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Curvature perturbation spectra from waterfall transition, black

hole constraints and non-Gaussianity
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We carried out numerical calculations of a contribution of the waterfall field to the primordial
curvature perturbation (on uniform density hypersurfaces) ζ, which is produced during waterfall
transition in hybrid inflation scenario. The calculation is performed for a broad interval of values
of the model parameters. We show that there is a strong growth of amplitudes of the curvature
perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes com-
parable with the square of Hubble parameter. We show that in this limit the primordial black hole
constraints on the curvature perturbations must be taken into account. It is shown that, in the same
limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are
strongly non-Gaussian.

PACS numbers: 98.80.-k

I. INTRODUCTION

In last two years an interest in hybrid inflation models was very much revived [1–7]. The main questions which
were discussed are dynamics of the waterfall field and its influence on the total spectrum of density perturbations
produced by inflationary expansion. It was suggested, in particular, that fluctuations in the waterfall field could lead
to non-Gaussian curvature perturbation at rather large scales (even, possibly, at cosmological scales). Note that, in
general, hybrid inflation models remain theoretically attractive up to now, especially in the context of supergravity
and string theories (see, e.g., [8, 9]).
In many cosmological scenarios the period just after the end of inflation, i.e., the inflaton decay and the subsequent

evolution of the decay products to a thermal equilibrium starts with preheating, and one of the most studied models
is hybrid inflation with tachyonic preheating. It had been shown in [10] that preheating after hybrid inflation goes
through the tachyonic amplification due to the dynamical symmetry breaking, when one of the fields rolls to the
minimum through the region where its effective mass-squared is negative. In the process of this rolling amplitudes of
field fluctuations grow exponentially leading to a fast decrease of a height of the inflationary potential (“false vacuum
decay”).
As is shown in the recent papers [1–7] the power spectrum of the comoving curvature perturbations from the

waterfall field in hybrid inflation with tachyonic preheating is very blue: it depends on comoving wavenumber k
like (k/k∗)

3 (for k < k∗) and is negligible on the cosmological scales. Absolute value of the spectrum amplitude at
k ∼ k∗ (as well as the value of k∗) depends on model parameters. In principle, this spectrum at k ∼ k∗ may be quite
substantial, and, in this case, it may be constrained by data of primordial black hole (PBH) and relict gravitational
wave (GW) searches.
It is well known that steeply blue spectra of the comoving curvature perturbation are predicted in models with

false vacuum inflation, for example in the concrete model where the inflationary potential has a local minimum for a
trapping of the field and a high temperature correction for a termination of inflation [11, 12].
Primordial density perturbation spectra with blue tilt (of (k/k∗)

n-type) or, more generally, spectra having broad
peak features at some k∗ value are predicted in two-field models of inflation ending by preheating (going through the
parametric resonance) [13] and even in one-field inflation models (in particular, in models with tachyonic preheating
after small-field inflation [14, 15]). The characteristic values of k∗ (i.e., the k-values of modes which become dominant
as a result of tachyonic amplification or parametric resonance) are different in different models. In preheating after
chaotic inflation [16, 17] where the perturbations are amplified by parametric resonance, power spectra are peaked
at scales k/aH ≫ 1, whereas in models of small-field inflation the spectra may be peaked around the Hubble scale.
In preheating after hybrid inflation, the typical scale of k-values amplified by the tachyonic instability must be sub-
Hubble if the phase transition is fast, i.e., if it takes less than a Hubble time [1, 18]. Clearly, the k-value of the
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dominantly amplified mode is an important characteristic of a preheating model because large curvature and density
perturbations of the Hubble size may result in an abundant production of PBHs and GWs.
In the first stage of tachyonic preheating in models of hybrid inflation the amplification of initial quantum fluctua-

tions of the non-inflaton field is realized due to the classical inflaton rolling or, in a case of the small initial velocity of
the inflaton field, due to processes of quantum diffusion [10]. The former case is characterized by the existence of a
period of the linear evolution of the non-inflaton field. The evolution in this case can be studied using the cosmological
perturbation theory [19–21] or δN approach [22, 23].
In the present paper we want to study in detail the dependence of the primordial curvature perturbations produced

by hybrid inflation with tachyonic preheating on parameters of the inflationary potential. We show, in particular,
that perturbation amplitudes strongly depend on the mass of the waterfall field mχ. More exactly, it depends on
the relation |m2

χ/H
2|, where H is a value of the Hubble parameter during inflation. At small values of this relation,

|m2
χ/H

2| ∼ 1, the waterfall transition is rather slow, and the expansion of the Universe can not be ignored. Our main
aim is to predict concrete values of the perturbation spectrum amplitudes, as well as a form of the k-dependence of
the spectrum. So, we preferred to use the results of the numerical (rather that analytical) solution of the equations
for the time evolution of the waterfall field. The approximate analytic expression for the power spectrum amplitude,
according to which one has, roughly, [7]

Pζ ∼
∣

∣

∣

∣

H2

m2
χ

∣

∣

∣

∣

·
(

k

k∗

)3

, k < k∗, (1)

were obtained in the limit of the fast waterfall transition, when |m2
χ| ≫ H2, and can not be used in a whole region of

the parameter space.
The plan of the paper is as follows. In Sec. II we calculate the time evolution of the power spectra of the waterfall

field perturbations and the spectra at the end of the waterfall. The curvature perturbation spectra from the waterfall,
as a function of model parameters, are calculated in Sec. III. In Sec. IV we give estimates for the possibility of PBH
production in hybrid inflation model, with taking into account the non-Gaussianity of produced perturbations. Sec. V
contains our conclusions.

II. CALCULATION OF WATERFALL FIELD AMPLITUDES

We consider the hybrid inflation model which describes an evolution of the slowly rolling inflaton field φ and the
waterfall field χ, with the potential [24, 25]

V (φ, χ) =

(

M2 −
√
λ

2
χ2

)2

+
1

2
m2φ2 +

1

2
γφ2χ2. (2)

The first term in Eq. (2) is a potential for the waterfall field χ with the false vacuum at χ = 0 and true vacuum at

χ2
0 = 2M2/

√
λ ≡ v2. The effective mass of the waterfall field in the false vacuum state is given by

m2
χ(φ) = γ

(

φ2 − φ2
c

)

, φ2
c ≡ 2M2

√
λ

γ
. (3)

At φ2 > φ2
c the false vacuum is stable, while at φ2 < φ2

c the effective mass-squared of χ becomes negative, and there
is a tachyonic instability leading to a rapid growth of χ-modes and eventually to an end of the inflationary expansion.
The evolution equations for the fields are given by

φ̈+ 3Hφ̇ = −φ(m2 + γχ2), (4)

χ̈+ 3Hχ̇−∇2χ = (2
√
2M2 − γφ2 − λχ2)χ. (5)

Here, we ignore the spatial gradient term in the equation for φ. Before the waterfall transition, i.e., at φ2 > φ2
c , the

waterfall field is trapped at χ = 0, so we can consider Eq. (5) as an equation for the vacuum fluctuation δχ.
One should note that, as we will see below, the typical scale of the fluctuations amplified during the waterfall

transition is of the order of the Hubble scale, or larger. In such a case, the back-reaction effects (due to perturbations
of metric) may be non-negligible. To minimize the back-reaction effects, we will work in the vacuum-dominated
regime, i.e., we assume that the vacuum energy M4 dominates, so that the Hubble parameter is effectively a constant,

H2 = H2
c =

M4

3M2
P

. (6)
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FIG. 1: The numerically calculated dependence of δχk on time for two values of k: k = 0.01Hc (solid curve) and k = Hc

(dashed curve). Other parameters used for the calculation are: β = 100, r = 0.1, Hc = 1011 GeV, φc = 0.1MP . For this set of
parameters, the waterfall ends near Ht ≈ 3.5, but we proceed the curves further just to show the asymptotic behavior.

Besides, we consider only the case of small φ̇, satisfying the condition

φ̇

Hδφ
≪ 1. (7)

As for Eq. (5), the back-reaction effects are small because the unperturbed value of 〈χ〉 is equal to zero [1].
The solution of Eq. (4) is (for t > tc, tc is the critical point when the tachyonic instability begins)

φ = φce
−rHc(t−tc), r =

3

2
−
√

9

4
− m2

H2
c

. (8)

The scale factor a is normalized to 1 at the time of the beginning of the waterfall (at t = tc = 0), so

a = eHct. (9)

The conformal time in this case is

η = − 1

Hc
e−Hct = − 1

aHc
, (10)

corresponding to the de Sitter expansion.
From Eq. (5), one obtains the equation for Fourier modes of δχ:

δχ̈k + 3Hδχ̇k +

(

k2

a2
− βH2

c + γφ2

)

δχk = 0. (11)

Here, the parameter β is given by the relation

β = 2
√
λ
M2

H2
c

. (12)

Substituting the solution for φ in Eq. (11) and introducing the new variable, u = aδχ, one obtains the equation

u′′
k + (k2 + µ2(η))uk = 0, µ2(η) =

β(|ηHc|2r − 1)− 2

η2
. (13)
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FIG. 2: The numerically calculated spectra Pu(k) at different moments of time, for β = 1, r = 0.1, Hc = 1011 GeV,
φc = 3× 10−6MP . From bottom to top, −ηH = 103, 101, 10−1, 10−3, 10−5, 10−7, 10−9 (the waterfall ends near −ηH = 10−9).

Here, primes denote the derivative with respect to conformal time η. The normalization at early times, when k ≫ µ,
is u = 1√

2k
e−ikη. The definition of the power spectrum of u, as usual, is

Pu =
k3

2π2
Pu =

k3

2π2
|uk|2. (14)

We show some results of numerical calculations in Figs. 1-3. In Fig. 1 we show how χk depends on time for two
different values of k (k = H and k ≪ H). It is seen that time evolution of both modes after the waterfall is almost
the same. Following [5] we assume that the growth era ends when the last term in right-hand side of Eq. (4) becomes
equal to the preceding one, i.e, when

〈χ2〉 = m2

γ
≡ χ2

nl. (15)

The asymptotic growth law of k-modes of the waterfall field is approximately [3]

χ ∼ esHt, s =

√

9

4
+ β − 3

2
. (16)

It follows from Eq. (16) that at large β the asymptotics of χ is e
√

βHt, and the time scale of a period of the tachyonic
instability is much less than a Hubble time.
The typical example of the calculation of the power spectrum of u is shown in Fig. 2. This Figure is similar with

Fig. 3 of [3], where analogous quantities for the case β = 100, r = 0.1 were shown. It is seen from our Fig. 2 that
even for the case β = 1 the waterfall is still effective, however it is much slower (it takes ∼ 20 e-folds for β = 1 while
in the case of β = 100 the number of e-folds is ∼ 3.5).
Fig. 3 shows the form of Pδχ(k) at the moment of the end of the waterfall (determined by Eq. (15)), for several

parameter sets. Note also, that we impose an artificial cutoff of large-k modes in our numerical calculation, which
corresponds to considering only the waterfall field modes that already became classical at the beginning of the waterfall.
Technically, the cutoff is imposed at the local minimum of Pδχ(k)-curve.
After a calculation of the power spectrum of δχ, we calculate the spectrum Pδχ2 (k) at the end of the waterfall by

the formula followed from the convolution theorem [26]:

Pχ2(k) =
2

(2π)3

∫

d3k′Pχ(k
′)Pχ(|~k − ~k′|). (17)
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FIG. 3: The numerically calculated spectra Pδχ(k) at the moment of the end of the waterfall. For all cases, r = 0.1,
Hc = 1011 GeV, φc = 0.1MP . From bottom to top, β = 1500, 100, 7.

III. CURVATURE PERTURBATION SPECTRUM

The main equation for a calculation of the primordial curvature perturbation (on uniform density hypersurfaces)
is [27]

ζ = −
∫

dt
Hδpnad
p+ ρ

, (18)

where the non-adiabatic pressure perturbation is δpnad = δp− c2sδρ and the adiabatic sound speed is c2s = ṗ/ρ̇. The
formula (18) follows from the “separated universes” picture where, after smoothing over sufficiently large scales, the
universe becomes similar to an unperturbed FRW cosmology. In our case, one has

p+ ρ = φ̇2 + 〈χ̇2〉, (19)

and

δpnad = δpχ − ṗ

ρ̇
δρχ (20)

(p = pφ + 〈pχ〉; ρ = ρφ + 〈ρχ〉).
For pχ and ρχ, neglecting spatial gradients, we can write (χ and χ̇ are functions of both time and coordinates):

pχ = −
m2

χ(t)

2
χ2 +

1

2
χ̇2, (21)

ρχ =
m2

χ(t)

2
χ2 +

1

2
χ̇2 (22)

(where, for brevity, m2
χ (φ(t)) ≡ m2

χ(t)).
The possibility of ignoring of spatial gradient terms in expressions for ρχ and pχ is discussed in [1, 7]. It was shown

there that there are two sufficient conditions for such a possibility: i) the exponential growth of the fluctuations is
dominated by the modes with typical momentum k∗, and ii) the χ-field is heavy, i.e., |m2

χ| >∼ H2, or β >∼ 1.
If a time behavior of χ(~x, t) ≡ χ(t) is known, χ(t) = Cf(t) (where f(t) is an arbitrarily normalized function giving

time behavior of χ(t); it is seen, in particular, from Fig. 1, that time evolution of different modes of χ is almost the
same), then

χ̇(t) = Cḟ(t) = χ(t)
ḟ(t)

f(t)
, (23)
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so we can write

δpχ =
1

2



−m2
χ(t) +

(

ḟ(t)

f(t)

)2


 δχ2, (24)

δρχ =
1

2



m2
χ(t) +

(

ḟ(t)

f(t)

)2


 δχ2, (25)

and, because χ(t) = Cf(t),

〈χ2(t)〉 = χ2
nl

f2(t)

f2(tend)
, (26)

〈χ̇2(t)〉 = χ2
nl

ḟ2(t)

f2(tend)
. (27)

Finally, for the average values, one has

〈pχ〉 =
1

2



−m2
χ(t) +

(

ḟ(t)

f(t)

)2




(

f(t)

f(tend)

)2

χ2
nl, (28)

〈ρχ〉 =
1

2



m2
χ(t) +

(

ḟ(t)

f(t)

)2




(

f(t)

f(tend)

)2

χ2
nl. (29)

The values of pφ and ρφ are

pφ = −V (φ) +
1

2
φ̇2, ρφ = V (φ) +

1

2
φ̇2, (30)

where, for our case, V (φ) = 1
2m

2φ2.
For the curvature perturbation, we have the integral

ζ = −
∫

Hcdt

φ̇2 + 〈χ̇2〉
δχ2(t)

2



−m2
χ(t) +

(

ḟ(t)

f(t)

)2

− ṗ

ρ̇



m2
χ(t) +

(

ḟ(t)

f(t)

)2






 . (31)

The relation between curvature perturbation and χ2-spectra is

Pζ = A2Pδχ2(tend), (32)

where the value of the spectrum in the right-hand side is calculated at a time of the end of the waterfall, tend, and A
is to be determined. The values of χ2 at different times are related by

χ2(t) = χ2(tend)

(

f(t)

f(tend)

)2

, (33)

so we can extract the value of A,

A =

tend
∫

0

Hcdt

φ̇2 + 〈χ̇2〉

(

f(t)

f(tend)

)2
1

2



−m2
χ(t) +

(

ḟ(t)

f(t)

)2

− ṗ

ρ̇



m2
χ(t) +

(

ḟ(t)

f(t)

)2






 . (34)

We show results of the calculation of Pζ(k) in Fig. 4. It is seen that the spectrum can reach rather large values (of
order of 1) for the case of β ∼ 1 (if r is in a broad interval, say, 0.1÷ 0.001).
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FIG. 4: The numerically calculated spectra Pζ(k) at the moment of the end of the waterfall. Parameters used for the calculation
are: r = 0.1, Hc = 1011 GeV (all curves); φc = 3× 10−6MP (for β = 1, 2, 7); φc = 0.1MP (for β = 100, 1500).

In Fig. 5 we show the model parameter regions that lead to rather large values of Pζ. We also show, on the same
Figure, the parameter region where waterfall is not effective (classical regime is not reached) and boundary of φc = 1
(in units of Planck mass MP ).
At the end of this section, we numerate the constraints on the parameter space which follow from the assumptions

used for an obtaining of the main results.
1. Slow roll of the inflaton field:

m2 ≪ H2
c . (35)

2. False vacuum dominance:

M4 ≫ 1

2
m2φ2

c . (36)

3. Small φ-condition (for justifying of the omission of high powers of φ in the inflaton potential):

φc ≪ MP . (37)

4. Small effects from back-reaction:

φ̇

Hδφ
≪ 1. (38)

If δφ ∼ Hc/2π, it leads to 2πr2/
√
γ ≪ 1.

5. Condition for δχk to be classical field [1]

√
γ ≪ 1√

β
. (39)

6. Condition for a dominance of the scenario with the inflaton’s classical rolling [18]:

φ̇c > γλv2, or γ3/2 <
√
r. (40)

IV. PBH PRODUCTION FROM NON-GAUSSIAN PERTURBATIONS

A production of PBHs during reheating process had been considered in works [13, 14, 28–30]. The classical PBH
formation criterion in the radiation-dominated epoch is [31]

δ > δc ≈ 1/3, (41)
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FIG. 5: The allowed ranges for the values of γ and λ and the corresponding maximum values of Pζ(k) that are reached. Left
panel: r = 0.1 (m ≈ 0.5Hc). Right panel: r = 0.001 (m ≈ 0.05Hc). For both panels, Hc = 1011 GeV.

where δ is the smoothed density contrast at horizon crossing. The Fourier component of the comoving density
perturbation δ is related to the Fourier component of the Bardeen potential Ψ as

δk = −2

3

(

k

aH

)2

Ψk. (42)

For modes in a super-horizon regime, Ψk ≈ −(2/3)Rk ≈ −(2/3)ζk, so (41) can be translated to a limiting value of
the curvature perturbation [32], which is

ζc ≈ 0.7. (43)

It is seen from (31) that the curvature perturbation generated by waterwall field has a negative sign, so, naively, the
threshold (43) can’t be reached. However, the perturbations must be considered with respect to the average value, so

ζ → ζ0 = ζ − 〈ζ〉, (44)

and the condition for individual PBH formation is ζ0 >∼ ζc, while PBHs will exceed the currently available limits on
their average abundance already for |〈ζ〉| only slightly exceeding ζc (i.e., |〈ζ〉| − ζc ≪ 1) [7], so, practically, the PBH
constraint on ζ is just |〈ζ〉| < ζc.
For the distribution of ζ0 we may write

ζ0 = −(g2 − 〈g2〉), (45)

where g is gaussian (in our case, g ∼ δχ), and for the average of ζ20 , using known properties of Gaussian distributions,

〈ζ20 〉 = 2〈g2〉2 = 2|〈ζ〉|2, (46)

so, in terms of 〈ζ20 〉 the significant PBH formation will happen if

〈ζ20 〉 =
∫

Pζ(k)
dk

k
>∼ 2ζ2c ≈ 1. (47)

In case of Pζ-spectra shown in Fig. 4, the curve corresponding to β = 2 is close to the bound (47) while the curve
for β = 1 has 〈ζ2〉 ≈ 7 which makes that set of parameters forbidden by the PBH formation constraint.
The mass of the PBHs produced from curvature perturbation spectra presented in Fig. 4 can be estimated as

follows. The horizon mass at the end of inflation is

Mi ≈ (H−1
c )3ρ =

3M2
P

Hc
∼ 102 g, (48)
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and using a well-known dependence for the horizon mass corresponding to fluctuation having wave number k, Mh ∼
k−2 (see, e.g., [33]), we have

MBH ≈ Mh ≈ Mi

(

a(tend)Hc

k

)2

. (49)

For the case of Fig. 4, curve for β = 1 corresponds to MBH ∼ 1019 g (the mass range of non-evaporating PBHs that
can constitute dark matter) while β = 2 corresponds to MBH ∼ 1013 g (such PBHs have already evaporated, but the
products of their evaporation can be, in principle, observable).

V. CONCLUSIONS

We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation
(on uniform density hypersurfaces) ζ, which is produced during waterfall transition in hybrid inflation scenario. The
calculation is performed for a broad interval of values of the model parameters.
We did not consider the contribution to ζ from inflaton rolling, which is dominant at cosmological scales. One

should note that the simple quadratic inflationary potential used in the present paper can be easily corrected (see,
e.g., [34]) to give a red-tilted spectrum at cosmological scales (converting, e.g., the original hybrid inflation model to
a hilltop model [35, 36]), without any modification of our predictions for small scales.
Main results of the paper are shown in Figs. 4, 5. One can see from the Fig. 4 that peak amplitudes of Pζ strongly

depend on the value of β (curiously, Pζ ∼ 1 corresponds to β ∼ 1 in a broad interval of γ and r). The peak values,
k∗, for small β are far beyond horizon, so, the smoothing over the horizon size will not decrease the peak values of
the smoothed spectrum. Furthermore, the spectrum near peak remains strongly non-Gaussian after the smoothing.
Our calculations based on the quadratic inflaton potential show that for β <∼ 100 and in the broad interval of r the
peak value k∗ can be estimated by the simple relation:

k∗
aH

∼ e−N , (50)

where N is the number of folds during the waterfall transition.
We conclude that the strong growth of amplitudes of the curvature perturbation spectrum at β → 1, which had

been anticipated in pioneering works [37, 38], really takes place. However, the condition which is very often used as a

constraint, that the bare mass-squared of the χ-field, −m2
χ = 2

√
λM2, must be much larger that H2 (the so-called

“waterfall condition” [39]) seems to be too restrictive. Our results show that only at −m2
χ ≈ H2 the amplitute of

the curvature spectrum Pζ becomes close to one, i.e., enters into a region that can be constrained by PBH data. It
would be very interesting to analyze the corresponding constraints following from data of relict GW searches (see,
e.g., [18, 40, 41]).
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