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1. INTRODUCTION

The existence of periodic solutions for differential system has received a great deal of
attention in the last few decades.

Differing from ordinary differential equations and partial differential equations that do not
contain delay variant, it is very difficult to study the existence of periodic solutions for functional
differential equations. For this reason, many mathematicians developed a good many different

approaches like the averaging method[1], the Massera-Yoshizawa theory[2,3], the Kaplan-York
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[4] method of coupled systems, the Grafton cone mapping method[5], the Nussbaum method
of fixed point theory [6] and Mawhin [7] coincidence degree theory etc.

In this paper, by critical points and operator equations theory, we first study the existence
of subharmonic periodic solutions to second-order nonlinear and nonautonomous mixed-type

functional differential equations

{ 2 (t) + 2 (t — 27) + f(t,x(t), x(t — ), z(t — 27)) = 0, 1)

z(0) = 0.

Our basic assumptions are the following;:
(A1) f(t,z1,20,23) € C(RY, R), and 221r2:ms) o
(Ay) there exists a continuously differentiable function F (¢, z1,z5) € C'(R?, R) with such
that
FQI(tv T, xQ) + Fl/(ta T2, .Tg) = f(t7 Ty, T2, .’L'g),

where Fj(t,x1,x9) and F](t, za,23) denote aF(gz;’“) and 8F(g§z’x3), respectively;

(A3) F(t+7,21,22) = F(t,21,x2) for all z1, 29, € R.
2. Variational Structure

Fix v > 1,7 > 0, where 7 is a positive integer number and consider

Hy[0,277] = {z(t) € L*[0,2y7] | 2'(t) € L]0, 277], (t) is 2y7-periodic function in ¢

z(0) =0, and x(t) has compact support on [0, 2vy7]}.

It is obvious that Hg[0,2v7] is a Sobolev space by defining the inner product (-,-) and the
norm || - | by

2yT

2yT .
<oy >upa= [ FOFOd olmomn =( [ 2 OFd)
0 0
Let us consider the functional I(z) defined on H}[0,2v7] by
2yT
I(x) = / [/ ()2’ (t — 7) — F(t, z(t), z(t — T))]dt. (2.1)
0
For all z,y € H}[0,2y7] and £ > 0, we know that
2yt
<I'(z),y> = / [—2"(t+7)—2"(t—T)
0
- F,(ta®),2(t—1)) - F, ¢t 2+ 7),2())]y(t)dt.
Therefore, the Euler equation corresponding to the functional I(x) is
2"t +71)+a"(t—71)+ [F,, (txt),x(t — 7))+ F,, (t,z(t +7),2(t))] = 0. (2.2)

Since I(z) has neither a supremum nor an infimum, we do not seek critical points of the

functional I(z) by the extremum method. But we may use operator equation theory. First by
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the dual variational principle, we get new operator equations (see (4.2)) correlating with the
equation (1.1). Then obtain solutions of the system (1.1) by seeking critical points of operator
equations (4.2).

For this, in section 3, we introduce subdifferentiability of lower semicontinuous convex
functions ¢(x(t),z(t — 7)) and its conjugate functions. In section 4, first we give the definition
of the weak solutions of the equation (1.1), then we establish the new operator equations (4.2)
correlating with the equation (1.1) by the conjugate functions of F (¢, x(t),xz(t — 7)) and show
that we can obtain solutions of the equation (1.1) from the solutions the operator equations
(4.2). Finally, in section 5, by seeking critical points of the operator equations (4.2), we get the
result that there exists multiple subharmonic periodic solutions of the system (1.1).

In this paper, our main tool is the Maintain pass theorem as follows:

Lemma 2.1  Let H be a real Banach space, I(-) € C'(H, R) satisfies the Palais-Smale
condition, and the following conditions:

(1) There exist constants p > 0 and a > 0 such that I(x) > a,Vz € 0B,. where
B, ={xeH: |z|u <p}

(2) 1I(#) <0 and there exists zo€B,, such that I(zy) < 0. Then ¢ = }mg sup I(h(s))is a
S s€[0,1]

positive critical value of I, where
I'={heC([0,1],H) | h(0) =0,h(1) = zo}.

3. The subdifferentiability and the conjugate function of the lower
semicontinuous convex function ¢(z(t),z(t — 7))

Let X be a space of all given n x 7-periodic functions in ¢ and be a Banach space, where
n € N is a positive integer number. Denote R = R U {+oc0}. Let » : X? — R be a lower
semicontinuous convex function. Generally, ¢ is not always differentiable, but we may generalize
the definition of “derivative” as follows:

Definition 3.1 Let (z},23) € X* x X*. We say that (z],23}) is a sub-gradient of ¢ at
point (zo(t), (xo(t — 7)) € X x X if

o(xo(t), zo(t — 7))+ < ai,z(t) —xo(t) > + < a3, 2(t —7) —2(t — 7) > < @(2(t), z(t — 7)).

For all zo(t) € X, the set of all sub-gradients of ¢ at point (z¢(t),zo(t — 7)) will be called the
subdifferential of ¢ at point (zo(t),zo(t — 7)), and will be denoted by dp(zo(t), zo(t — 7)).
By definition of subdifferentiability of the function ¢, we may define its conjugate function
©* by:
" (27, m3) = sup{< a1, () > + <@y, x(t — 7) > —p(a(t), z(t — 7))},
where < - > denotes the duality relation of X* and X. So, It is not difficult to obtain the

following propositions.
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Proposition 3.1 ¢* is a lower semicontinuous convex function (¢* may have functional
value 400, but not functional value —oo ).

Proposition 3.2 If ¢ <, then ¢* > ¢*.

Proposition 3.3 (Yang inequality)

o(x(t),z(t — 7)) + " (2], x5) >< 7, z(t) >+ < x5, 2(t —7) >.

Proposition 3.4 o(x(t),z(t — 7)) + ¢* (2], x5) =< z7,2(t) >+ < x5, z(t — 1) >
& (a1, 33) € 0p(x(t), x(t — 7).

Proposition 3.5 ¢* does not always equals to +oo.
Now that ¢* is a lower semicontinuous convex function that does not always equal +o0,

we may define its conjugate function ¢** by

Kok ok koK Kok * ko * * *
O (2, s = sup {< ™z} >+ <y xd > —p(x],x3)},
(z7,5)eX*xX*

where < - > denotes the duality relation of X** and X*.

Theorem 3.1 Let ¢ be a lower semicontinuous convex function that does not always
equal 400, then ** = ¢.

Proof We divide our proof into two parts, first showing that p** = ¢ holds when ¢ > 0
and then showing that ¢** = ¢ holds for all lower semicontinuous convex functions ¢ that do

not always equal to +oo.

(i) ¢=0.

From the definition of ¢** and the Yang inequality, it is obvious that ¢** < ¢ holds.

Next, to prove ¢** > ¢ holds, suppose to the contrary that there exist a point (xo(t), zo(t—
7)) € X?, such that o**(zo(t), zo(t — 7)) < p(xo(t), z0(t — 7)) holds.

Consider the two convex sets
A= eip pA(x(t),z(t — 7),8) € X* x R | p(a(t),z(t — 7)) < +00, B = p(a(t),z(t — 7))}

Bo = {(zo(t), 2ot = 7), 0" ((wo(1), 2o (t — 7)))}-

By Hahn-Banach Theorem, we know that there exists (g1, g2, k*) € X* x X* x Rand oy € R
such that

< g, x(t) >+ < go,x(t —7) > +E* B > ay, Y(x(t),z(t —7),5) € eip @, (3.1)

< g1, %o(t) >+ < go,wo(t — 7) > +k" 0" ((x0(t), zo(t — 7)) < 3. (3.2)

So, it follow that k* > 0. Let € > 0. Using ¢ > 0 and (3.1), one gets that
<gnzt) >+ <go,z(t—7)>+k*+e)p(x(t),z(t — 7)) > oy V(x(t),z(t — 7)) € D(p)
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So, we have

* g1 g2 aq
- — < - .
' k*x+¢’ k‘*—i—s)_ k*+¢
Then, by definition of ¢**, we obtain that
s g1 g2 * g1 g2
t), ot — > < a(t) >+ < ——— mo(t —7) > —*(— ,—
" (wo(t), wo(t — 7)) > k*+€$0() + k*+5$0( 7) Sﬁ(k*+6 k*+€)
g1 92 aq
> < - JTo(t) >+ < ———— 2ot —7) > .
- k*+e zo(t) > + k*+e zo(t = 7) +/<:*+€

That is to say,
< g1, wo(t) >+ < go,xo(t —7) > +(k™ + €)™ ((xo(t), xo(t — 7)) > aq, Ve >0,

which is a contradiction to (3.2).
(ii) For all ¢, by Proposition 3.5, we know D(p*) # ¢. Choose (z3,,x3,) € D(¢*), and
define the function @ by

Px(t),2(t = 7)) = @(x(t), z(t = 7))= <10, () > = < @30, 2(t = 7) >+ (279, 30)-

Then @ is a lower semicontinuous convex function that not always +o0o and satisfies > 0. By

the result of (i), one gets $** = @. On the other hand, we have
(a1, 23) = (2] + g, 25 + 259) — ¢" (210, T30)
@ (2(t), x(t — 7)) = @(2(t), 2(t — 7)) = <@g, 2(t) > — < 230, 2(E — 7) >+ (270, T30)-

That is @ = ¢.
Corollary 3.1 Let ¢ be a lower semicontinuous convex function that does not always

equal to +00. Then (z7,x3) € dp(x(t), z(t — 7)) if only if
(@(t), x(t — 7)) € g™ (a7, x3).

4. The weak solutions of the equation (1.1)

Definite operator A = %. By (2.2) and

<u(t), Aw(t)) >= /0 v w(t)w” (t)dt = u(t) (W' ()7 — /0 v W () (t)dt =< Au(t),w(t) >

<u(t), Alw(t—7)) >=< Au(t+7),w(t) > and <u(t—7),A(w(t)) >=< A(u(t—7)),w(t) >,

we may define a weak solution of the equation (1.1) as follows:
Definition 4.1 For u € L?|0, 2y7], we say that u is a weak solution of the equation (1.1),
if
<u(t), Alw(t—71)) >+ <u(t—71), Alw(t)) > + < w(t), Fy(t,u(t),u(t — 1)) >
+ <w(t—71),F5(t,u(t),u(t — 7)) >=0,
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for all w(t) € D(A) N LP[0,2y7], where

<u(t),v(t) >= /0 v u(t)v(t)dt,

when u(t) € L?[0,2vy7],v(t) € L?[0,2v7], where 2 < p < 400, % + % =1.

Our object is that define the conjugate functions of F'(¢,z(t), z(t — 7)) using the definition
of definition subdifferentiability of lower semicontinuous convex functions, and making use of
the dual variational structure. So we add the conditions on the function F(¢,z(t),z(t — 7)) as
follows:

(Ag) uw = (uy,us) = F(t,ui,us) is a continuously differentiable and strictly convex func-

tion, and satisfies
F(t,0,0) =0, F;{(t,0,0) = Fy(¢,0,0) =0, Vt € [0, 2v7];

(As) for ap = %, there exist constants M, C' > 0, such that when |u] = \/u? + u3 > C we
have,
F(t,ur,uz) < aoFy (L, ur, ug)uy + Fy(t, uy, ug)us],

F(t,u1,us) < M|u|;

(A6)
lim F<t7u1au2>
lu|—0 |ul|?

=0.
So, we set up the conjugate functions of the function F'((¢,z(t),z(t — 7)) by

H(t,w(t),w(t—1)) = a;(t)esLlrl)ﬁ)J , T]{< wt),z(t) >+ <w(t—71),2(t —7) > —F(t,z(t),z(t — 7))},

where t € [0, 277].
Then H is a continuously differentiable and strictly convex function. By duality principle

(Corollary 3.1), we get that
(w(t),w(t —7) = (Fy(t, x(t), x(t — 7)), F5(t, 2(t), x(t — 7)))

& (Hy(t,w(t),w(t — 7)), Hy(t, w(t),w(t — 7)) = (2(t), z(t — 7)), (4.1)

where H(t,w(t),w(t — 7)) and Hj(t,w(t),w(t — 7)) denote 8H(t’w§:)(’;‘;(t_7)) and aH(tB’“L((?_’i%_T)),

respectively.

Let R(A) denote value field of the operator A. Then R(A) is a closed set. Let P be the
orthogonal projection operator of R(A) and K = A'P. Then it is not difficult to see that K
maps continuous continuation into a compact operator of L?[0,2y7] — L9[0, 2v7].

Let

E {(v(t),v(t — 7)) € (L10,2y7])2 v(0) = 0 | < ¢(t),v(t) >=< ¢(t),v(t —T) >

= <o¢(t—71),0(t) >=0, Vo(t) € R(A) N LP[O,2v7], $(0) = 0},
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where R(A) = {u € D(A) | A((u(t) + u(t — 27) = 0}.
We want {(v(t),v(t — 7)), (x(t), x(t —7)))} to satisfy

~

X(t) = K(v(t — 7)) + Hy (t, v(t),v(t — 7)),

X(t —7) = K (u(t)) + Hy(t,v(t),v(t — 7)),

where (v(t),v(t — 7)) € E,x(t) € R(A) N LP[0, 2y7], that is (x(t), x(t — 7)) € E*.

If {(v(t),v(t—7)), (x(t), x(t—7))} is a solution of (4.2), then when let u(t) = H;(t,v(t), v(t—

7)), u(t—71) = Hi(t,v(t),v(t — 7)), by the duality principle and (4.2), we can get u(t) is a weak

solution of the equation (1.1).

5. Seeking the solutions of the operator equation (4.2) via critical
point theory

Theorem 5.1  Under the assumptions (A;) ~ (Ag), the problem (1.1) has at least one
nontrivial weak 2vy7-periodic solution.

Let v = (v(t),v(t — 7)), and

o v (o K (t) _ Ku(t—7)
v(t —7) K 0 v(t —7) Ku(t) '

It is not difficult to verify that < K(v),1) >=< v, K(¢)) >=< Kv(t — 7),%(t) > + <
Kuo(t),y(t — 1) >, where ¢ = (¢(t),1(t — 7)), that is, the operator K is symmetric operator.

We may get the solutions of the equations (4.2) by seeking critical points of the functional
J(v) defined by

K(),v >+ [27 H(t,v)dt

<
<E@@—ﬂ,()>+§<Kmﬂm@—7y>+£Wfaumwm@—rnw.(5U

Because J may be regarded as the restriction to F of the function J defined on L9 [0, 2y7] X
L]0, 2~7] and having identical components. Moreover
J'(v) = K(v) + H'(v).

Since
<T@ = T(@)2>=0  YoeR, z=(s(t),At—7)) € F,

then there exists x(t) € R(A4) and x, = (xu(t), Xo(t — 7)) € E+ such that
T'(v) = J'(v) = x

So, if v* is a critical point of J'(v*) = 0 on E, then there exists x7. = (x5 (t), X} (t—7)) € E+
such that
K@*)+ H'(v*) = X}«

- 8-
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So, {v*, x;.} is a solution of the equation (4.2), that is, {(v*(t),v*(t — 7)), (x5- (), x5-(t — 7)) }
is a solution of the equation (4.2).
Lemma 5.1 The following two conditions are equivalent:
(1) F(t,ur,us) < ao[F|(t,ur,us)us+Fy(t,us, us)us), Vt € [0,2v7], when |u| = \/m >

(2) F(t,Buy, Bug) > 5“%‘17(@“1,%2) >0, VB2>1,tel0,2y7]|ul > C.
Proof For all Vu = (uy,us), |u| > C, let ®(8) = F(¢, Buy, Bus), ¥(B) = B%F(t,ul,ug).
(2) = (1) By ®(B) > ¥(8), V8 > 1 and ®(1) = ¥(1), it is easy to see (1) > W'(1),
that is,
F(t,uy, u)uy + Fy(t, uy, ug)ug > O%F(t,ul,uQ).

(1)=(2) By
'(B) = F|(t,Bus, Buz)us + Fy(t, Buy, Buz)us
= LiF, Bur, Buz)Bus + it Bur, us)Bus) > ——8(B),
B s f

it follows that
F(tvﬁuhﬁUQ) 2 6$F(tvulvu2) > 07 Vﬂ Z 17t S [072’YT]

Lemma 5.2 Let F(t,u;,us) satisfy the assumptions (A4) and (As). Then there exist
constants m > 0 and M > 0, such that

F(t,uy,ug) > m(y/u? + u )é Vt € [0,2y7], when |u| > C,
|F'(t,uy,uz)| < (Q%M—m)(\/uf + u3 )712_1, when |u| > C,

where |F'(t, ur, u2)| = /| F{(t, u1, u2) > + [F3(t, ur, uz) |2
Proof Let

: F(t,uy,uz)
m= min ————,
(u1,u2)€0Bc Cez
where B¢ denotes the ball of radius centered at the origin in C. By (A4), one knows m > 0.

On the other hand, by Lemma 5.1 and (A5), we get

Cu,y Cus («/u%—l—u% )%2

t’ )
( Vu +ud Jud+ud C
> m(y/u? +ud ).

By convexity of the function F', one has

F(t,ul,UQ) Z F

F(t,ur,us) + Fi(t,ur,u2)(z1 — ur) + Fi(t,ur,uz) (20 — uz) < F(t, 21, 22).
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Let z = (21, 22) run all over the ball By,|(2) of radius centered at u = (u1,us) in |u|, and
choose the maximum of Fy(t,uy,us)(z1 — uy) + F5(t, u1,uz)(z2 — ug). Then it is not difficult to
see that

|F/ (8, uz)|fud + 0l < M(y/22 + 22 )72 —m(yJud +ud ).

By z < 2|u| we get that
|F! (£, uy, up)| < (252 M — m)(y/u2 +ud )21,
Lemma 5.3 H € C'(R3, R) is a strictly convex function and satisfies

H{(t,0,0) = Hy(t,0,0) = 0, H(t,0,0) =0, vt € [0, 2v7],

Ca2 1 Ca2 _1

W|w|1*“2 —C) < H(t,w(t),w(t—1)) < W|w|1*a2 + Oy, (5.2)

ore 1
M

where C1,--- ,Cy are constants, C,,, C},, are constants depending on az, and

C!|w| ™5 — Cy < [H'(t,w(t),w(t —7))| < Cayl ol ™=z +Cs,  (5.3)

w| = w2 (t) +w(t —7), [H'(t,w(t),w(t—7))| = V/[H{(t,w(t),w(t — 7)) + [Hy(t, w(t), w(t — 7)) 2.
Moreover, the function H satisfies

H(t,w(t),w(t=7) _
] =0 jwl?

(5.4)

Proof By Corollary 3.1 and FY(¢,0,0) = Fj(¢,0,0) = 0 = H;(¢,0,0) = H,(¢,0,0) =
0, Vte€[0,2y7]. And by the definition of H, we know H(¢,0,0) = 0.

Now we show that (5.2) holds. By (As) one gets F(t,ui,uz) < M|u|% + Cy, Yu =
(u1,us) € R% So, by Proposition 3.2 and Example 4.1, it is easy to see

C, 1
H(t,w(t),w(t = 7)) 2 25| =% = Cy,
M
S . ey
where C,, = 2722 /M T2~ (ay " —ay "2 ).
Similar arguments in the proof of Lemma 5.2, we know that there exists a constant Cy
such that
F(t,uy,ug) > m\u|°712 —Cs.

So, it follows that o
H(t,w(t),w(t—1)) < ﬁmﬁ 1O,

Then next we show that (5.3) holds. Again as in the proof of Lemma 5.2, we can estimate
H' by

9% 1 e
B (1 (0), 0(t = )| < Coy (o — 2l T3 4. C,

- 10 -
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where C5 = max{Cy + Cs, sup |H'(t,w(t),w(t — 7))|}. By Lemma 5.2 again and the duality
|w|<1
principle

(w1, u2) = (Hi(t, w(t),w(t — 7)), Hy(t,w(t),w(t — 7))
& (w(t),w(t—71)) = (Fll(tvulv’LLQ)vFQ/(tvu17u2))7
when |H'(¢t,w(t),w(t — 7))| > C, we have

w] < (272 M — m) [ H' (1, w(t), w(t — 7).

And since there exists a constant M¢ such that when |u| = \/u? +u3 = |H'(t,w(t),w(t —7)| <
C, we have
lw| = |F' (¢, ur, uz)| < Mc.

Choose

@2

Cl =(20=M-—m)=1,  C=Cl M.
Then it is not difficult to see
|H'(t,w(t),w(t —1))| > C |w| =42 — C4.

Finally, we show that (5.4) holds. By (Ag), for all € > 0, there exists § > 0 so that when

ul = Ju? +uj < J, we have
1 2
F(t,up,ug) < ey/u? + ui.

Now, for all K > 0, choose ¢ = ;&= and let n = 2e6(). Then when \/w?(t) + w2(t —7) < n,

and we get )
H(t,w(t),w(t—1)) > Zg(wz(t) + Wt —71)) = K|w|*

That is,
H(t,w(t),w(t—71))

|| —0 |w]|?
Lemma 5.4 There exist constants Cs and C§ depending on d, such that
Cs|wl|?, when |w| <4,

H(t,w(t),wt—71)) >
Cf|w|?, when |w| > 4,

and when 6 — +0, Cs — +o0.
Proof By (5.4), we know

H(t,w(t),w(t —1)) _
|| —0 |w]|?

So, when § — 40, one gets Cs A Inf{H (t,w(t),w(t — 7))/|w|* : |w| < §} — 40c0. That is

H(t,w(t),wt —71)) > Cslwl|?, (5.5)

- 11 -
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when |w| < 4.
We next show that the second part of the inequality holds.
For all wy = (wo(t),wo(t — 7)), |wo| =1, let ¢u, (8) = H(t, Bwo(t), Bwo(t — 7)). Then

Do (B) = Hi(t, B (t), Bwo(t — 7))wo(t) + H(t, Bwo(t), Bwo(t — 7))wo(t — 7).

Since ¢, is a convex function, for all 8 > 0, we have
1

H(t, Bwo(t), Bwo(t — 7))wo(t) + Hy(t, Bwo(t), Bwo(t — 7))wo(t — ) > 3

Py (B)-
So, by (5.5), one gets
H (¢, 6w (t), dwo(t — 7))wo(t) + Hy(t, dwo(t), dwo(t — 7))wo(t — 7) > Cs - 4.
By convexity of H again, it is easy to see
H(t, swy(t), swo(t — 7)) > Hy(t, dwo(t), dwo(t — 7)) (s — 0)wo(t)
+H;(t, dwo(t), dwo(t — 7))(s — d)wo(t — 7) + H(t, dwo(t), dwo(t — 7))
> (Cs - 5(8 — (5) + 0552 = (Csds, Vs > 0.

So, we get
H(t,w(t),w(t—7)) > Cs - §|w|. (5.6)

And by Lemma 5.3, we get that there exists 7' > 0 such that
C
H(t,w(t t— > 22109, .
(1 wlt),0(t = 7)) > 522l (57)

Let C§ = min{ (;Xj ,T'=95Cs}. By (5.5), (5.6) and (5.7) we obtain

Cslwl?, Jwl <9,
H(t,w(t),w(t—1)) >
Cslwl?, w| = 6.
Lemma 5.5 Let v,, = (v,(t),v,(t — 7)) = v = (v(t),v(t — 7)) (weakly convergent
sequence on L?([0,2v7]))?) and satisfy

29T 2yT
/ H(t,vy,)dt — / H(t,v)dt.
0 0

Then 2r

H(t,v,, —v)dt — 0.
0

Proof (I) First, we show that the terms in {H (¢, v,,)} have equicontinuous integrals,

that is, for all € > 0, there exists é > 0 such that

v m,/ H(t,vp)dt <e when () <.
Q

- 12 -
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Since H is convex, we have
Hi(t,v)(v(t) — vn(t)) + Hy(t,0) (vt — 7) — v (t — 7)) < H(t,v) — H(t,v).

So, from v,, — v and the above equality, one gets

2 2yT
/ H(t,v)dt < lim H(t,v,,)dt. (5.8)
0 m—o0 0
. 2'y7' 2'y7' o . .
And by H > 0 and the assumption [, H(t,v)dt — [, H(t, vy )dt, it is not difficult to see
lim [ H(t,v,,)dt = / H(t,v)dt, for all measurable sets . (5.9)
m—roo O

Suppose to the contrary that {H(t,v,,)} does not have equicontinuous integrals, that is,
there exists g9 > 0 and the functions v,,, = (U, (), Um, (t — 7)) as well as measurable sets €y,
such that

H(t,tv)dt < e, for all measurable sets 2 and p(Q2) < 0, (5.10)
Q

holds, but
é
H(t,Umk)dt 2 €0, (Qk) < 27’6
Qp

also holds. Then choose Qg = U Q. It is not difficult to obtain u(£2) < § and

k=1
H(t,vp, )dt > H(t, vy, )dt > &g,
Qo Qp
which is a contradiction to (5.8) and (5.9).
(IT) For all b > 0, we divide [0, 2y7] into the following three subsets:

={te€0,2y7] | |v| = \/U2 t) +v2(t — 1) > b},
=t e[0,2vy7] | |[v| < b, vy —v| > 6}

Q3" ={t € [0,297] | [v| £ b, [vm —v| < 6},

where v, — v = /(U (t) —0(#))2 + (U (t — 7) —v(t — 7))2. By inequality (5.2), we know
that there exist constants K and L such that

H(t,22(t),22(t — 7)) < KH(t,2(t), 2(t — 7)) + L,¥(2(t), 2(t — 7)) € R?.
And by convexity of the function H on )1, we obtain
1 K
H(t,v, —v) < §[H(t, 20m) + H(t,—2v)] < E(H(t,vm) + H(t,—v)) + L.

So by (I), we may choose a constant b big enough and fixed such that p(Q;) is small enough
so that

H(t v —v)dt < 5 [ (H( o) + H(E, —0))dt+ Lp(Q) < = (5.11)
Q1 2 Q1 3

- 13-
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For the fixed constant b, choose § enough small and fix it, so that
€
H(t,v,, —v)dt < -. (5.12)
or 3
3
For the fixed constants b and 6, let

K= inf [H(t,w) — H(t,z) — H{(t,w)(w(t) — 2(t)) — Hy(t,w)(w(t —7) — 2(t — 7))].

|w—z]>6,]2|<b

Then k > 0. Now

ru(Q3') < / [H(t,vm) = H(t,v) = Hi(t, ) (vm(t) = 0(t)) = Hy(t, v)(0m(t = 7) = v(t = 7))]dt

< /0 VT[H(t,Um) — H(t,v) — H.(t,0)(Um(t) — v(t)) — Hy(t, 0) (o (t — 7) — v(t — 7))]dt

Then we have p(Q35") — 0 when m — oo. Hence, it is easy to see that me H(t,v,) — 0.
2
Repeating the above argument on @)1, we know that there exists an ny such that when

m > ng, we have

H(t, vy —v)dt < = (5.13)
oy 3

From (5.11),(5.12) and (5.13), we get

2yT

lim H(t,v, —v)dt = 0.

m—r oo 0

Corollary 5.1 v, = (U (t), U (t—7)) = v = (v(t),v(t—7)) ( LU([0, 2y7]) x LI([0, 2v7]))
if only if

2
/ H(t,v, —v)dt = 0.
0

Proof (=). w, — v contain v,, — v (weakly). And by inequality (5.2) and conti-
nuity of the composition operator, one gets H(t,v,,) — H(t,v) (L'([0,2y7])), that is to say
f277 H(t,vy,)dt — fQW (t,v)dt. So, by Lemma 5.5, we get the conclusion.

(«). By Lemma 5.4, there exists constants B; and Bs > 0 such that

297 2yT1

2yT )
H(t,v)dtZBl/ lo|4dt, / o|9dt) 3 ).
0

|v|=6

lv|?dt + Bg/ |v|*dt > Cs mm{/

0 [v[<d
Choose ¢ small enough. Then Cs5 > 0 is a constant and it is not difficult to see the conclusion
is correct.

We next use the Maintain pass theorem to prove Theorem 5.1.

We divide our proof into three parts.

(i) We show that J satisfies the P. S. condition in E. Let {v,, = (v,(t),v,(t — 7))} C E

and let the constants C, Cs satisfy
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and
J'(v,) = 6. (5.15)

That is to say, we want to show that {v,,} has a convergence subsequence in E.

First, we show that {v,} is bounded. In fact, by
2m = Kvp, + H (t,0) — Xom — 0

and . 2yr
C’1§2<Kvm,vm>+/ H(t,vy)dt < Cs,
0

where 2, = (2(t), 2 (t—7)), Vi = (Ui (), Vi (E—= 7)) Xom = (Xm (), Xm (t —7)). We know that
there exists n(e) > 0 for all € > 0 such that the following inequality holds when m > m(e):

/O U H o) dt— %[H{ (, V)0 (£) + 4t 0 )0 (£ — 7)]

<Cy+ %(Ilvm(t)Hm Flom(E = 7)l[La) = Co + eljvm(t)]|a- (5.16)

On the other hand, by Lemma 5.1 and Lemma 5.2, one gets that there exist constants ao,
Cs,C, and Cy such that

H(t,w) — §H{(t,w)w(t) — 3Hs(t,w)w(t — 7))
> (5 - DF(t (0,00 7))~ Oy -
> mlz|* (57 — 1) = C4
> |w|? - Cs,

where w(t) = F{(t,2(t),z2(t — 7)), w(t — 1) = Fi(t,2(t),2(t — 7)); 2(t) = Hi(t,w(t),w(t — 7)),
2(t —71) = Hy(t,w(t),w(t — 7));|w| = Vw(t) + w(t — 7); 2| = /22(t) + 22(t — 7).
So, by (5.16) and (5.17), it is easy to see

|V () || Lajo,27] = |[Um (t = T)||£a[0,247) < Cs. (constant)

That is, {v,} is bounded. We next will show that {v,} has a convergence subsequence. Since
L0,2v7] is a reflexive Banach space, there exists a subsequence of {v,} which is weakly
convergent in L7]0,2y7]. We denote it by {v,,, }, that is to say, v, (t) = v*(t), vy, (t—T) —
v*(t — 7). On the one hand, by convexity of the function H, we get

H(t, 0" (), v" (t = 7)) + Hi(t, 0" (1), 0" (t = 7)) (Vm, (£) — V" (1))
+H, (8,07 (1), 0" (8 = 7)) (Um, (¢ = 7) =07 (t = 7)) < H(E, U (£), Ui (8= 7))

So, we have

2yT

/QW H(t,v*(t),v"(t — 7))dt < lim H(t,Um, (), U, (t —7))dt. (5.18)

k—oo Jo
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On the other hand, by convexity of the function H again, we obtain

H(t,v"(t),v"(t = 7)) = H(t, Uy (t), Uy (t = 7)) + H{(t, Uy, (1), Uy (8= 7)) (07 (8) = U, (1))
+Hy(t, Uy (), Uy (E = 7)) (V" (t = T) = Uy (t = 7))
= H(t,Um, (t), Vm, (t = 7)) + (= KV, + 2my + Xmy) - (V7 — U, ).

Since the operators A and K are compact and (zy,, (t), zm, (t — 7)) — 6, we know

2yT
T [ Ht v, (), 0, (t dt</ H(t " (1), 0" (t — 7))dt. (5.19)

k—o0 0

By (5.18), (5.19), and making use of Lemma 5.5 and Corollary 5.1, it is not difficult to see
(U (8); Uy (8 = 27)) = (07 (2), 0" (¢ = 7).
(ii) We will show that there exist constant p,r > 0, such that
Jloq, = p >0, (5.20)

where 0Q, = {(v(t),v(t—7)) € L]0, 2y7]x LI[0, 2y7] | ||v(t)||Lej0,2ys) = |[v(E—=T)||Lao,247] = 7}
Let 8 = HK||_£ »,ay, and choose § > 0 such that the constant Cs big enough and choose

r small enough so that, by Lemma 5.4, when ||v(t)||L« = r, there exists the constant C; > 0

satisfying
05/ )Pt —48( [ o) ): > 07(/ ()| dt )3, (5.21)
lv]<d lu|<d lu|<d
c%/ v@wa—4m/’ lo®)|%dt ) > Co([  |u(t)|dt )7, (5.22)
|v| > [v|>6 [v]|>d

where [v| = /v2(t) + v2(t — 7).
By (5.21), (5.22) and the inequality
a®+b° < (a+b)° < 2%a +b°),

where a,b > 0, and ¢ > 1, we get

B

B
J(w) > *§||U(t)||%q[o,zw]*§H’U(t)||%q[o,2w]

+ 05/ |v(t)|2dt+(]5/ ot —7)2dt+CL [ (Vor() + o2(t —7) )dt
lv]<d lv|<o [v|>8

> o) aoser — Do Bato +Cs [ o(0)[dt

- 9 La[0,2y7] 9 v La[0,2v7] 0 wl<s

+ C(;/ |v(t¢)2dt+0{5/ lu(t)|9dt
|lv|<d

R

zcw/ |UMM3</ v@wmﬂ+@/ [u(t — 7)2dt
[v|<d [v|>6 lv| <8
C’? 2 C? 2
> > ||V q A= ==7r.
> SN = 53

- 16 -
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Then choose p = 2. That is the conclusion that we want to prove.

21
(iii) It is obvious J(#) = 0. and J(v) is an even function in v.
From (i),(ii),(iii) and the Maintain pass theorem, we obtain the problem (4.2) has at least

one nontrivial 2y7-periodic solution, that is Theorem 5.1 holds.
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