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Symmetries, Supersymmetries, and Pairing in Nuclei

A.B. Balantekin

Physics Department, University of Wisconsin, Madison, WI 53706 USA

These summer school lectures cover the use of algebraic techniques in various subfields of nuclear
physics. After a brief description of groups and algebras, concepts of dynamical symmetry, dynamical
supersymmetry, and supersymmetric quantum mechanics are introduced. Appropriate tools such
as quasiparticles, quasispin, and Bogoliubov transformations are discussed with an emphasis on
group theoretical foundations of these tools. To illustrate these concepts three physics applications
are worked out in some detail: i) Pairing in nuclear physics; ii) Subbarrier fusion and associated
group transformations; and iii) Symmetries of neutrino mass and of a related neutrino many-body
problem.

PACS numbers: 02.20.-a, 03.65.Fd,11.30.-j, 21.60.Fw
Keywords: Algebraic Methods, Group Theory, Dynamical Symmetries and Supersymmetries, Pairing in
Nuclei, Quasispin, Neutrino Mass, CP-violation in Neutrino Sector, Collective Neutrino Oscillations

I. INTRODUCTORY MATERIAL

A. Groups and Algebras

1. Definitions

The mathematical tool one uses to study symmetries of physical systems is the theory of groups and algebras. A
group is a set G = {a, b, c, .... } on which a multiplication operation ⊙ is defined with the properties:

• If a & b are in G, a⊙ b is also in G.

• There is an identity element e: e⊙ a = a⊙ e = a for any a in G.

• For every a in G, there is an inverse element in G, called a−1 such that a⊙ a−1 = a−1 ⊙ a = e.

• For every a, b, and c in G we have (a⊙ b)⊙ c = a⊙ (b ⊙ c).

For an Abelian group this operation is commutative: a ⊙ b = b ⊙ a. A group is continuous if its elements are
functions of one or more continuous variables. A group is called continuously connected if a continuos variation of its
variables leads from one arbitrary element of the group to another. Such groups are Lie groups. Lie groups whose
parameters range over closed intervals are called compact Lie groups. Two groups a, b, c, ... and a’, b’, c’, ... are
called isomorphic if a bijective transformation between elements of both groups exits (a ↔ a, , b ↔ b′, ...) such that
a ⊙ b ↔ a′ ⊙ b′, etc. Finally if a group G1 is isomorphic to another group G2, whose elements are matrices, G2 is
called to be a matrix representation of G1.

2. O(N) and SO(N)

Consider a column vector in the N-dimensional real space

x =




x1
x2
.
xN


with the norm xTx = x21 + x22 + ...+ x2N . (1)

O(N) is the group of transformations, x→ x′ = Ux, which leave this norm invariant:

x′Tx′ = xTUTUx = xTx⇒ UTU = 1 (detU = ±1). (2)

Hence O(N) is the group isomorphic to the group of N ×N , real, orthogonal matrices. If one chooses matrices with
detU = +1, then one gets the SO(N) subgroup.
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3. Unitary groups

U(N) is the group of transformations which leave the norm x†x = x∗1x1 + x∗2x2 + ...+ x∗NxN in the N-dimensional
complex space invariant, i.e. it is the group isomorphic to that of the N ×N complex, unitary matrices : U†U = 1.
Clearly one has detU = ±1. If we take only those matrices with detU = +1, then we get the SU(N) subgroup.
SU(2), for example is the group composed of 2× 2 complex matrices of the form

U =

(
ψ1 −ψ∗

2

ψ2 ψ∗
1

)
with |ψ1|2 + |ψ2|2 = 1 (3)

This is the 2-dimensional (j = 1/2) representation familiar from quantum mechanical spin. There are also higher-
dimensional representations. For example, the three -dimensional (j = 1) representation is

D(1) =




ψ2
1 −

√
2ψ1ψ

∗
2 ψ∗2

2√
2ψ∗

1ψ2 |ψ1|2 − |ψ2|2 −
√
2ψ1ψ

∗
2

ψ2
2

√
2ψ1ψ

∗
2 ψ∗2

1



 (4)

Note the one-to-one correspondence between these representations: for each parameter set ψ1 and ψ2, there is one
unique 2× 2 and one unique 3× 3 matrix.

B. Lie Algebras and Lie Groups

Consider a Lie group whose elements U(θi) are parameterized by variables θi such that U(θ1 = 0, θ2 = 0, θ3 = 0, ....)
is the identity element (I) of the group and that

U(δθi) ∼ I +
∂U
∂θi

∣∣∣∣
θ=0

δθi. (5)

The generators of the Lie Algebra are defined to be

Bi ≡ i
∂U
∂θi

∣∣∣∣
all θ=0

, (6)

where the infinitesimal change from the identity in the i-direction is

U(δθi) = I − iBiδθi. (7)

Hence the finite change from the identity in the i-direction is

U(θi) = (I − iBiδθi)(I − iBiδθi)...(I − iBiδθi). (8)

Taking the limit as N → ∞ we get U(θi) = exp(−iBiθi). Hence quantities of the form

U(θ1, θ2, ...) = e−i
∑

i
Biθi (9)

form a group if the following condition is satisfied:

e−i
∑

i
Biθie−i

∑
i
Biθ

′
i = e−i

∑
i
Biθ

′′
i (θi,θ

′
i). (10)

The question is what restrictions need to be imposed on the quantities Bi to satisfy the condition in Eq. (10). The
answer is given by the Baker-Campbell-Hausdorf Lemma, which states

eAeB = exp

(
A+B+

1

2
[A,B] +

1

12
[[A,B],A]] +

1

12
[[A,B],B]] (11)

− 1

24
[[[A,B],B],A] + more nested commutators

)
(12)

Hence if a set of operators close under commutation relations (this is the definition of a Lie algebra), then they
generate a Lie group: i.e. if [Bi,Bj ] ∼ Bk then

(
Elements of
Lie group

)
= exp

((
continuous
parameters

)
×
(

Elements of
Lie algebra

))
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In many problems of physics one needs the evolution operator, U:

ih̄
∂U

∂t
= HU with lim

t→−∞
U(t) = 1. (13)

It follows form the discussion above that if the Hamiltonian H is a sum of the elements of a Lie algebra, then the
evolution operator U is an element of the corresponding Lie group.

II. REALIZATIONS OF THE LIE ALGEBRAS

A. Matrix Realizations

For the SU(2) algebra, [Ji,Jk] = iǫijkJk, the lowest dimensional representation (also called fundamental represen-
tation) is provided by the Pauli matrices:

J1 =
1

2

(
0 1
1 0

)
,J2 =

1

2

(
0 −i
i 0

)
,J3 =

1

2

(
+1 0
0 −1

)
. (14)

For SU(N), N ≥ 3, the N ×N matrices, realizing the lowest (N-dimensional) representation are written as

Bi =
λi
2
,

where λi are usually referred to as Gell-Mann matrices.

1. Fock Space Realization - Bosons

For SU(N), introduce N boson creation and annihilation operators:

[bi,b
†
j ] = δij , [bi,bj ] = 0 = [b†

i ,b
†
j ], i, j = 1, · · · , N. (15)

It is straightforward to show that the operators

Ba =

N∑

i,j=1

b
†
i

(
λa
2

)

ij

bj , a = 1, ..., N2or (N − 1)2 (16)

satisfy the same commutation relations as (λa/2). This is called a change of basis of the algebra:

Ba ⇔ Tij = b
†
ibj with [Tij ,Tkn] = δjkTin − δinTkj . (17)

2. Fock Space Realization - Fermions

For SU(N), one can also use N fermion creation and annihilation operators:

{aα, a†β} = δαβ , {aα, aβ} = 0 = {a†α, a†β}, α, β = 1, · · · , N. (18)

The operators

Qαβ = a†αaβ (19)

also satisfy the same commutation relations as Tij . We then have two different representations of the SU(N) algebra:

Tij : completely symmetric representation,

Qαβ : completely antisymmetric representation.
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B. Invariants and Labeling

1. Casimir Operators

A Casimir operator, C, is an operator which commutes with all the elements of the algebra: [C,Ba] = 0. Schur’s
lemma states that C ∝ I . For U(N), there are N independent Casimir operators:

C1 =
∑

i

Tii,

C2 =
∑

i,j

TijTji,

C3 =
∑

i,j,k

TijTjkTki, .....

2. Labeling of States

To write down the states associated with a given algebra we first need to find all the subalgebras included in this
algebra:

A ⊃ A1 ⊃ A2 ⊃ ....

Then the state can be written as

|state〉 = |α1, α2, ..;β1, β2, ...; γ1, γ2, ... : ...〉
α1, α2 : eigenvalues of Casimirs of A
β1, β2 : eigenvalues of Casimirs of A1

γ1, γ2 : eigenvalues of Casimirs of A2.

For example, for the SU(2) algebra the familiar projection on the third component of the angular momentum yields:

SU(2) ⊃ U(1) ⇒ |j,m〉.

C. Example: Boson Fock-Space Realization for SU(2)

Consider the boson realization of the SU(2) algebra given in Eq. (16):

J+ = J1 + iJ2 = b
†
1b2, J− = (J+)

† = b
†
2b1, (20)

J3 =
1

2
(b†

1b1 − b
†
2b2). (21)

To find out what values of the representation labels are permitted one should write down the Casimir operator in
terms of particle creation and annihilation operators:

C2 = J2
3 +

1

2
(J+J− + J−J+) =

N

2

(
N

2
+ 1

)
= j(j + 1), (22)

where

N = b
†
1b1 + b

†
2b2. (23)

Hence fixing the number of particles fixes the label j.
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III. QUASIPARTICLES AND BOGOLIUBOV TRANSFORMATIONS

Consider one fermion states

|α〉 = a†α|0〉, aα|0〉 = 0

and the associated time-reversed states:

| − α〉 = a
†
−α|0〉, a−α|0〉 = 0

Note that a†α and a
†
−α are distinct and they anticommute. Quasi-particle operators are defined as

Aα = uαaα − vαa
†
−α, (24)

A−α = uαa−α − vαa
†
α. (25)

A†
α and A

†
−α are obtained by Hermitian conjugation. Imposing the condition that the quasi-particles satisfy the

canonical anticommutation relations yields |uα|2 + |vα|2 = 1. We can rewrite the connection between quasi-particle
and particle operators as

(
Aα

A
†
−α

)
=

(
uα −vα
v∗α u∗α

)(
aα

a
†
−α

)
(26)

Note that this is an SU(2) group transformation. Corresponding SU(2) algebra is called quasi-spin algebra [1]:

Sα
+ = a†αa

†
−α, Sα

− = (Sα
+)

† (27)

Sα
0 =

1

2
(a†αaα + a

†
−αa−α − 1). (28)

There are as many commuting SU(2) algebras as the possible values of α:

[Sα
+,S

β
−] = 2 Sα

0 δ
αβ , (29)

[Sα
0 ,S

β
±] = ±Sα

±δ
αβ . (30)

Clearly the realization in Eqs. (27) and (28) is different than the realization given in Eq. (19). Indeed with N
different fermion creation-annihilation operators

aα, a
†
α, α = 1, · · ·N

one can form the generators of the SO(2N) algebra:

a†αa
†
α′ , aαaα′ , a†αaα′

︸ ︷︷ ︸
SU(N)subalgebra

.

For N = 2, one gets SO(4) ∼ SU(2)×SU(2). These two SU(2) algebras commute with one other; one of them is the
algebra given in Eq. (19) and the other one is the quasi-spin algebra.
The transformation in Eq. (26), called Bogoliubov transformation, can be written as an operator transformation

under the quasi-spin SU(2) group:

Aα = RaαR†, (31)

where the group rotation is

R = e−iφαSα
0 ezαSα

+elog(1+|zα|
2)Sα

0 e−z∗
αS

α
− (32)

with

zα =
vα
uα
, e−iφα =

uα
|u|α

. (33)
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Note that ground states (vacua) for particles and quasi-particles are different:

|0〉 : Particle Vacuum

|z〉 : Quasi− particle Vacuum

with

|z〉 = R|0〉, (34)

and

Aα|z〉 = RaαR†R|0〉 = 0. (35)

IV. DYNAMICAL SYMMETRIES

Consider a chain of algebras (or associated groups):

G1 ⊃ G2 ⊃ · · · ⊃ Gn

If a given Hamiltonian can be written in terms of only the Casimir operators of the algebras in this chain, then such
a Hamiltonian is said to possess a dynamical symmetry:

H =

n∑

i=1

[αiC1(Gi) + βiC2(Gi)] .

Obviously all these Casimir operators commute with each other, making the task of calculating energy eigenvalues
straightforward.
One of the more commonly used collective models in nuclear physics is the Interacting Boson Model [2]. In this

model low-lying states of medium-heavy nuclei are obtained as states generated by six interacting bosons, one with
angular momentum L = 0 and five with angular momentum L = 2. It then follows from Eq. (16) that bilinear
products of the associated creation and annihilation operators form an SU(6) algebra and, if one limits the terms in
the Hamiltonian to include at most two-body interactions, for certain values of the interaction strength one gets three
dynamical symmetry chains:

• Vibrational Nuclei: SU(6) ⊃ SU(5) ⊃ SO(5) ⊃ SO(3) [3],

• Rotational Nuclei: SU(6) ⊃ SU(3) ⊃ SO(3) [4],

• γ-Unstable Nuclei: SU(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) [5].

This model is covered in depth by other lecturers at this summer school [6].

A. Supersymmetry and Superalgebras

1. Contrasting Symmetry and Supersymmetry

As we have seen in the previous sections ordinary symmetries either transform bosons into bosons or fermions
into fermions. Natural mathematical tools to explore them are the Lie groups and associated Lie algebras. We will
designate a generic element of the Lie algebra as bosonic, GB, symbolically:

[GB, GB] = GB

Supersymmetries, on the other hand, transform bosons into bosons, fermions into fermions, AND bosons into
fermions and vice versa. Tools to explore them are superalgebras and supergroups. A superalgebra is a set with two
kinds of elements, GB and GF . It closes under commutation and anticommutation relations in the following manner:

[GB, GB ] = GB,

[GB, GF ] = GF ,

{GF , GF } = GB.

A simple example of a superalgebra is given in the next section.
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2. Case Study: Simplest Superalgebra

Consider three dimensional harmonic oscillator creation and annihilation operators ([bi, b
†
j] = δij) and define

K0 =
1

2

(
3∑

i=1

b†ibi +
3

2

)
, K+ =

1

2

3∑

i=1

b†ib
†
i = (K−)

†
, (36)

which lead to the commutation relations

[K0, K±] = ±K±, [K+, K−] = −2K0. (37)

This is the SU(1,1) algebra. It is non-compact. Recall that Casimir operators obtained by multiplying one, two,
three elements of the algebra are called linear, quadratic, cubic Casimir operators. For SU(1,1) the quadratic Casimir
operator is

C2 = K2
0 − 1

2
(K+K− +K−K+) . (38)

We next introduce spin (fermionic) degrees of freedom in addition to the bosonic (harmonic oscillator) ones and
define

F+ =
1

2

∑

i

σib
†
i , F− =

1

2

∑

i

σibi. (39)

One can show that the following commutation and anticommutation relations hold:

[K0, F±] = ±1

2
F±,

[K+, F+] = 0 = [K−, F−] ,

[K±, F∓] = ∓F±,

{F±, F±} = K±, {F+, F−} = K0.

Along with the commutation relations given in Eq. (37), these are the commutation relations of an orthosymplectic
superalgebra, Osp(1/2), which is also non-compact. Hence the operators K+, K−, K0, F+, and F− are the generators
the Osp(1/2) superalgebra. We have Osp(1/2) ⊃ SU(1, 1).
The Casimir operators of Osp(1/2) are given by

C2 (Osp(1/2)) =
1

4

(
L+

σ

2

)2
=

1

4
J2, (40)

C2 (SU(1, 1)) =
1

2
L2 − 3

16
. (41)

Hence a Hamiltonian of the form

H =
1

2

(
p2 + r2

)
+ λ

(
σ · L+

3

2

)
(42)

can be rewritten in terms of the Casimir operators of the group chain Osp(1/2) ⊃ SU(1, 1) ⊃ SO(2) [7]:

H = 4λC2 (Osp(1/2))− 4λC2 (SU(1, 1)) + 2K0 (43)

This is an example of a dynamical supersymmetry. In a microscopic interpretation the bosons of the Interacting Boson
Model are taken to be correlated pairs of nucleons [8]. For odd-even nuclei, the algebraic structure of the Interacting
Boson Model can be extended to include the unpaired fermions. In such extensions dynamical supersymmetries
naturally emerge [9]. In this case unpaired fermions in j1, j2, j3, · · · orbitals can be placed in a fermionic algebra
of SUF (

∑
i(2ji + 1)). The resulting SU(6)B × SUF (

∑
i(2ji + 1)) algebra is then embedded in the superalgebra

SU(6/SUF (
∑

i(2ji + 1)). There are several experimental examples of such dynamical supersymmetries [10–12].
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B. Supersymmetric Quantum Mechanics and Its Applications in Nuclear Physics

Consider two Hamiltonians

H1 = G†G, H2 = GG†, (44)

where G is an arbitrary operator. The eigenvalues of these two Hamiltonians

G†G|1, n〉 = E(1)
n |1, n〉

GG†|2, n〉 = E(2)
n |2, n〉

are the same:

E(1)
n = E(2)

n = En (45)

and the eigenvectors are related: |2, n〉 = G
[
G†G

]−1/2 |1, n〉. (This works for all cases except when G|1, n〉 = 0, which
should be the ground state energy of the positive-definite Hamiltonian H1).
The pair of the Hamiltonians in Eq. (44) define the supersymmetric quantum mechanics [13]. To see why this

construction is called supersymmetry we define the operators

Q† =

(
0 0
G† 0

)
, Q =

(
0 G
0 0

)
.

Then it is easy to see that the ”Hamiltonian”

H =
{
Q,Q†

}
=

(
H2 0
0 H1

)
(46)

is an element of a simple superalgebra along with with the operators Q and Q†

[H,Q] = 0 = [H,Q†].

Very few realistic Hamiltonians can be cast in the form given in Eq. (46). (A couple examples are given below
below). However, supersymmetric quantum mechanics can be a starting point for a semiclassical expansion of most
Hamiltonians [14, 15].
The nuclear shell model is a mean-field theory where the single particle levels can be taken as those of a three-

dimensional harmonic oscillator (hence labeled with SU(3) quantum numbers) for the lowest (A ≤ 20) levels. For
nuclei with more than 20 protons or neutrons, different parity orbitals mix. The Nilsson Hamiltonian of the spherical
shell model is

H = ωb†ibi − 2kL.S− kµL2, (47)

where the second term mixes opposite parity orbitals and the last term mocks up the deeper potential felt by the
nucleons as L increases.
Fits to data suggest µ ≈ 0.5, which lead to degeneracies in the single particle spectra. In the 50–82 shell (whose

SU(3) label or the principal harmonic oscillator quantum number is N = 4), the s1/2 and d3/2 orbitals and further
d5/2 and g7/2 orbitals are almost degenerate. It is possible to give a phenomenological account of this degeneracy
by introducing a second SU(3) algebra called the pseudo-SU(3) [16, 17]. Assuming that those orbitals belong to the
N = 3 (with ℓ = 1, 3) representation of the latter SU(3) algebra one designates the quantum numbers of the SO(3)
algebra included in this new SU(3) to be pseudo-orbital-angular momentum (ℓ = 1, 3 in this case) and introduces
a pseudo-spin (s = 1

2 ). One can easily show that j = 1/2 and 3/2 orbitals (and also j = 5/2 and 7/2 orbitals)
are degenerate if pseudo-orbital angular momentum and pseudo-spin coupling vanishes. It was later discovered that
pseudo-spin symmetry has a relativistic origin [18].
It was shown that two Hamiltonians written in the SU(3) and the pseudo-SU(3) bases are supersymmetric partners

of each other [19]. The operator that transforms these two bases into one another is

U = G
[
G†G

]−1/2
=

√
2F− (K0 + [F+, F−])

−1/2

=
(
σib

†
i

)(
b†i bi − σiLi

)−1/2

yielding

H ′

pseudo-SU(3) = U HSU(3)U
†

= b†ibi − 2k (2µ− 1)L · S− kµL2 + [1− 2k(µ− 1)] .
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V. INFINITE ALGEBRAS

Sometimes the algebras associated with the symmetries of the physical problems have an infinite number of elements.
One example is an algebra originally introduced by Gaudin in his study of spin Hamiltonians [20]:

[J+(λ), J−(µ)] = 2
J0(λ) − J0(µ)

λ− µ
, (48)

[J0(λ), J±(µ)] = ±J
±(λ)− J±(µ)

λ− µ
, (49)

[J0(λ), J0(µ)] = [J±(λ), J±(µ)] = 0. (50)

In the above equations λ is an arbitrary complex parameter. To see the relevance of the Gaudin algebra to nuclear
physics, let us rewrite the quasispin algebra of Eqs. (27) and (28) using fermion operators of the spherical shell model:

Ŝ+
j =

∑

m>0

(−1)(j−m)a†j ma
†
j −m, (51)

Ŝ−
j =

∑

m>0

(−1)(j−m)aj −maj m, (52)

Ŝ0
j =

1

2

∑

m>0

(
a†j maj m + a†j −maj −m − 1,

)
. (53)

Note that these are mutually commuting SU(2) algebras:

[Ŝ+
i , Ŝ

−
j ] = 2δijŜ

0
j , [Ŝ0

i , Ŝ
±
j ] = ±δijŜ±

j .

A possible realization of the Gaudin algebra can be given in terms of the elements of the quasi-spin algebra (see e.g.
Ref. ([21]):

J0(λ) =

N∑

i=1

Ŝ0
i

ǫi − λ
and J±(λ) =

N∑

i=1

Ŝ±
i

ǫi − λ
, (54)

where ǫi are arbitrary constants. The operator

H(λ) = J0(λ)J0(λ) +
1

2
J+(λ)J−(λ) +

1

2
J−(λ)J+(λ) (55)

is not the Casimir operator of the Gaudin algebra, but a conserved charge:

[H(λ), H(µ)] = 0, λ 6= µ. (56)

Lowest weight vector is chosen to satisfy

J−(λ)|0〉 = 0, and J0(λ)|0〉 =W (λ)|0〉, (57)

so that

H(λ)|0〉 =
[
W (λ)2 −W ′(λ)

]
|0〉, (58)

where prime denotes derivative with respect to λ. It is also possible to write bosonic representations of Gaudin-like
algebras [22].
To find other eigenstates of the operator in Eq. (55) we consider the state |ξ〉 ≡ J+(ξ)|0〉 for an arbitrary complex

number ξ. One gets

[H(λ), J+(ξ)] =
2

λ− ξ

(
J+(λ)J0(ξ)− J+(ξ)J0(λ)

)
. (59)
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Hence, if W (ξ) = 0, then J+(ξ)|0〉 is an eigenstate of H(λ) with the eigenvalue

E1(λ) =
[
W (λ)2 −W ′(λ)

]
− 2

W (λ)

λ− ξ
. (60)

Gaudin showed that this procedure can be generalized. Indeed a state of the form

|ξ1, ξ2, . . . , ξn >≡ J+(ξ1)J
+(ξ2) . . . J

+(ξn)|0 > (61)

is an eigenvector of H(λ) if the numbers ξ1, ξ2, . . . , ξn ∈ C satisfy the so-called Bethe Ansatz equations:

W (ξα) =

n∑

β=1
(β 6=α)

1

ξα − ξβ
for α = 1, 2, . . . , n. (62)

Corresponding eigenvalue is

En(λ) =
[
W (λ)2 −W ′(λ)

]
− 2

n∑

α=1

W (λ)−W (ξα)

λ− ξα
. (63)

To make the connection to the spin Hamiltonians Gaudin studied one considers the limit

lim
λ→ǫk

(λ− ǫk)H(λ) = Rk = −2
∑

j 6=k

Sk · Sj

ǫk − ǫj
. (64)

Since the conserved charges commute for different values of the parameter, Eq. (64) implies that H(λ) and Rk can
be simultaneously diagonalized:

[H(λ), H(µ)] = 0 ⇒ [H(λ),Rk] = 0 (65)

[Rj ,Rk] = 0 (66)

One can also show that
∑

i

Ri = 0, (67)

and
∑

i

ǫiRi = −2
∑

i6=j

Si · Sj . (68)

Eqs. (64) and (68) are the spin Hamiltonians considered by Gaudin.
Richardson considered solutions of the pairing Hamiltonian using a different technique [23]. Below we derive his

results using Gaudin’s method. Note that the Gaudin Algebra of Eqs. (48), (49), and (50) can be satisfied not only
by the operators J(λ), but also by the operators J(λ) + c for a constant c. In this case

H(λ) = J(λ) · J(λ) ⇒ H(λ) + 2c · J(λ) + c2 (69)

which has the same eigenstates. To exploit this fact we introduce new operators that we name Richardson operators:

lim
λ→ǫk

(λ − ǫk) (H(λ) + 2c · S) = Rk = −2c · Sk − 2
∑

j 6=k

Sk · Sj

ǫk − ǫj
. (70)

It is straightforward to show that

[H(λ) + 2c · S, Rk] = 0, [Rj , Rk] = 0. (71)

One can also prove the identities

∑

i

Ri = −2c ·
∑

k

Sk (72)
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and
∑

i

ǫiRi = −2
∑

i

ǫic · Si − 2
∑

i6=j

Si · Sj . (73)

Using the above results one is then ready to write down the eigenvalues of the pairing Hamiltonian given by

Ĥ =
∑

jm

ǫja
†
j maj m − |G|

∑

jj′

Ŝ+
j Ŝ

−
j′ . (74)

Indeed choosing the constant in Eq. (70) as

c = (0, 0,−1/2|G|)

one can show that the solvable Hamiltonian of Eq. (69) can be written as

H

|G| =
∑

i

ǫiRi + |G|2(
∑

i

Ri)
2 − |G|

∑

i

Ri + · · · , (75)

which is the pairing Hamiltonian of Eq. (74) up to a constant.

VI. PHYSICS APPLICATIONS

A. Pairing problem in Nuclear Physics

Pairing plays a very important role in nuclear physics. In previous sections we discussed how the quadrupole
collectivity of medium-heavy nuclei can be represented by nucleon pairs coupled to angular momenta zero and two.
Over the years considerable attention was paid to exactly solvable pairing Hamiltonians with one- and two-body
interactions. The pairing interaction was first presented by Racah in LS-coupling scheme [24] and was generalized
to the jj-coupling scheme [25]. Here we confine ourselves to the s-wave pairing case as represented by the quasispin
algebra of Eq. (51), (52) and (53). Note that solvable models with both monopole and quadrupole pairing also exist
[26]. Exactly solvable cases so far studied for the monopole pairing case include

• The exact quasi-spin limit [1]:

Ĥ = −|G|
∑

jj′

Ŝ+
j Ŝ

−
j′ . (76)

• Richardson’s solution, discussed above, for the case when the single particle energies are added to the Hamilto-
nian in Eq.(76) [23]

Ĥ =
∑

jm

ǫja
†
j maj m − |G|

∑

jj′

Ŝ+
j Ŝ

−
j′ . (77)

• Gaudin’s model [20], which is closely related to the Richardson’s solution.

• The limit with separable pairing in which the energy levels are degenerate (the one-body term becomes a constant
for a given number of pairs) [27–29]:

Ĥ = −|G|
∑

jj′

c∗jcj′ Ŝ
+
j Ŝ

−
j′ . (78)

• Most general separable case with two orbitals [30].

Introducing the operators

Ŝ+(x) =
∑

j

c∗j
1− |cj |2x

Ŝ+
j , Ŝ−(x) =

∑

j

cj
1− |cj |2x

Ŝ−
j . (79)
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one can show that the state [27, 28]

Ŝ+(0)Ŝ+(z
(N)
1 ) . . . Ŝ+(z

(N)
N−1)|0〉 (80)

is an eigenstate of the Hamiltonian in Eq. (78) with energy

EN = −|G|



∑

j

Ωj |cj |2 −
N−1∑

k=1

2

z
(N)
k


 (81)

if the following Bethe ansatz equations are satisfied:

∑

j

−Ωj/2

1/|cj|2 − z
(N)
m

=
1

z
(N)
m

+

N−1∑

k=1(k 6=m)

1

z
(N)
m − z

(N)
k

m = 1, 2, . . .N − 1. (82)

Similarly

Ŝ+(x
(N)
1 )Ŝ+(x

(N)
2 ) . . . Ŝ+(x

(N)
N )|0〉 (83)

is an eigenstate with zero energy if the following Bethe ansatz equations are satisfied:

∑

j

−Ωj/2

1/|cj|2 − x
(N)
m

=

N∑

k=1(k 6=m)

1

x
(N)
m − x

(N)
k

for every m = 1, 2, . . . , N. (84)

The states in Eqs. (80) and (83) are eigenstates of the Hamiltonian in Eq. (78) if available single-particle levels are
at most half full. One can show that, if the single-particle levels are more than half full, the state

Ŝ−(z
(N)
1 )Ŝ−(z

(N)
2 ) . . . Ŝ−(z

(N)
N−1)|0̄〉 (85)

is an eigenstate with the same energy as in Eq. (81) if the Bethe ansatz equations given in Eq. (82) are satisfied [28].
In Eq. (85) |0̄〉 designates the state where all single-particle levels are completely filled.
It turns out that one can find an exact solution for the case where there are only two single-particle levels [30], i.e.

consider the Hamiltonian

Ĥ

|G| =
∑

j

2εjŜ
0
j −

∑

jj′

c∗jcj′ Ŝ
+
j Ŝ

−
j′ +

∑

j

εjΩj , (86)

where εj and cj ’s are dimensionless and the sums are performed over only two single-particle states. In the equation
above we added a constant term for convenience where Ωj = j + 1

2 is the maximum number of pairs that can occupy
the level j. The eigenstates of the Hamiltonian in Eq. (86) can be written using the step operators:

J+(x) =
∑

j

c∗j
2εj − |cj |2x

S+
j (87)

as

J +(x1)J +(x2) . . .J +(xN )|0〉. (88)

Defining the auxiliary quantities

β = 2
εj1 − εj2

|cj1 |2 − |cj2 |2
δ = 2

εj2 |cj1 |2 − εj1 |cj2 |2
|cj1 |2 − |cj2 |2

, (89)

one obtains the energy eigenvalues as

EN = −
N∑

n=1

δxn
β − xn

. (90)

In the above equations, the parameters xk are to be found by solving the Bethe ansatz equations

∑

j

Ωj |cj |2
2εj − |cj |2xk

=
β

β − xk
+

N∑

n=1( 6=k)

2

xn − xk
. (91)

A generalization of this approach to include three orbitals is still an open problem.



13

B. Subbarrier Fusion and Group Transformations

In some applications one needs to use not only the algebra but also the entire group transformation. One such
example is eikonal scattering from complex systems with dynamical symmetries [31]. Another example is provided
by fusion reactions below the Coulomb barrier [32]. For fusion reactions near and below the Coulomb barrier the
experimental observables are the cross section

σ(E) =

∞∑

ℓ=0

σℓ(E), (92)

and the average angular momenta

〈ℓ(E)〉 =
∑∞

ℓ=0 ℓσℓ(E)∑∞
ℓ=0 σℓ(E)

. (93)

The partial-wave cross sections in these equations are given by

σℓ(E) =
πh̄2

2µE
(2ℓ+ 1)Tℓ(E), (94)

where Tℓ(E) is the quantum-mechanical transmission probability through the potential barrier and µ is the reduced
mass of the projectile and target system. The fusing system can be described by the Hamiltonian

H = Hk + V0(r) +H0(ξ) +Hint(r, ξ) (95)

with the kinetic energy

Hk = − h̄2

2µ
∇2, (96)

where r is the relative coordinate of the colliding nuclei and ξ represents any internal degrees of freedom of the target
or the projectile. In this equation V0(r) is the bare potential and the term H0(ξ) represents the internal structure of
the target or the projectile nucleus.
The propagator to go from an initial state characterized by relative radial coordinate (the magnitude of r) ri and

internal quantum numbers ni to a final state characterized by the radial position rf and the internal quantum numbers
nf may be written as a path integral:

K(rf , nf , T ; ri, ni, 0) =

∫
D [r(t)] e

i
h̄
S(r,T )Wnfni

(r(t), T ), (97)

where S(r, T ) is the action for the translational motion and Wnfni
is the propagator for the internal system along a

given path, [r(t)], of the translational motion:

Wnfni
(r, T ) =

〈
nf

∣∣∣Ûint(r(t), T )
∣∣∣ ni

〉
. (98)

Ûint satisfies the differential equation

ih̄
∂Ûint

∂t
= [H0 +Hint] Ûint, (99)

with the condition

Ûint(t = 0) = 1.

In the limit when the initial and final states are far away from the barrier, the transition amplitude is given by the
S-matrix element, which can be expressed in terms of the propagator as [32]

Snf ,ni
(E) = − 1

ih̄
lim

ri→∞

rf→−∞

(
pipf
µ2

) 1
2

exp

[
i

h̄
(pf rf − piri)

]

∞∫

0

dTe+iET/h̄K(rf , nf , T ; ri, ni, 0), (100)
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where pi and pf are the classical momenta associated with ri and rf . In heavy ion fusion we are interested in the
transition probability in which the internal system emerges in any final state. For the ℓth partial wave, this is

Tℓ(E) =
∑

nf

|Snf ,ni
(E)|2, (101)

which takes the form

Tℓ(E) = lim
ri→∞

rf→−∞

(
pipf
µ2

) ∞∫

0

dT exp

[
i

h̄
ET

] ∞∫

0

T̃ exp

[
− i

h̄
ET̃

]

∫
D[r(t)]

∫
D[r̃(t̃)] exp

[
i

h̄
(S(r, T )− S(r̃, T̃ ))

]
ρM . (102)

Here we have assumed that the energy dissipated to the internal system is small compared to the total energy and
taken pf outside the sum over final states. We identified the two-time influence functional as

ρM (r̃(t̃), T̃ ; r(t), T ) =
∑

nf

W ∗
nf ,ni

(r̃(t̃); T̃ , 0)Wnf ,ni
(r(t);T, 0). (103)

Using the completeness of final states, we can simplify this expression to write

ρM (r̃(t̃), T̃ ; r(t), T ) =
〈
ni

∣∣∣Û †
int(r̃(t̃), T̃ )Ûint(r(t), T )

∣∣∣ni

〉
. (104)

Eq. (104) shows the utility of the influence functional method when the internal system has symmetry properties.
If the Hamiltonian in Eq. (95) has a dynamical or spectrum generating symmetry, i.e., if it can be written in terms
of the Casimir operators and generators of a given Lie algebra, then the solution of Eq. (99) is an element of the
corresponding Lie group [33]. Consequently the two time influence functional of Eq. (104) is simply a diagonal group
matrix element for the lowest-weight state and it can be evaluated using standard group-theoretical methods. This
is why the path integral method is very convenient when the internal structure is represented by an algebraic model
such as the Interacting Boson Model. Using this approach it is possible to do systematic studies of subbarrier fusion
cross sections [34] as well as other observables [35] not only for nuclei that are described by the dynamical symmetry
limits, but also for transitional nuclei.

C. Neutrinos and their Symmetries

The Standard Model does not contain neutrino masses. However, a neutrino mass term can be introduced as an
effective interaction. Symmetries, in particular weak isospin invariance, define the Standard Model. In the neutrino
sector this symmetry is SU(2)W × U(1). In the Standard Model, the left-handed and the right-handed components
of the neutrino are treated differently: νL sits in an weak-isospin doublet (IW =1/2) together with the left-handed
component of the associated charged lepton, whereas νR is an weak-isospin singlet (IW=0). A mass term connects left-
and right-handed components. The usual Dirac mass term is L = mΨ̄Ψ = m(Ψ̄LΨR + Ψ̄RΨL). But such a neutrino
mass term breaks the weak-isospin symmetry, hence it is not permitted in the Standard Model. The right-handed
component of the neutrino carries no weak isospin quantum numbers. As we will see below this feature permits
Majorana neutrino mass in the Standard Model if one only uses right-handed neutrinos.

1. Dimensional Counting

Lagrangian, L, has dimensions of energy (or mass). In field theory one usually employs the Lagrangian densityL:
L =

∫
d3xL(x). Lagrangian density, L, has dimensions of energy/volume or M4. Usually one uses the terms

Lagrangian and Lagrangian density interchangeably when the meaning is clear from the context, Defining a scaling
dimension for x, [x] to be -1 then we see that the scaling dimension of momentum (or mass) should be [m] = +1 (recall
that (p.x/h̄) is dimensionless and we take [h̄]=0). Clearly one has [L] = 4. This should be true for any Lagrangian
density of any theory. Considering the mass term for fermions, Lm = mΨ̄Ψ we conclude that [Ψ̄Ψ] = 3 or [Ψ] = 3/2.
In the Standard Model the Higgs field vacuum expectation value gives the particle mass: L = HΨ̄Ψ, hence [H ] = 1.
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2. Effective Field Theories

A Lagrangian describing a particular field should be consistent with the symmetries of this field, i.e. invariant
under rotations, translations, Lorentz transformations, etc. (A combination of these symmetries describe the Poincare
group). An example is provided by the Lagrangian of quantum electrodynamics. The two Lorentz invariants one can
write down in terms of electric and magnetic fields are E2 −B2 and E ·B. Under time reversal transformations the
electric field does not change sign:

E → E,

but the magnetic field does:

B → −B.

Hence one of the Lorentz invariants (E · B) is not an invariant under time-reversal transformations. Requiring the
time-reversal to be a good symmetry one writes the photon part of the Q.E.D. Lagrangian in terms of only the other
invariant:

Lγ =
1

2
(E2 −B2). (105)

The scaling dimension of the Lagrangian in Eq. (105) is, of course, four. In this problem there is a clear separation
of energy scales. If the energy in the electromagnetic field is significantly below twice the mass of the lightest charged
particle (electron), then there will be no energy loss to pair production. Effective field theories provide a framework
to appraise the impact of the physics that takes place at higher energy scales on processes that occur at much lower
energies. How do we take into account the physics at higher energy scales, e.g. the effect of the existence of charged
particles on photons? (Essentially we are asking to integrate the charged particles out of the path integral for the full
Q.E.D.). This effect can be represented by adding additional terms to introduce an effective Lagrangian:

L → Leffective = L+ δL. (106)

The additional Lagrangian should still be consistent with the symmetries of the system. Let us again use Q.E.D.
as an example. Since we want the additional term to be Lorentz invariant, clearly it has to involve higher powers
of Lorentz invariants. Since each Lorentz invariant for the electromagnetic field has a scaling dimension of four, the
lowest dimensional (eight in this case) correction is

a
(
E2 −B2

)2
+ b (E ·B)2 , (107)

where a and b are yet undetermined, dimensionless constants. Note that the square of E ·B is time-reversal invariant
even though E ·B is not. However, the expression in Eq. (107) is still not a proper Lagrangian density since it does
not have scaling dimension four. To make it four dimensional we need to divide it by some energy scale to the fourth
power:

δL =
1

Λ4

[
a
(
E2 −B2

)2
+ b (E ·B)

2
]
. (108)

This is how far we can go with the effective field theory tools. However, an educated guess would suggest that the
energy scale Λ should be proportional to the mass of the lightest charged particle in the leading order, Λ ∼ me.
Directly integrating out the charged particle degree of freedom in the full Q.E.D. Lagrangian gives the numerical
values of the dimensionless constants:

L =
1

2
(E2 −B2) +

2α2

45m4
e

[
(E2 −B2)2 + 7(E ·B)2

]
. (109)

This result is know as the Euler-Heisenberg Lagrangian in the literature [36].

3. Neutrino Mass

Even though the Standard Model does not include neutrino mass, it is possible to write effective Lagrangians for the
neutrino mass in terms of Standard Model fields. Such a Lagrangian should preserve the SU(2)W × U(1) symmetry.
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Recalling that IW3 = 1/2 for the νL and −1/2 for HSM, we can write a dimension-five operator describing neutrino
mass using the Standard Model degrees of freedom:

L =
Xαβ

Λ
HSMHSMνCLανLβ, (110)

where νCLα is the charge-conjugate neutrino field and α and β are flavor labels. From the constants of Eq. (110) one
gets the usual neutrino mixing matrix

v2Xαβ

Λ
= Um(diagonal)

ν UT . (111)

Clearly the neutrino mass term in Eq. (110) is not renormalizable. It is the only dimension-five operator one can
write using the Standard Model degrees of freedom: In a sense the neutrino mass is the most accessible new physics
beyond the Standard Model.
A mass term of the type given in Eq. (110) is different than the usual charged-particle mass term in the Dirac

equation and it is known as theMajorana mass term [37]. Such a mass term is permitted by the weak-isospin invariance
of the Standard Model, but it violates lepton number conservation since it implies that neutrinos are their antiparticles.
To gain a better insight into the nature of the Majorana mass term it is useful to consider transformations between
particles and antiparticles. The particle-antiparticle symmetry, realized via the transformation

Ψ → aΨ+ bγ5Ψ
C , |a|2 + |b|2 = 1 (112)

is usually referred to as Pauli-Gürsey transformation [38]. It is easy to see that, under such a transformation, a Dirac
mass term would transform into a mixture of Dirac and Majorana mass terms. The operators

D+ =
1

2

∫
d3xΨLΨR, (113)

A+ =

∫
d3x

[
−ΨT

LCγ0ΨR

]
, (114)

L+ =
1

2

∫
d3x

(
ΨLΨ

C
L

)
, R+ =

1

2

∫
d3x

(
ΨC

RΨR

)
, (115)

their complex conjugates, and the operators

L0 =
1

4

∫
d3x

(
Ψ†

LΨL −ΨLΨ
†
L

)
, R0 =

1

4

∫
d3x

(
ΨRΨ

†
R −Ψ†

RΨR

)
(116)

form an SO(5) algebra [39]. 1

The operators A+, A− and A0 = R0−L0 form an SU(2) subalgebra that generates the Pauli-Gürsey transformation
(SU(2)PG). The most general neutrino mass Hamiltonian sits in the SO(5)/SU(2)L × SU(2)R × U(1)L0+R0 coset
and can be diagonalized by a SU(2)PG rotation. This diagonalization is referred to as the see-saw mechanism in the
literature [41].

4. Neutrino Many-Body Theory

Understanding neutrino propagation at the center of a core-collapse supernova requires a careful treatment of
features like neutrino-neutrino scattering [42, 43] and antineutrino flavor transformations [44]. The neutrino self-
interactions could especially impact the r-process nucleosynthesis taking place in core-collapse supernovae [45]. There
is an extensive literature on this subject, a good starting point is several recent surveys [46, 47].
For simplicity, let us consider only two flavors of neutrinos: electron neutrino, νe, and another flavor, νx. Introducing

the creation and annihilation operators for one neutrino with three momentum p, we can write down the generators
of an SU(2) algebra [48]:

J+(p) = a†x(p)ae(p), J−(p) = a†e(p)ax(p),

J0(p) =
1

2

(
a†x(p)ax(p)− a†e(p)ae(p)

)
. (117)

1 Note the similarity between the Majorana mass term in Eq. (110) and the pairing interaction described by the quasispin algebra operators
in Eqs. (51) and (52) ). Indeed the presence of an SO(5) algebraic structure is a general feature of particular pairing interactions [40].
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Note that the integrals of these operators over all possible values of momenta also generate a global SU(2) algebra.
Using the operators in Eq. (117) the Hamiltonian for a neutrino propagating through matter takes the form

Hν =

∫
d3p

δm2

2p

[
cos 2θJ0(p) +

1

2
sin 2θ (J+(p) + J−(p))

]
−
√
2GF

∫
d3pNe J0(p). (118)

In Eq. (118), the first integral represents the neutrino mixing and the second integral represents the neutrino forward
scattering off the background matter. Neutrino-neutrino interactions are described by the Hamiltonian

Hνν =
√
2
GF

V

∫
d3p d3q (1− cosϑpq) J(p) · J(q), (119)

where ϑpq is the angle between neutrino momenta p and q and V is the normalization volume. Inclusion of antineu-
trinos in Eqs. (118) and (119) introduces a second set of SU(2) algebras. For three flavors one needs two sets of SU(3)
algebras, one for neutrinos and one for antineutrinos. Collective neutrino oscillations resulting from these equations
exhibit a number of interesting symmetries [49–52].

5. CP-Violation in Neutrino Sector

The neutrino mixing matrix is parameterized by three mixing angles and a CP-violating phase:

T23T13T12 =




1 0 0
0 C23 S23

0 −S23 C23






C13 0 S13e
−iδ

0 1 0
−S13e

iδ 0 C13






C12 S12 0
−S12 C12 0
0 0 1


 (120)

where Cij = cos θij , Sij = sin θij , and δ is the CP-violating phase. Only a non-zero value of θ13 would also make the
observation of the effects that depend on the CP-violating phase possible. Earlier hints for a non-zero value of θ13
from solar, atmospheric, and reactor data [53, 54] are further strengthened by the recent low-threshold analysis of the
Sudbury Neutrino Observatory measurements [55]. Ongoing reactor experiments [56–58] will provide a better insight
into the value of this quantity.
To explore the impact of neutrino propagation through matter on CP-violating effects we introduce the operators

[59]

Ψ̃µ = cos θ23Ψµ − sin θ23Ψτ ,

Ψ̃τ = sin θ23Ψµ + cos θ23Ψτ ,

and write down the neutrino evolution equations as

i
∂

∂t




Ψe

Ψ̃µ

Ψ̃τ



 = H̃




Ψe

Ψ̃µ

Ψ̃τ



 (121)

where

H̃ = T13T12




E1 0 0
0 E2 0
0 0 E3



T
†
12T

†
13 +




Veµ 0 0
0 S2

23Vτµ −C23S23Vτµ
0 −C23S23Vτµ C2

23Vτµ



 . (122)

In writing Eq. (122) a term proportional to identity is dropped by adding a term to all the matter potentials so that
Vµµ = 0. Loop corrections in the Standard Model yield small, but non-zero values of Veµ and Vτµ [60]. If we can
neglect these terms it is straightforward to show that

H̃(δ) = SH̃(δ = 0)S†

with

S =




1 0 0
0 1 0
0 0 eiδ



 .

This factorization gives us interesting sum rules: Electron neutrino survival probability, P (νe → νe) is independent of
the value of the CP-violating phase, δ; or equivalently the combination P (νµ → νe) +P (ντ → νe) at a fixed energy is
independent of the value of the CP-violating phase [61]. It is possible to derive similar sum rules for other amplitudes
[62]. These results hold even if the neutrino-neutrino interactions are included in the Hamiltonian [63].
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