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Relationships between partial-wave amplitude parametrizations, in particular the Chew-
Mandelstam approach, and dynamical coupled-channel models are established and investigated.
A bare pole corresponding to the ∆(1232) resonance, found in a recent dynamical-model fit to
π− and ω−meson production reactions, compares closely to one found in a unitary multichannel
partial-wave amplitude parametrization of SAID. The model dependence of the bare pole precludes
a direct connection between the approaches but is suggestive that the dynamical description and
the phenomenological parametrization are closely related.
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I. INTRODUCTION

In this study, we outline both qualitative and quan-
titative relationships between dynamical models and
the SAID approach to fitting meson production reac-
tions. The SAID parametrization is based on a Chew-
Mandelstam (CM) approach[1, 2] that has been exten-
sively applied in multichannel descriptions of hadroni-
cally and electromagnetically induced reactions on the
proton[3–9]. We compare this with recent multichannel
dynamical model descriptions that assume a set of well
established N and ∆ resonances.

Meson scattering and production reactions (collec-
tively, “reactions”) account almost entirely for informa-
tion available on the resonance structure of the nucleon.
The resonances of the nucleon encode a wealth of in-
formation on the non-perturbative regime of quantum
chromodynamics, the fundamental non-Abelian quantum
field theory of quarks and gluons, that is responsible for
nuclear forces and the interactions of effective hadronic
degrees-of-freedom. Here we elaborate on the connec-
tions between well-known and widely used multichannel
parametrization approaches, and dynamical model ap-
proaches, which both satisfy unitarity at the two-body
level.

An issue of recent debate[10] has been the interplay
of singularities arising from the iteration of colloquially
termed “non-pole” or “nonresonant” interactions and
those explicitly added as bare states. Within the CM
approach, one may ask[11] whether the inclusion of poles
in the Chew-Mandelstam K matrix is required. The re-
lation between CM and Heitler K-matrix[12] poles has
also been studied[13].

The present SAID fits to pion-nucleon scattering and
eta-nucleon production data are based on multichannel
amplitudes[8] for which, with the single exception of the
P33 partial wave, the CM K matrix, K has been con-
structed as a low-order polynomial in the center-of-mass
complex scattering energy, E, without poles. This con-

struction may, however, yield a pole in the Heitler K
matrix[14], given the relationship between K, the Heitler
K matrix, and K, the CM K matrix:

K(E) = K(E)
1

1− ReC(E)K(E)
, (1)

where C(E) is termed the Chew-Mandelstam
‘function,’[2] a diagonal matrix in the space of in-
cluded channels. Evidently, poles may be located at
real values of the scattering energy, W = ReE when
det[1 − ReCK] = 0[14]. A strong feature of the CM
approach then is that the unstable ‘particles’ (identified
with the baryon resonances) of the theory arise dy-
namically, in a sense, from the proper analytic form of
the CM parametrization in the process of fitting to the
observed data in the physical region, W = ReE > 0.
The unstable particles are identified as poles of the T
matrix near the physical region.

One may still include explicit poles in K as is done
in the P33 partial wave of Ref.[8]. If poles are present
in K, how should they be interpreted? A more involved
question might ask for the effect of adding explicit CMK-
matrix poles in partial waves reproducing data without
their inclusion. Here, we restrict our discussion to the
elastic P33 partial wave in the ∆(1232) resonance region.
This partial wave has both explicit CM and Heitler K-
matrix poles and we compare them to structures seen in
a particular dynamical model.

In Section II we discuss general features of each ap-
proach, while details are referred to in the literature.
Section III contains a discussion of the results, possible
extensions to this work, and conclusions.

II. MODEL AND PARAMETRIZATION
APPROACHES

This study is motivated in part by the observation that
bare resonance parameters of a recent SAID parametriza-
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tion [8] compare closely with those of recent dynamical
model calculations[15, 16]. The first subsection deals
with details of the dynamical model and the Chew-
Mandelstam parametrization approaches relevant to un-
derstanding this comparison. The second subsection
gives a more general discussion of dynamics in the model
and parametrization approaches.

A. Dynamical model

We limit our discussion of the dynamical coupled-
channel approaches to the general features relevant to
describing bare resonance parameters. In this work, we
study these model-dependent quantities and their rela-
tion to physical, dressed resonance poles in the scatter-
ing, S or transition, T matrices. Details of the dynamical
model can be found elsewhere[15, 16].

The reaction observables are determined by the ma-
trix elements of the transition operator, T , a matrix in
momentum, spin, and channel spaces. The dynamical
approach makes a model-dependent separation into ‘non-
resonant’ and ‘resonant’ contributions:

T (E) = t(E) + tR(E). (2)

Since the total T matrix satisfies the (relativistic)
Lippmann-Schwinger equation

T (E) = V + V G0(E)T (E) (3)

where V is the (relativistic) tree-level interaction kernel,
G0 = [E −H0]−1 is the many-body free particle propa-
gator for the free particle Hamiltonian, H0 with physical
masses, and E ∈ C is the complex scattering energy, the
nonresonant and resonant contributions satisfy

t(E) = v + vG0(E)t(E), (4)

tR(E) = Γ
†
(E)

1

E −H0 − Σ(E)
Γ(E), (5)

respectively. Here, v is the non-resonant contribution

to V , Γ(Γ
†
) is the MB → B′(B → MB′) dressed ver-

tex, M and B are meson and baryon fields, Σ(E) =

ΓG0(E)Γ
†
(E) is the baryon self-energy, and Γ is the bare

vertex. (Here, the † symbol is not Hermitian conjugation.
It simply distinguishes MB → B′ from the inverse pro-
cess.) The dressed vertex is related to the bare vertex
as Γ = Γ(1 + G0t(E)). The resonances of the dynami-
cal model are determined by locating the set of complex
energies {Er}NR

r=1 where

det[Er − (M (0) + Σ(Er))] = 0, (6)

corresponding to poles of the T (or S) matrix. Here
NR is the number of energies in a given partial wave for
which the above equation is satisfied. We note in passing
that the number of resonance poles need not be equal

to the number of bare states with real energies M
(0)
i [17],

where i indexes one specific, of a number of assumed,
bare one-particle intermediate states. We note that for
the P33 partial wave the poles of T and the poles of tR

are identical since there are no poles in the non-resonant
part t. The pole mass, Mr and total width, Γr of the
baryon resonance are related to the pole position, Er as

Mr = ReEr, (7)

− 1
2Γr = ImEr, (8)

which are complicated functions of the bare parameters

of the Lagrangian. The bare mass, M
(0)
i is dressed by

interaction with the meson and baryon fields of the La-
grangian.

It is appropriate to reiterate caveats associated with
the bare parameters of reaction theories in general and
the particular dynamical coupled-channel approach de-
scribed here. There are several features of the dynamical
approach that are model dependent and for which exten-
sive studies to quantify the precision of model predictions
are lacking. For example, there are no quantitative stud-
ies, to our knowledge, that specify the accuracy of the
bare parameters of the Lagrangian within a given model
approach, including the bare resonance mass and width.
The origin of the model dependence in the dynamical
approach stems, in part, from the application of the cal-
culational device of decomposing the T matrix in Eq.(2)
into two terms called, colloquially, nonresonant and reso-
nant. The model dependence of this decomposition may
be viewed as a consequence of the field redefinition am-
biguities of the effective quantum field theory that de-
scribes the hadronic degrees-of-freedom. As shown in
Ref.[18], a field redefinition may be applied, for exam-
ple, to transform a heavy fermion field operator. This
has the effect of shifting strength between nonresonant
and resonant mechanisms while leaving invariant the ob-
servables of the theory. The resonance parameters, how-
ever, depend on the field redefinition and therefore can-
not be observables. We also reiterate the fact that the
CM parametrization approach makes no such decompo-
sition of the T matrix into nonresonant or resonant con-
tributions. Therefore, it is free of model dependencies
that arise in such a decomposition.

We have, nevertheless, noticed a close numerical match
between the bare value of the bare pole position in the
dynamical model and explicitly included CM K matrix
pole in the P33 partial wave of the parametrization em-
ployed in Ref.[8]. In the next subsection we analyze this
result in terms of the structure of the CM parametriza-
tion form. Our hope is that by analyzing the structure
of both the model and parametrization forms and study-
ing their relationships that we may learn more about the
nature of the dynamics included within each approach.

B. Chew-Mandelstam approach

We give a brief description of the CM parametrization
form here. More complete discussions of the form and its
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application to the determination of the partial wave am-
plitudes in the multichannel hadro- and photoproduction
observed data are described in the literature[1, 2, 14]

The unitarity of the S matrix implies a constraint,
called “unitarity,” on the T matrix, which may be con-
cisely expressed as:

ImT−1(E) = −ρ(E), (9)

where ρ = −πδ(E −H0) and the relationship between T
and S is given by S = 1 + 2iρT . This implies that the
full T matrix satisfies the Heitler equation:

T (E) = K(E) + iK(E)ρ(E)T (E), (10)

where K−1 ≡ ReT−1. The Heitler K matrix, K, has
the features of being a real-symmetric matrix in chan-
nel space and of being free of threshold branch point
singularities[19]. The Heitler K matrix expressed in
terms of the CM K matrix, K is

K−1(E) = K
−1

(E)− ReC(E), (11)

where ReC is the Hilbert transform of ρ (with one sub-
traction). Solving for K in the above relation yields
Eq.(1). Parametrization of the matrix elements of K as
functions analytic in the finite complex E-plane yield, in
general, matrix elements of K that are meromorphic in
the energy. The K-matrix poles that arise in this manner
are sometimes related to the poles of the T matrix. This
connection has been explored in Ref.[13]. The T matrix
may then be expressed as

T (E) = K(E) +K(E)C(E)T (E) (12)

directly in terms of the CM K matrix.
Having established the representation of the T matrix

in terms of the parametrized function K we consider the
form of its matrix elements which include a single explicit
pole. The K matrix is then written as

K =
γ

W −Wp
+ β(W ), (13)

where γ is a constant matrix in channel space and β(W )
is an analytic matrix function of W , typically a polyno-
mial. This is, in fact, the form of the CM K matrix used
in Ref.[8] for the P33 partial wave. Our fit to the com-
plete πN elastic and πN → ηN reaction data gives, for
the pole position of the CM K matrix,

Wp(P33) = 1381 MeV. (14)

The position of the Heitler K-matrix pole in the SAID
P33 parametrization is related the CM K matrix pole as:

WH
p (P33) = Wp(P33) +

γπN,πNReCπN
1− βπN,πNReCπN

(15)

where, CπN is the elastic, πN matrix element of the CM
function. The position of the Heitler K-matrix pole is[13]

WH
p (P33) = 1232 MeV (16)

and is essentially model-independent[20]. Energy-
dependent quantities in Eq.(15) are evaluated at the
Heitler K matrix pole.

The fact that both the Heitler K matrix, K, and the
CM K matrix, K, have poles on the physical region at
WH
p (P33) = 1232 MeV and Wp(P33) = 1381 MeV, re-

spectively, constrains the real part of TπN,πN (WH
p (P33))

and the Chew-Mandelstam function, CπN (Wp(P33)).
Employing Eqs.(10) and (12) for energies below the point
at which inelastic channels become important, W <∼ 1450
MeV (see Fig.(2), below) and taking the imaginary part
gives the following expression:

KπN,πN (W ) ReTπN,πN (W ) = KπN,πN (W )

×
[

ReCπN (W )

ρπN (W )
ImTπN,πN (W ) + ReTπN,πN (W )

]
.

(17)

Note that this relation holds in the elastic region only.
This relation provides constraints at the pole positions
WH
p and Wp (where the πN partial wave designation,

P33 is to be understood from here forward):

ReTπN,πN (WH
p ) = 0 (18)

tan δπ(Wp) +
ρπN (Wp)

ReCπN (Wp)
= 0, (19)

which are satisfied at the values given in Eqs.(14) and
(16), respectively. Here, tan δπ = ImTπN,πN/ReTπN,πN
is determined by the elastic πN → πN P33 phase shift.
Variability in the pole position is therefore directly linked
to our determination of ReCπN (W ) and, conversely, the
determination of CπN (Wp) must satisfy the constraint
of Eq.(19); it is not model dependent. As the SAID
parametrization of ReCπN (W ) is fixed, apart from a
subtraction determining its zero point, and this value
is not searched, the pole position has remained essen-
tially constant for different SAID solutions even as new
data and dispersion-relation constraints were added. We
also note that the T -matrix values at the Heitler K-
matrix pole, TπN,πN (WH

p ) = i, and at the CM K-matrix
pole, TπN,πN (Wp) = −ρπN (Wp)/CπN (Wp), are indepen-
dent of the K-matrix parametrization. A note of cau-
tion may be appropriate here: Eq.(18) appears similar
to the condition for locating the real part of the pole
position of a Breit-Wigner parametrization. We hope,
however, that the preceding discussion makes clear that
the position of the Heitler K matrix pole bares no simple
relation to model dependent and generally non-unitary
Breit-Wigner parametrization.

If βπN,πN is set to zero and the T -matrix pole po-
sition recalculated, its value shifts to 1297 − i24 MeV.
Clearly the pole and non-pole terms at the CM K-matrix
level do not translate directly into resonant and nonres-
onant contributions to the T matrix. This separation is
possible, phenomenologically, if one instead parametrizes
the S matrix as SBSRSB with the resonance T matrix,
giving SR, fitted as above but with βπN,πN set to zero.
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FIG. 1: Comparison of the SP06 P33 partial wave elastic T
matrix element[8] (dimensionless) having a sum of pole and
non-pole K-matrix elements, and a fit using the product S-
matrix form, FP10. The plotted real (solid) and imaginary
(dashed) parts are virtually identical over the resonance re-
gion, producing equivalent fits to data.

The SB is then similarly constructed with γπN,πN set
to zero. A fit to data using this form, FP10, has been
completed[21] and is plotted against the standard form
(SP06) in Fig.(1). The resulting Heitler K-matrix and
T -matrix poles are found at 1232 MeV and 1211 − i50
MeV respectively, as in the original fit. The CM K-
matrix pole shifts, in this case, to 1480 MeV. Here, how-
ever, setting the “background” to zero (ie., SB → 1) has
no effect on the T -matrix pole position.

At higher energies, many resonances can be discovered
by searching for poles in the complex energy plane, with-
out the explicit introduction of CM K-matrix poles. It
would be interesting to consider the effect of adding ex-
plicit poles to resonant partial waves of this type. The re-
sulting interplay of pole and non-pole contributions could
add new structures or replace resonances, generated by
non-pole terms, with pole-generated structures.

C. Comparison of dynamical model and CM
parametrization

Turning to the comparison of the dynamical model
with the SAID CM parametrization, Refs. [16] and [17]
give the values of bare resonance parameters in their Ta-
bles VI and II, respectively. The value for the P33 reso-
nance is given as

M (0)(P33) = 1391 MeV. (20)

The numerical similarity to Wp(P33) suggests a close rela-
tionship between a dynamical coupled-channel approach
and the CM K-matrix parametrization.

It can be effectively argued that the essentially elastic
nature of the P33 partial wave and the fact that non-
resonant effects are small in the region of the P33(1232)

resonance are specific, perhaps, only to this particular
partial wave. We would not dispute this claim. The pur-
pose of the present comparison, however, is to indicate
that the dynamics of rescattering, including final-state
interactions and coupled-channel effects, are included in
an essential way into the CM parametrization. In the
specific case of the P33 partial wave, which provides a
simple case study, there is a quantitative verification of
this fact given by Eq.(20). We elaborate on this point
further by analyzing and comparing the rescattering ef-
fects in the model and parametrization approaches.

There are two distinct sources of rescattering effects
which dress the explicit pole in the CM parametrization.
The first, comes about in Eq.(1), where the real part
of the Chew-Mandelstam function, ReC reflects the off-
shell propagation of the intermediate two-particle states.
In fact, the subtraction constant in C[14] reflects the
model dependence of the off-shell components. This off-
shell rescattering effect dresses the explicit pole in the
CM K matrix, shown in the first term of Eq.(13), and
yields the pole in the Heitler K matrix given in Eqs.(15)
and (16). The second source of rescattering effects in
the CM parametrization form induce a further shift of
the Heitler K matrix pole, WH

p (P33) to determine the
position of the pole of the corresponding partial wave T
matrix. The proximity of this pole to the physical region
dictates that the pole is, to the best of our knowledge,
universally found in model and parametrization treat-
ments alike to be located at E = (1210,−51) MeV within
1 or 2 MeV.

A similar structure obtains for the Heitler K matrix in
the dynamical model

K(E) = V + V g(E)K(E), (21)

where g(E) = ReG0(E) and we have suppressed a (con-
tinuous) sum over intermediate, off-shell states in the
second term. Since the bare pole features in the reso-
nant contribution to the interaction kernel V the off-shell
rescattering effects in the second term will result in a shift
of the bare pole location, Eq.(20) to the Heitler K matrix
pole position.

Verification of the Heitler K matrix pole positions in
the dynamical model and CM parametrization may be
carried out graphically, as shown in Fig.(2). We may
obtain the inverse of the πN → πN K-matrix element
directly from the on-shell πN → πN T -matrix element
calculated in the dynamical model approximately as

K−1
πN,πN ≈ i+ T−1

πN,πN . (22)

for values of W above the πN threshold. Here we have
absorbed the factor ρ from Eq.(10) by a redefinition of
K and T . The zero of the inverse Heitler K-matrix el-
ement, KπN,πN is the location of the matrix element’s
pole. The derivation of Eq.(22) has neglected the other,
inelastic channels. The neglect of other channels, present
in both the dynamical model of Ref.[16], which includes
π∆, ρN, σN, and ηN and the SAID SP06 parametriza-
tion, which includes π∆, ρN, and ηN is warranted, as
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FIG. 2: The inverse Heitler K matrix element K−1
πN,πN as

function of the center-of-mass energy, W calculated using
Eq.(22). The dynamical model elements of Ref.[16] are shown
as continuous curves: solid (dashed) curves show the real
(imaginary) part. The SP06 solution of Ref.[8], which are
very similar to the dynamical model curves, are indicated by
squares (circles) for the real (imaginary) parts. The imagi-
nary part, which should strictly be zero by unitarity, deviates
from zero above W ≈ 1.45 GeV since we have inverted the
matrix element by ignoring inelastic effects. The pole position
of the Heitler K matrix, Eq.(16) may be read off the figure
at the node of K−1

πN,πN .

shown in Fig.(2). In this figure, violations of unitarity
incurred by ignoring the inelastic processes appear as
the imaginary part of K−1

πN,πN deviates from zero, above

about 1.45 GeV according to the figure, where Eq.(22) is
no longer valid. The location of the pole in the Heitler
K matrix can be read directly off the figure. The numer-
ical value of 1.23 GeV is the same as that of the SAID
parametrization given in Eq.(16).

III. CONCLUSION

The dynamical coupled-channels approach has been
compared with the CM parametrization for the P33 par-
tial wave. The SAID parametrization, specifically the
SP06 solution of Ref.[8], includes an explicit pole in the
CM K matrix, K, as given in Eq.(13). The relationship
between the CM K matrix and the Heitler K matrix,
K, depicted in Eq.(1), demonstrates that the ‘bare’ CM
pole is dressed by off-shell effects, represented by the real
part of the CM diagonal matrix, ReC(W ). The Heitler
K matrix pole is further dressed by the coupling to in-
termediate states in the continuum, through the effects
encoded in the relationship between the K matrix and
the T matrix of Eq.(10).

Numerically, the description of the pole structure of
K, K, and T bear a strong relationship to that of the
dynamical model of Refs.[15] and [16]. In these models,
the bare pole of the interaction kernel, V is related to
the poles of the K matrix by Eq.(21). The second term

of this relation gives the rescattering effects of the off-
shell intermediate states, in close parallel to the form of
Eqs.(1) or (11). Having established the numerical iden-
tity of the Heitler K matrix poles, the fact that the
dynamical model is fit to the πN elastic partial waves
amplitudes[15] one is guaranteed that the T matrix poles
are virtually identical in both the parametrization and
model approaches.

The numerical identity of the pole structure of these
two ostensibly different approaches suggests a connection
between them at the dynamical level. The loop dynam-
ics of the rescattering effects, explicit in the microscopic,
model dependent formulation of the dynamical coupled
channels approach is a fundamental aspect of hadronic
reactions and is believed to play a key role in the un-
derstanding of single and multiple meson reactions. It is
encouraging that the CM approach, which gives model
independent[21] parametrizations of the πN elastic par-
tial wave amplitudes, encodes the dynamics of the model
approach.

Finally, we emphasize in closing, that the specific value
of the bare pole in the dynamical model, M (0)(P33) =
1391 MeV is a model dependent quantity. The value of
this bare parameter, which appears in the Lagrangian,
depends on several factors including the assumed unsta-
ble particle content (the assumed channel space), regu-
larization (ie., form factors) and approximations. In fact,
the well developed coupled-channel dynamical Jülich
model gives a different value for the bare mass. Reference
[22] gives, in their Table (5.3), the value 1459 MeV. In-
deed, model dependence can even be seen within a given
approach, if different model spaces and approximations
are considered. As examples of this, we can look at the
dynamical coupled-channel model of Ref.[23], a precur-
sor of the models in Refs.[15] and [16]. Table I of Ref.[23]
givesM (0)(P33) (theirm∆) as 1299 (1319) MeV for model
L(H). Alternatively, we observe various values of the bare
mass in different versions of the Jülich model. Table I
from Ref.[24] we see the value 1375 MeV, which can be
compared to the value 1459 MeV quoted from Ref.[22]
above. The origin of these shifts in the bare pole mass
are identifiable as a consequence of the particular details
of a given model formulation. The shifts do not indi-
cate, at least to us, a measure of the quality of any given
model. Nevertheless, the model dependence of the bare
parameters are seen clearly and our earlier caveat appears
warranted. Here, however, we have made the case that
despite the model dependence of the bare pole position,
certain features of dynamical model treatements and our
CM parametrization approach are similar insofar as their
dynamical treatment is quantitatively comparable.
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