of t. The analogous property of Φx = UΦ is obvious.

The coefficient matrices U and V in (2.3) have singularities (in the extended complex z-
plane) at z = 0 and at z = ∞. In order to control the large-z behavior of solutions of (2.3),
we follow a strategy similar to that adopted for the CH equation [5, 7]. We transform (2.3)
in such a way that:

i) the leading terms for z → ∞ in the Lax equations be diagonal, whereas the terms of
order O(1) be off-diagonal;

ii) all lower order terms (including those of order O(1)) vanish as |x| → ∞.

It is instructive to perform this transformation in two steps:
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(i) First, transform (2.3) into a system where the leading terms are represented as products
of (x, t)-independent and (x, t)-dependent factors.

(ii) Second, diagonalize the (x, t)-independent factors.

2nd matrix form. For the first step, introducing Φ̃ = Φ̃(x, t, z) by

Φ̃ = D−1Φ,

where

D(x, t) = diag{q−1(x, t), 1, q(x, t)}
transforms (2.3) into a new Lax pair

Φ̃x = Ũ Φ̃, (2.4a)

Φ̃t = Ṽ Φ̃, (2.4b)

where

Ũ(x, t, z) = q(x, t)





0 1 0
0 0 1
z3 1 0



+





qx
q 0 0

0 0 0
0 1

q − q − qx
q





≡ q(x, t)U∞(z) + Ũ (1)(x, t) (2.4c)

and

Ṽ (x, t, z) = −uq





0 1 0
0 0 1
z3 1 0



+





− 2
3z3 0 1

z3

1 1
3z3

0
0 1 1

3z3





+







−u qx
q 0 0

u+1
q − 1 0 0
ux

q2
1
q − 1 + uq u qx

q






+
q2 − 1

z3





0 0 1
0 0 0
0 0 0





≡ −u(x, t)q(x, t)U∞(z) + V∞(z) + Ṽ (1)(x, t) +
1

z3
Ṽ (2)(x, t). (2.4d)

Main matrix form. For the second step, it is important that the commutator of U∞ and V∞
vanishes identically, i.e., [U∞, V∞] ≡ 0, which allows simultaneous diagonalization of U∞ and
V∞. Indeed, we have

P−1(z)U∞(z)P (z) = Λ(z), (2.5a)

P−1(z)V∞(z)P (z) =
1

z3
I + Λ−1(z) ≡ A(z), (2.5b)

where I is the identity 3× 3 matrix,

Λ(z) =





λ1(z) 0 0
0 λ2(z) 0
0 0 λ3(z)



 , (2.6a)

P (z) =





1 1 1
λ1(z) λ2(z) λ3(z)
λ21(z) λ22(z) λ23(z)



 , (2.6b)
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and

P−1(z) =

(

(3λ1(z)−1)−1 0 0

0 (3λ2(z)−1)−1 0

0 0 (3λ3(z)−1)−1

)(

λ2

1
(z)−1 λ1(z) 1

λ2

2
(z)−1 λ2(z) 1

λ2

3
(z)−1 λ3(z) 1

)

. (2.6c)

Here λj(z), j = 1, 2, 3 are the solutions of the algebraic equation

λ3 − λ = z3, (2.7)

so that λj(z) ∼ Cjz as z → ∞, where the Cj ’s are the cube roots of unity.

Thus, introducing Φ̂ = Φ̂(x, t, z) by

Φ̂ = P−1Φ̃

leads to another Lax pair

Φ̂x − qΛ(z)Φ̂ = Û Φ̂, (2.8a)

Φ̂t + (uqΛ(z) −A(z))Φ̂ = V̂ Φ̂, (2.8b)

where

Û(x, t, z) = P−1(z)Ũ (1)(x, t)P (z), (2.8c)

V̂ (x, t, z) = P−1(z)

(

Ṽ (1)(x, t) +
1

z3
Ṽ (2)(x, t)

)

P (z). (2.8d)

Commutator form. Notice that Û(x, t, z) = O(1) and V̂ (x, t, z) = O(1) as z → ∞ since

U (1) and V (1) are lower triangular matrices. Moreover, it can be checked directly that the
diagonal entries of Û(x, t, z) and V̂ (x, t, z) are of order O(1/z). This latter fact is important

to establish the large-z behavior of Φ̂ [1].

On the other hand, Û(x, t, z) = o(1) and V̂ (x, t, z) = o(1) as |x| → ∞, which suggests
introducing a 3× 3 diagonal function Q(x, t, z) that solves the system

Qx = qΛ(z), (2.9a)

Qt = −uqΛ(z) +A(z), (2.9b)

as follows:

Q(x, t, z) = y(x, t)Λ(z) + tA(z) (2.10)

with

y(x, t) = x−
∫ ∞

x
(q(ξ, t)− 1)dξ. (2.11)

The fact that the equations in (2.9) are consistent follows directly from the DP equation in
the form (2.1): qt = −(uq)x. The normalization of Q(x, t, z) is chosen in such a way that

Q(x, t, z) ∼ xΛ(z) + tA(z) as x→ +∞. (2.12)

The role of Q(x, t, z) in the construction of the Riemann–Hilbert problem is to catch the
large-z behavior of dedicated solutions of the Lax pair equations (2.8). Indeed, introducing
the 3× 3 matrix-valued function M =M(x, t, z) by

M = Φ̂e−Q
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reduces (2.8) to the system

Mx − [Qx,M ] = ÛM, (2.13a)

Mt − [Qt,M ] = V̂ M. (2.13b)

2.2. Eigenfunctions.

Fredholm integral equations. Particular solutions of (2.13) having well-controlled properties
as functions of the spectral parameter z can be constructed as solutions of the Fredholm
integral equation (cf. [1])

M(x, t, z) =

I +

∫ (x,t)

(x∗,t∗)
eQ(x,t,z)−Q(ξ,τ,z)

(

ÛM(ξ, τ, z)dξ + V̂ M(ξ, τ, z)dτ
)

e−Q(x,t,z)+Q(ξ,τ,z), (2.14)

where the initial points of integration (x∗, t∗) can be chosen differently for different matrix
entries of the equation: Q being diagonal, (2.14) must be seen as the collection of scalar
integral equations (1 ≤ j, l ≤ 3)

Mjl(x, t, z) =

Ijl +

∫ (x,t)

(x∗
jl
,t∗
jl
)
eQjj(x,t,z)−Qjj(ξ,τ,z)

(

(ÛM)jl(ξ, τ, z)dξ + (V̂ M)jl(ξ, τ, z)dτ
)

e−Qll(x,t,z)+Qll(ξ,τ,z).

Choosing the (x∗jl, t
∗
jl) appropriately allows to obtain eigenfunctions that can be used in the

construction of the Riemann–Hilbert problems associated with the initial value problems [7]
as well as the initial boundary value problems [8].

Figure 1. Paths of integration. Left: (x∗, t∗) = (−∞, t). Right: (x∗, t∗) = (+∞, t).

In particular, for the Cauchy problem considered in the present paper, it is reasonable to
choose these points to be (−∞, 0) or (+∞, 0) thus reducing the integration in (2.14) to paths
parallel to the x-axis (see Figure 1):

M(x, t, z) = I +

∫ x

(±)∞
eQ(x,t,z)−Q(ξ,t,z)[ÛM(ξ, t, z)]e−Q(x,t,z)+Q(ξ,t,z)dξ, (2.15)

or, in view of (2.10),

M(x, t, z) = I +

∫ x

(±)∞
e−

∫ ξ

x
(q(ζ,t)−1)dζΛ(z)[ÛM(ξ, t, z)]e

∫ ξ

x
(q(ζ,t)−1)dζΛ(z)dξ. (2.16)
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Since q−1 > 0, the domains (in the complex z-plane) where the exponential factors in (2.15)
are bounded are determined by the sign of Reλj(z)− Reλl(z).

A new spectral parameter. It is convenient to introduce a new spectral parameter k (see [14]
and also [11]) such that

z(k) =
1√
3
k

(

1 +
1

k6

)1/3

, (2.17)

and fixed by the condition z(k) ∼ 1√
3
k as k → ∞. We fix λj = λj(k) as follows

λj(k) =
1√
3

(

ωjk +
1

ωjk

)

where ω = e
2πi

3 . (2.18)

Figure 2. Rays lν , domains Ων and points κν in the k-plane

The set Σ = {k | Reλj(k) = Reλl(k) for some j 6= l} consists of six rays

lν = R+e
πi

3
(ν−1), ν = 1, . . . , 6

dividing the k-plane into six sectors

Ων =
{

k
∣

∣

∣

π

3
(ν − 1) < arg k <

π

3
ν
}

, ν = 1, . . . , 6.

In order to have a (matrix-valued) solution to (2.16) to be analytic in C\Σ, the initial points
of integration ∞jl are specified for each matrix entry (j, l), 1 ≤ j, l ≤ 3 as follows:

∞jl =

{

+∞, if Reλj(z) ≥ Reλl(z),

−∞, if Reλj(z) < Reλl(z).
(2.19)

That means that we consider the system of Fredholm integral equations

Mjl(x, t, z) = Ijl +

∫ x

∞j,l

e−λj(z)
∫ ξ

x
(q(ζ,t)−1)dζ [(ÛM)jl(ξ, t, z)]e

λl(z)
∫ ξ

x
(q(ζ,t)−1)dζdξ. (2.20)
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Proposition 2.1 (analyticity). Let M(x, t, k) be the solution of the system of equations

(2.20), where the limits of integration are chosen according to (2.19). Then,

(i) M is piecewise meromorphic with respect to Σ, as function of the spectral parameter k.
(ii) M(x, t, k) → I as k → ∞.

Proof. The proof follows the same lines as in [1]. Notice that in order to have (ii) it is

important that the diagonal part of Û vanish as k → ∞. �

Proposition 2.2 (symmetries). M(x, t, k) satisfies the symmetry relations:

(S1) Γ1M(x, t, k̄)Γ1 =M(x, t, k) where Γ1 =
(

0 1 0
1 0 0
0 0 1

)

.

(S2) Γ2M(x, t, k̄ω2)Γ2 =M(x, t, k) where Γ2 =
(

0 0 1
0 1 0
1 0 0

)

.

(S3) Γ3M(x, t, k̄ω)Γ3 =M(x, t, k) where Γ3 =
(

1 0 0
0 0 1
0 1 0

)

.

Hence, the values of M at k and at ωk are related by

M(x, t, kω) = C−1M(x, t, k))C where C =
(

0 0 1
1 0 0
0 1 0

)

.

If λi(k) = λj(k), i 6= j for certain values of the spectral parameter k, then P at these values

becomes degenerate (see (2.6c)), which in turn leads to singularities for Û and, consequently,

for Φ̂ and M . These values are κν = e
πi

3
(ν−1), ν = 1, . . . , 6. Taking into account the

symmetries described in Proposition 2.2 leads to the following

Proposition 2.3 (singularities). The limiting values of M(x, t, k) as k approaches one of

the points κν = e
πi

3
(ν−1), ν = 1, . . . , 6 have pole singularities with leading terms of a specific

matrix structure.

(i) At k = κ1 = 1, as k = 1± iε→ 1, ε > 0,

M ∼ 1

k − 1





1 1 1
−1 −1 −1
0 0 0









α± 0 0
0 α± 0
0 0 β±



 , (2.21)

where α− = −α+ and β− = −β+.
(ii) At k = κ2 = e

πi

3 , as k = e
πi

3 ± iε→ e
πi

3 , ε > 0,

M ∼ 1

k − e
πi

3





0 0 0
1 1 1
−1 −1 −1









β̃± 0 0
0 α̃± 0
0 0 α̃±



 , (2.22)

where α̃− = −ωα̃+ and β̃− = −ωβ̃+.
M has similar leading terms at the other polar singularities κ3, . . . ,κ6 in accordance with the

symmetry conditions stated in Proposition 2.2.
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Indeed, consider, for example, the behavior of M at k = 1. We have λ1(1) = λ2(1) =

−1/
√
3 and λ3(1) = 2/

√
3. Moreover, as k → 1, we have

3λ21 − 1 = −2
√
3(k − 1) + O

(

(k − 1)2
)

,

3λ22 − 1 = 2
√
3(k − 1) + O

(

(k − 1)2
)

,

3λ23 − 1 = 3.

Consequently, at k = 1,

P−1(k) =
1

k − 1





1 1 1
−1 −1 −1
0 0 0









p1 0 0
0 p2 0
0 0 p3



+O(1)

with some pj .

Now recall that Φ̂ = P−1Φ̃, where, on one hand, Φ̃ satisfies a differential equation whose
coefficients are regular at k = 1, and on the other hand, Φ̃ satisfies the boundary condition
(see (2.16) with signs chosen according to (2.19))

Φ̃ ∼ P (k)ey(x,t)Λ(k)+tA(k) , x→ +∞
for all k such that λj(k) 6= λl(k) for all j 6= l. It follows that when k approaches 1 from the

either side of l1, the first two columns of Φ̃ coincide. Consequently, for the limiting values
of Φ̂ (and thus M) we obtain (2.21) while the property α− = −α+ and β− = −β+ follows

from the symmetry (S1) of Proposition 2.2. Similarly for the other points κν = e
πi

3
(ν−1),

ν = 2, . . . , 6.

Remark 2.4. While the set of singularities of M(x, t, k) in the open domain

Ω = C \ Σ = Ω1 ∪ · · · ∪ Ω6

can be empty (for instance, this happens for all sufficiently small “potentials” u(x, t)), the
singularities described in Proposition 2.3 are generic. This should be compared with [14],
where the solutions of a system of integral equations similar to (2.16) are combined into a
Riemann–Hilbert problem under the assumption that they have no singularities.

3. Riemann–Hilbert problem

3.1. Jump conditions.

1st RH problem. For k on the boundary between the adjacent domains Ων , the limiting values
of M , being the solutions of a system of differential equations (2.13) must be related by a
matrix independent of x and t. Supplying the rays lν with the orientation, see Figure 2, we
can write for the limiting values of M :

M+(x, t, k) =M−(x, t, k)e
Q(x,t,k)S(k)e−Q(x,t,k), k ∈ l1 ∪ · · · ∪ l6. (3.1)

Considering (3.1) at t = 0 we see that the conjugating matrix S(k) is, in fact, determined by
u(x, 0), i.e., by the initial data for the Cauchy problem (1.1)–(1.2), via the solutionsM(x, 0, k)
of the system (2.16) whose coefficients are determined by u(x, 0). Thus the relation (3.1) can
be considered as a “pre-Riemann–Hilbert problem” associated with (1.1): the data are S(k),
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and we seek for a piecewise meromorphic function M satisfying (3.1) for all x and t, in the
hope that one can further extract the solution u(x, t) to (1.1) from M(x, t, k).

The conjugating matrix S(k) has a particular matrix structure, cf. [14]. Indeed, the
integral equations (2.16) allows studying the limiting values of M as x → ±∞. Set t = 0
and consider, for example, the limiting values of M±(x, 0, k) for k ∈ l1 = R+. The triangular
structure of integration in (2.16) implies that

e−Q(x,0,k)M+(x, 0, k)e
Q(x,0,k) −−−−→

x→+∞
S+
1 (k) =





1 r+(k) 0
0 1 0
0 0 1



 (3.2)

and

e−Q(x,0,k)M−(x, 0, k)e
Q(x,0,k) −−−−→

x→+∞
S−
1 (k) =





1 0 0
r−(k) 1 0
0 0 1



 . (3.3)

Then the symmetry (S1) from Proposition 2.2 implies that r−(k) = r+(k), and the jump
matrix S(k) from (3.1) for k ∈ l1 takes the form

S(k) =
(

S−
1 (k)

)−1
S+
1 (k) =





1 0 0

r(k) 1 0
0 0 1









1 −r(k) 0
0 1 0
0 0 1



 , (3.4)

where r(k) := −r+(k). Similarly, for k ∈ l4 = R−, one has

S(k) =
(

S−
4 (k)

)−1
S+
4 (k) =





1 0 0

r(k) 1 0
0 0 1









1 −r(k) 0
0 1 0
0 0 1



 , (3.5)

whereas the construction of S(k) for k ∈ lν with ν 6= 1, 4 follows from the symmetries of
Proposition 2.2. Thus, similarly to the cases of, say, the KdV equation or the Camassa–Holm
equation, the jump matrix on the whole contour is determined by a scalar function — the
reflection coefficient r(k) given for k ∈ R. In turn, as it follows from (3.2) and (2.16) for
t = 0, the reflection coefficient is determined by the initial condition u0(x).

2nd RH problem. The dependence of the matrix eQSe−Q relating M+ and M− in (3.1) on
the parameters x and t suggests introducing the parameter y = y(x, t) given by (2.11) and
thus rewriting (3.1) as

M̂+(y, t, k) = M̂−(y, t, k)e
yΛ(k)+tA(k)S(k)e−yΛ(k)−tA(k) (3.6)

so that

M(x, t, k) = M̂(y(x, t), t, k),

which provides explicit dependence of the relating matrix on the parameters (y, t).

3rd RH problem. On the other hand, the particular matrix structure of the singularities at

k = κν ≡ e
πi

3
(ν−1) suggests introducing a row vector-valued 1× 3 Riemann–Hilbert problem

µ+(y, t, k) = µ−(y, t, k)e
−yΛ(k)−tA(k)S(k)eyΛ(k)+tA(k) (3.7a)
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having the same jump conditions as in the matrix case but normalized at k = ∞ by the
condition

µ(y, t, k) =
(

1 1 1
)

+ o(1) as k → ∞. (3.7b)

The transition from the 3×3 matrix RH problem to the 1×3 row vector RH problem can be
viewed as the multiplication of the former by the constant row vector (1 1 1) from the left,

which suppresses the singularities at k = κν ≡ e
πi

3
(ν−1).

3.2. Residue conditions. In order to complete the formulation of the RH problem, one
has to complete the jump condition (3.7a) and the normalization condition (3.7b) with the

residue conditions at the possible poles of µ(y, t, k) or M̂(y, t, k) in C \Σ where Σ = ∪6
ν=1lν .

Generically (see [1]), there are at most a finite number of poles lying in C \ Σ, each of
them being simple, with residue conditions of a special matrix form: distinct columns of M
(distinct entries of µ) have distinct poles, and if kn is a pole, then

Resk=kn µ(y, t, k) = µ(y, t, kn)e
yΛ(kn)+tA(kn)vne

−yΛ(kn)−tA(kn), (3.7c)

where the 3× 3 matrix vn has only one non-zero entry at a position depending on the sector
of C \ Σ containing kn. For example, if kn ∈ Ω1, a non-zero entry of vn can be either (vn)12
or (vn)23. Then the positions (as well as the values) of the non-zero entries of poles in other
sectors of C \ Σ are determined by the symmetries (S1)-(S3).

Similarly to the jump matrix S(k), the residue conditions are determined by the initial
values u0(x) (putting t = 0 in (3.7c)).

A closer look at the (y, t)-dependence of the exponential in the residue condition (3.7c)
reveals the following. Suppose that the non-zero entry of vn is (vn)jl, and let

v = λj − λl.

Then this exponential has the form (see (2.5))

ey(λj−λl)+t(Aj−Al) = e
(λj−λl)

(

y− t
λjλl

)

= e
v
(

y− 3t

1−v2

)

, (3.8)

The last equality in (3.8) follows from the fact (see the definition (2.7) of λj) that 3λjλl =
1− (λj − λl)

2 for all j 6= l.
An analogy with the Camassa–Holm equation suggests making the conjecture that the

actual positions of the poles associated with a global solution of the initial-value problem
(1.1) with smooth, decaying initial data u0(x) are those for which the associated value of v
is real and, moreover, 0 < v < 1.

Due to the symmetry relations, it is enough to consider the location of the poles in one
sector of C \ Σ, say, in Ω1.

The exponential factor for (vn)12 contains

λ1(k)− λ2(k) =
1√
3

(

ωk +
1

ωk
− ω2k − 1

ω2k

)

=
ω − ω2

√
3

(

k − 1

k

)

= i

(

k − 1

k

)

. (3.9)
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It follows that the l.h.s. of (3.9) is real either for {k | Re k = 0} or for {k | |k| = 1}. The
real axis does not intersect with Ω1 whereas for k = eiϕ with 0 < ϕ < π/6, the associated v
satisfies the inequalities 0 < |v| < 1.

The exponential factor for (vn)23 contains

λ2(k)− λ3(k) =
1√
3

(

ω2k +
1

ω2k
− k − 1

k

)

= i

(

ωk − 1

ωk

)

. (3.10)

Thus the admissible arc for the location of the poles in Ω1 for this entry (23) is {k | k =
eiϕ, π/6 < ϕ < π/3}. Notice that the symmetry relations provide that the associated residue
conditions in Ω3 are those for the (12) entry. Similarly for the other sectors Ων .

The poles with the residue conditions described above are associated with the soliton
long-time behavior of the solution of the Cauchy problem (1.1)-(1.2), the velocity of all
solitons being greater than 3 (since |v| < 1 — the velocity c of a soliton being related to
v as c = 3/(1 − v2), see (3.8)). On the other hand, the residue conditions with poles at
{k | Re k = 0} give rise to the “loop solitons” [22]: in this case,

v = i

(

iρ− 1

iρ

)

= −
(

ρ+
1

ρ

)

, ρ ∈ R

and thus |v| > 2; so they move, as opposite to the smooth solitons, in the negative direc-
tion. These solutions are not classical ones: in the (y, t) scale, they are given, similarly to
the solitons, in an univalent way, but the transition to the original (x, t) scale makes them
multivalued.

3.3. Solution of the Cauchy problem in terms of the solution of the RHP.

Assumption. In what follows we assume that the RH problem consisting in finding a piece-
wise, vector-valued function µ satisfying the jump condition (3.7a), the normalization condi-
tion (3.7b), and the appropriate residue conditions has a unique solution.

In order to obtain u(x, t) from its solution µ(y, t, k), it turns out that it is convenient to
evaluate µ(y, t, k) at distinguished finite points in the k-plane, more precisely, at the points

κν = e
πi

6 + e
πi

3
(ν−1), ν = 1, . . . , 6

characterized by the property z(κν) = 0.

Last Lax pair. Coming back to the system (2.3), let us introduce Φ̃(0) = Φ̃(0)(x, t, z) by

Φ̃(0) = P−1Φ.

This reduces (2.3) to

Φ̃(0)
x − Λ(z)Φ̃(0) = Ũ (0)Φ̃(0), (3.11a)

Φ̃
(0)
t −A(z)Φ̃(0) = Ṽ (0)Φ̃(0), (3.11b)
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where

Ũ (0)(x, t, z) = z3m(x, t)







1
3λ2

1
(z)−1

0 0

0 1
3λ2

2
(z)−1

0

0 0 1
3λ2

3
(z)−1











1 1 1
1 1 1
1 1 1



 , (3.11c)

Ṽ (0)(x, t, z) = P−1(z)





ux −u 0
u 0 −u

ux − z3u(m+ 1) 0 −ux



P (z). (3.11d)

Now notice that Ũ (0)(x, t, z)
∣

∣

z=0
≡ 0. Therefore, introducing M (0) =M (0)(x, t, z) by

M (0) = Φ̃(0)e−xΛ−tA,

and determining M (0) as the solution of a system of integral equations similar to the system
(2.20) determining M , we have:

M (0)(x, t, z)
∣

∣

z=0
≡ I.

On the other hand, since M (0) and M are solutions of differential equations coming from the
same system of differential equations (2.3), and since they have the same limit as x → +∞
for k 6∈ Σ:

M, M (0) −−−−→
x→+∞

I,

it follows that they are related by

M(x, t, k) = P−1(k)D−1(x, t)P (k)M (0)(x, t, k)e(x−y(x,t))Λ(k) . (3.12)

Particularly, at k = κ1 ≡ e
πi

6 we have

Λ(e
πi

6 ) =





−1 0 0
0 0 0
0 0 1



 , (3.13a)

P−1(k)D−1(x, t)P (k)
∣

∣

k=e
πi
6

=
1

2







1 + 1
q 0 −1 + 1

q

2
(

q − 1
q

)

2q 2
(

q − 1
q

)

−1 + 1
q 0 1 + 1

q






. (3.13b)

Now observe that
(

1 1 1
)

P−1(k)D−1(x, t)P (k)
∣

∣

k=e
πi
6

= q(x, t)
(

1 1 1
)

.

Combined with (3.12), this implies that the row vector solution µ(y, t, k) evaluated at k =

κ1 ≡ e
πi

6 takes the value

µ(y, t, e
πi

6 ) = q(x, t)
(

1 1 1
)





e−
∫∞
x

(q(ξ,t)−1)dξ 0 0
0 1 0

0 0 e
∫ ∞
x

(q(ξ,t)−1)dξ





=
(

q(x, t)e−
∫∞
x

(q(ξ,t)−1)dξ q(x, t) q(x, t)e
∫ ∞
x

(q(ξ,t)−1)dξ
)

. (3.14)
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Taking into account that in terms of functions of the variables (x, t) we have u(y, t) = ∂x
∂t (y, t)

(this follows from (2.1) and from the definition (2.11) of the new variable y), the relation (3.14)
provides a parametric representation of u.

Theorem 3.1. Let µ ≡ µ(y, t, k) =
(

µ1 µ2 µ3
)

be the solution of the Riemann–Hilbert

problem (3.7a)–(3.7c), where S(k) is the scattering matrix and {vn} are the residues associated

with the initial data u0(x).
Then the solution u(x, t) of the Cauchy problem (1.1)–(1.2) for the Degasperis–Procesi

equation can be expressed in terms of µ(y, t, k), evaluated at k = e
πi

6 , in parametric form:

u(y, t) =
∂

∂t
log

µj+1

µj
(y, t, e

πi

6 ), (3.15)

x(y, t) = y + log
µj+1

µj
(y, t, e

πi

6 ), j = 1 or 2.

Notice that the structure of the parametric representation (3.15) is similar to that in the
case of the Camassa–Holm equation. Moreover, this structure appears also in formulae for
pure multisoliton solutions given in [21].

4. Long-time asymptotics

The analysis of the long-time behavior of the solution of the IVP is based on the analysis
of the large-t behavior of the solution of the associated RH problem. The latter can be
done in the framework of the nonlinear steepest descent method, whose key ingredient is
the deformation of the original RH problem in accordance with the “signature table” for the
phase functions involved in the jump matrix.

The analysis presented in the previous section shows that the structure of the jump matrix
S, which is 3 × 3, is essentially 2 × 2: for each straight line of the contour Σ, a non-trivial
block of S(k) is 2 × 2, see (3.4), (3.5) (under an appropriate change of basis), with only
one exponential involved for each part, of the form (3.8). Now observe that this exponential
is essentially the same as in the case of the Camassa–Holm equation (only the constant 2
is replaced by 3), provided ν plays the role of the spectral parameter. Consequently, the
deformations of the each part of Σ are performed in the same way as the deformation of
the real line in the case of the Camassa–Holm equation, leading to the similar asymptotic
behavior of the solution, see [6, 4]:

(i) in the sector x
t > 3, the long-time asymptotics is dominated by the solitons; in the case

when there are no solitons, the asymptotics in this sector is fast decaying.
(ii) for 0 < x

t < 3, the asymptotics has the form of slowly decaying (as t−1/2) modulated
oscillations.

(iii) for −3
8 <

x
t < 0, the asymptotics has the form of a sum of two slowly decaying modulated

oscillations.
(iv) x

t < −3
8 , the asymptotics is fast decaying.

Besides, there are transition zones between the sectors, where the (slowly decaying) asymp-
totics is given in terms of the dedicated solutions of the Painlevé II equation.

The details of the asymptotics will be given elsewhere.
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Figure 3. Sectors in the (x, t)-half-plane with different asymptotics
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