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的次调和周期解的存在性
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摘要：本文通过引入下半连续凸泛函的次微分和共轭泛函，用临界点理论和算子理论方法，得

出了二阶非线性非自治混合型泛函微分方程的多重次调和周期解。
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1. INTRODUCTION

The existence of periodic solutions for differential system has received a great deal of

attention in the last few decades.

Differing from ordinary differential equations and partial differential equations that do not

contain delay variant, it is very difficult to study the existence of periodic solutions for functional

differential equations. For this reason, many mathematicians developed a good many different

approaches like the averaging method[1], the Massera-Yoshizawa theory[2,3], the Kaplan-York
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[4] method of coupled systems, the Grafton cone mapping method[5], the Nussbaum method

of fixed point theory [6] and Mawhin [7] coincidence degree theory etc.

In this paper, by critical points and operator equations theory, we first study the existence

of subharmonic periodic solutions to second-order nonlinear and nonautonomous mixed-type

functional differential equations{
x′′(t) + x′′(t− 2τ) + f(t, x(t), x(t− τ), x(t− 2τ)) = 0,

x(0) = 0.
(1.1)

Our basic assumptions are the following:

(A1) f(t, x1, x2, x3) ∈ C(R4, R), and ∂f(t,x1,x2,x3)
∂t

̸= 0;

(A2) there exists a continuously differentiable function F (t, x1, x2) ∈ C1(R3, R) with such

that

F ′
2(t, x1, x2) + F ′

1(t, x2, x3) = f(t, x1, x2, x3),

where F ′
2(t, x1, x2) and F

′
1(t, x2, x3) denote

∂F (t,x1,x2)
∂x2

and ∂F (t,x2,x3)
∂x2

, respectively;

(A3) F (t+ τ, x1, x2) = F (t, x1, x2) for all x1, x2,∈ R.

2. Variational Structure

Fix γ > 1, τ > 0, where γ is a positive integer number and consider

H1
0 [0, 2γτ ] = {x(t) ∈ L2[0, 2γτ ] | x′(t) ∈ L2[0, 2γτ ], x(t) is 2γτ -periodic function in t

x(0) = 0, and x(t) has compact support on [0, 2γτ ]}.

It is obvious that H1
0 [0, 2γτ ] is a Sobolev space by defining the inner product (·, ·) and the

norm ∥ · ∥ by

< x, y >H1
0 [0,2γτ ]

=

∫ 2γτ

0

x′(t)y′(t)dt, ∥x∥H1
0 [0,2γτ ]

= (

∫ 2γτ

0

|x′(t)|2dt ) 1
2 .

Let us consider the functional I(x) defined on H1
0 [0, 2γτ ] by

I(x) =

∫ 2γτ

0

[x′(t)x′(t− τ)− F (t, x(t), x(t− τ))]dt. (2.1)

For all x, y ∈ H1
0 [0, 2γτ ] and ε > 0, we know that

< I ′(x), y > =

∫ 2γτ

0

[−x′′(t+ τ)− x′′(t− τ)

− F ′
u1
(t, x(t), x(t− τ))− F ′

u2
(t, x(t+ τ), x(t))]y(t)dt.

Therefore, the Euler equation corresponding to the functional I(x) is

x′′(t+ τ) + x′′(t− τ) + [F ′
u1
(t, x(t), x(t− τ)) + F ′

u2
(t, x(t+ τ), x(t))] = 0. (2.2)

Since I(x) has neither a supremum nor an infimum, we do not seek critical points of the

functional I(x) by the extremum method. But we may use operator equation theory. First by
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the dual variational principle, we get new operator equations (see (4.2)) correlating with the

equation (1.1). Then obtain solutions of the system (1.1) by seeking critical points of operator

equations (4.2).

For this, in section 3, we introduce subdifferentiability of lower semicontinuous convex

functions φ(x(t), x(t− τ)) and its conjugate functions. In section 4, first we give the definition

of the weak solutions of the equation (1.1), then we establish the new operator equations (4.2)

correlating with the equation (1.1) by the conjugate functions of F (t, x(t), x(t− τ)) and show

that we can obtain solutions of the equation (1.1) from the solutions the operator equations

(4.2). Finally, in section 5, by seeking critical points of the operator equations (4.2), we get the

result that there exists multiple subharmonic periodic solutions of the system (1.1).

In this paper, our main tool is the Maintain pass theorem as follows:

Lemma 2.1 Let H be a real Banach space, I(·) ∈ C1(H,R) satisfies the Palais-Smale

condition, and the following conditions:

(1) There exist constants ρ > 0 and a > 0 such that I(x) ≥ a, ∀x ∈ ∂Bρ. where

Bρ = {x ∈ H : ∥x∥H < ρ};
(2) I(θ) ≤ 0 and there exists x0∈Bρ such that I(x0) ≤ 0. Then c = inf

h∈Γ
sup

s∈[0,1]

I(h(s)) is a

positive critical value of I, where

Γ = {h ∈ C([0, 1],H) | h(0) = θ, h(1) = x0}.

3. The subdifferentiability and the conjugate function of the lower

semicontinuous convex function φ(x(t), x(t− τ))

Let X be a space of all given n× τ -periodic functions in t and be a Banach space, where

n ∈ N is a positive integer number. Denote R = R ∪ {+∞}. Let φ : X2 → R be a lower

semicontinuous convex function. Generally, φ is not always differentiable, but we may generalize

the definition of “derivative” as follows:

Definition 3.1 Let (x∗1, x
∗
2) ∈ X∗ × X∗. We say that (x∗1, x

∗
2) is a sub-gradient of φ at

point (x0(t), (x0(t− τ)) ∈ X ×X if

φ(x0(t), x0(t− τ))+ < x∗1, x(t)− x0(t) > + < x∗2, x(t− τ)− x0(t− τ) > ≤ φ(x(t), x(t− τ)).

For all x0(t) ∈ X, the set of all sub-gradients of φ at point (x0(t), x0(t− τ)) will be called the

subdifferential of φ at point (x0(t), x0(t− τ)), and will be denoted by ∂φ(x0(t), x0(t− τ)).

By definition of subdifferentiability of the function φ, we may define its conjugate function

φ∗ by:

φ∗(x∗1, x
∗
2) = sup{< x∗1, x(t) > + < x∗2, x(t− τ) > −φ(x(t), x(t− τ))},

where < · > denotes the duality relation of X∗ and X. So, It is not difficult to obtain the

following propositions.
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Proposition 3.1 φ∗ is a lower semicontinuous convex function (φ∗ may have functional

value +∞, but not functional value −∞ ).

Proposition 3.2 If φ ≤ ψ, then φ∗ ≥ ψ∗.

Proposition 3.3 (Yang inequality)

φ(x(t), x(t− τ)) + φ∗(x∗1, x
∗
2) ≥< x∗1, x(t) > + < x∗2, x(t− τ) > .

Proposition 3.4 φ(x(t), x(t− τ)) + φ∗(x∗1, x
∗
2) =< x∗1, x(t) > + < x∗2, x(t− τ) >

⇔ (x∗1, x
∗
2) ∈ ∂φ(x(t), x(t− τ)).

Proposition 3.5 φ∗ does not always equals to +∞.

Now that φ∗ is a lower semicontinuous convex function that does not always equal +∞,

we may define its conjugate function φ∗∗ by

φ∗∗(x∗∗1 , x
∗∗
2 ) = sup

(x∗
1 ,x

∗
2)∈X∗×X∗

{< x∗∗1 , x
∗
1 > + < x∗∗2 , x

∗
2 > −φ(x∗1, x∗2)},

where < · > denotes the duality relation of X∗∗ and X∗.

Theorem 3.1 Let φ be a lower semicontinuous convex function that does not always

equal +∞, then φ∗∗ = φ.

Proof We divide our proof into two parts, first showing that φ∗∗ = φ holds when φ > 0

and then showing that φ∗∗ = φ holds for all lower semicontinuous convex functions φ that do

not always equal to +∞.

(i) φ ≥ 0.

From the definition of φ∗∗ and the Yang inequality, it is obvious that φ∗∗ ≤ φ holds.

Next, to prove φ∗∗ ≥ φ holds, suppose to the contrary that there exist a point (x0(t), x0(t−
τ)) ∈ X2, such that φ∗∗(x0(t), x0(t− τ)) < φ(x0(t), x0(t− τ)) holds.

Consider the two convex sets

A = eip φ△{(x(t), x(t− τ), β) ∈ X2 ×R | φ(x(t), x(t− τ)) < +∞, β ≥ φ(x(t), x(t− τ))}

B0 = {(x0(t), x0(t− τ), φ∗∗((x0(t), x0(t− τ)))}.

By Hahn-Banach Theorem, we know that there exists (g1, g2, k
∗) ∈ X∗ ×X∗ × R and α1 ∈ R

such that

< g1, x(t) > + < g2, x(t− τ) > +k∗β > α1, ∀(x(t), x(t− τ), β) ∈ eip φ, (3.1)

< g1, x0(t) > + < g2, x0(t− τ) > +k∗φ∗∗((x0(t), x0(t− τ)) < α1. (3.2)

So, it follow that k∗ ≥ 0. Let ε > 0. Using φ > 0 and (3.1), one gets that

< g1, x(t) > + < g2, x(t− τ) > +(k∗ + ε)φ(x(t), x(t− τ)) ≥ α1 ∀(x(t), x(t− τ)) ∈ D(φ)
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So, we have

φ∗(− g1
k∗ + ε

,− g2
k∗ + ε

) ≤ − α1

k∗ + ε
.

Then, by definition of φ∗∗, we obtain that

φ∗∗(x0(t), x0(t− τ)) ≥ < − g1
k∗ + ε

, x0(t) > + < − g2
k∗ + ε

, x0(t− τ) > −φ∗(− g1
k∗ + ε

,− g2
k∗ + ε

)

≥ < − g1
k∗ + ε

, x0(t) > + < − g2
k∗ + ε

, x0(t− τ) > +
α1

k∗ + ε
.

That is to say,

< g1, x0(t) > + < g2, x0(t− τ) > +(k∗ + ε)φ∗∗((x0(t), x0(t− τ)) ≥ α1, ∀ε > 0,

which is a contradiction to (3.2).

(ii) For all φ, by Proposition 3.5, we know D(φ∗) ̸= ø. Choose (x∗10, x
∗
20) ∈ D(φ∗), and

define the function φ by

φ(x(t), x(t− τ)) = φ(x(t), x(t− τ))− < x∗10, x(t) > − < x∗20, x(t− τ) > +φ∗(x∗10, x
∗
20).

Then φ is a lower semicontinuous convex function that not always +∞ and satisfies φ ≥ 0. By

the result of (i), one gets φ∗∗ = φ. On the other hand, we have

φ∗(x∗1, x
∗
2) = φ∗(x∗1 + x∗10, x

∗
2 + x∗20)− φ∗(x∗10, x

∗
20)

φ∗∗(x(t), x(t− τ)) = φ(x(t), x(t− τ))− < x∗10, x(t) > − < x∗20, x(t− τ) > +φ∗(x∗10, x
∗
20).

That is φ∗∗ = φ.

Corollary 3.1 Let φ be a lower semicontinuous convex function that does not always

equal to +∞. Then (x∗1, x
∗
2) ∈ ∂φ(x(t), x(t− τ)) if only if

(x(t), x(t− τ)) ∈ ∂φ∗(x∗1, x
∗
2).

4. The weak solutions of the equation (1.1)

Definite operator A = d2

dt2
. By (2.2) and

< u(t), A(ω(t)) >=

∫ 2γτ

0

u(t)ω′′(t)dt = u(t)(ω′(t))|2γτ0 −
∫ 2γτ

0

ω′(t)u′(t)dt =< Au(t), ω(t) >

as well as

< u(t), A(ω(t−τ)) >=< Au(t+τ), ω(t) > and < u(t−τ), A(ω(t)) >=< A(u(t−τ)), ω(t) >,

we may define a weak solution of the equation (1.1) as follows:

Definition 4.1 For u ∈ Lp[0, 2γτ ], we say that u is a weak solution of the equation (1.1),

if

< u(t), A(ω(t− τ)) > + < u(t− τ), A(ω(t)) > + < ω(t), F ′
1(t, u(t), u(t− τ)) >

+ < ω(t− τ), F ′
2(t, u(t), u(t− τ)) >= 0,
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for all ω(t) ∈ D(A) ∩ Lp[0, 2γτ ], where

< u(t), υ(t) >=

∫ 2γτ

0

u(t)υ(t)dt,

when u(t) ∈ Lp[0, 2γτ ], υ(t) ∈ Lq[0, 2γτ ], where 2 < p < +∞, 1
p
+ 1

q
= 1.

Our object is that define the conjugate functions of F (t, x(t), x(t− τ)) using the definition

of definition subdifferentiability of lower semicontinuous convex functions, and making use of

the dual variational structure. So we add the conditions on the function F (t, x(t), x(t− τ)) as

follows:

(A4) u = (u1, u2) → F (t, u1, u2) is a continuously differentiable and strictly convex func-

tion, and satisfies

F (t, 0, 0) = 0, F ′
1(t, 0, 0) = F ′

2(t, 0, 0) = 0, ∀t ∈ [0, 2γτ ];

(A5) for α2 =
1
p
, there exist constants M,C > 0, such that when |u| =

√
u21 + u22 ≥ C we

have,

F (t, u1, u2) ≤ α2[F
′
1(t, u1, u2)u1 + F ′

2(t, u1, u2)u2],

F (t, u1, u2) ≤M |u|
1

α2 ;

(A6)

lim
|u|→0

F (t, u1, u2)

|u|2
= 0.

So, we set up the conjugate functions of the function F ((t, x(t), x(t− τ)) by

H(t, ω(t), ω(t− τ)) = sup
x(t)∈Lp[0,2γτ ]

{< ω(t), x(t) > + < ω(t− τ), x(t− τ) > −F (t, x(t), x(t− τ))},

where t ∈ [0, 2γτ ].

Then H is a continuously differentiable and strictly convex function. By duality principle

(Corollary 3.1), we get that

(ω(t), ω(t− τ) = (F ′
1(t, x(t), x(t− τ)), F ′

2(t, x(t), x(t− τ)))

⇔ (H ′
1(t, ω(t), ω(t− τ)),H ′

2(t, ω(t), ω(t− τ))) = (x(t), x(t− τ)), (4.1)

where H ′
1(t, ω(t), ω(t− τ)) and H ′

2(t, ω(t), ω(t− τ)) denote ∂H(t,ω(t),ω(t−τ))
∂ω(t)

and ∂H(t,ω(t),ω(t−τ))
∂ω(t−τ))

,

respectively.

Let R(A) denote value field of the operator A. Then R(A) is a closed set. Let P be the

orthogonal projection operator of R(A) and K̂ = A−1P. Then it is not difficult to see that K̂

maps continuous continuation into a compact operator of Lq[0, 2γτ ] → Lq[0, 2γτ ].

Let

E = {(υ(t), υ(t− τ)) ∈ (Lq[0, 2γτ ])2 υ(0) = 0 | < ϕ(t), υ(t) >=< ϕ(t), υ(t− τ) >

= < ϕ(t− τ), υ(t) >= 0, ∀ϕ(t) ∈ ℜ(A) ∩ Lp[0, 2γτ ], ϕ(0) = 0},
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where ℜ(A) = {u ∈ D(A) | A((u(t) + u(t− 2τ) = 0}.
We want {(υ(t), υ(t− τ)), (χ(t), χ(t− τ)))} to satisfy

χ(t) = K̂(υ(t− τ)) +H ′
1(t, υ(t), υ(t− τ)),

χ(t− τ) = K̂(υ(t)) +H ′
2(t, υ(t), υ(t− τ)),

(4.2)

where (υ(t), υ(t− τ)) ∈ E,χ(t) ∈ ℜ(A) ∩ Lp[0, 2γτ ], that is (χ(t), χ(t− τ)) ∈ E⊥.

If {(υ(t), υ(t−τ)), (χ(t), χ(t−τ))} is a solution of (4.2), then when let u(t) = H ′
1(t, υ(t), υ(t−

τ)), u(t− τ) = H ′
2(t, υ(t), υ(t− τ)), by the duality principle and (4.2), we can get u(t) is a weak

solution of the equation (1.1).

5. Seeking the solutions of the operator equation (4.2) via critical

point theory

Theorem 5.1 Under the assumptions (A1) ∼ (A6), the problem (1.1) has at least one

nontrivial weak 2γτ -periodic solution.

Let υ = (υ(t), υ(t− τ)), and

K

(
υ(t)

υ(t− τ)

)
=

(
0 K̂

K̂ 0

)(
υ(t)

υ(t− τ)

)
=

(
K̂υ(t− τ)

K̂υ(t)

)
.

It is not difficult to verify that < K(υ), ψ >=< υ,K(ψ) >=< Kυ(t − τ), ψ(t) > + <

Kυ(t), ψ(t− τ) >, where ψ = (ψ(t), ψ(t− τ)), that is, the operator K is symmetric operator.

We may get the solutions of the equations (4.2) by seeking critical points of the functional

J(υ) defined by

J(υ) = 1
2
< K(υ), υ > +

∫ 2γτ

0
H(t, υ)dt

= 1
2
< K̂υ(t− τ), υ(t) > + 1

2
< K̂υ(t), υ(t− τ) > +

∫ 2γτ

0
H(t, υ(t), υ(t− τ))dt.

(5.1)

Because J may be regarded as the restriction to E of the function Ĵ defined on Lq[0, 2γτ ]×
Lq[0, 2γτ ] and having identical components. Moreover

Ĵ ′(υ) = K(υ) +H ′(υ).

Since

< Ĵ ′(υ)− J ′(υ), z >= 0 ∀υ ∈ E, z = (z(t), z(t− τ)) ∈ E,

then there exists χ(t) ∈ ℜ(A) and χυ = (χυ(t), χυ(t− τ)) ∈ E⊥ such that

Ĵ ′(υ)− J ′(υ) = χυ.

So, if υ∗ is a critical point of J ′(υ∗) = 0 on E, then there exists χ∗
υ∗ = (χ∗

υ∗(t), χ∗
υ∗(t− τ)) ∈ E⊥

such that

K(υ∗) +H ′(υ∗) = χ∗
υ∗ .
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So, {υ∗, χ∗
υ∗} is a solution of the equation (4.2), that is, {(υ∗(t), υ∗(t− τ)), (χ∗

υ∗(t), χ∗
υ∗(t− τ))}

is a solution of the equation (4.2).

Lemma 5.1 The following two conditions are equivalent:

(1) F (t, u1, u2) ≤ α2[F
′
1(t, u1, u2)u1+F

′
2(t, u1, u2)u2], ∀t ∈ [0, 2γτ ], when |u| =

√
u21 + u22 ≥

C.

(2) F (t, βu1, βu2) ≥ β
1

α2 F (t, u1, u2) > 0, ∀β ≥ 1, t ∈ [0, 2γτ ], |u| ≥ C.

Proof For all ∀u = (u1, u2), |u| ≥ C, let Φ(β) = F (t, βu1, βu2),Ψ(β) = β
1

α2 F (t, u1, u2).

(2) ⇒ (1) By Φ(β) ≥ Ψ(β), ∀β ≥ 1 and Φ(1) = Ψ(1), it is easy to see Φ′(1) ≥ Ψ′(1),

that is,

F ′
1(t, u1, u2)u1 + F ′

2(t, u1, u2)u2 ≥
1

α2

F (t, u1, u2).

(1) ⇒ (2) By

Φ′(β) = F ′
1(t, βu1, βu2)u1 + F ′

2(t, βu1, βu2)u2

=
1

β
[F ′

1(t, βu1, βu2)βu1 + F ′
2(t, βu1, βu2)βu2] ≥

1

α2β
Φ(β),

it follows that

F (t, βu1, βu2) ≥ β
1

α2 F (t, u1, u2) > 0, ∀β ≥ 1, t ∈ [0, 2γτ ].

Lemma 5.2 Let F (t, u1, u2) satisfy the assumptions (A4) and (A5). Then there exist

constants m > 0 and M > 0, such that

F (t, u1, u2) ≥ m(
√
u21 + u22 )

1
α2 ∀t ∈ [0, 2γτ ], when |u| ≥ C,

|F ′(t, u1, u2)| ≤ (2
1

α2M −m)(
√
u21 + u22 )

1
α2

−1, when |u| ≥ C,

where |F ′(t, u1, u2)| =
√
|F ′

1(t, u1, u2)|2 + |F ′
2(t, u1, u2)|2.

Proof Let

m = min
(u1,u2)∈∂BC

F (t, u1, u2)

C
1

α2

,

where BC denotes the ball of radius centered at the origin in C. By (A4), one knows m > 0.

On the other hand, by Lemma 5.1 and (A5), we get

F (t, u1, u2) ≥ F (t,
Cu1√
u21 + u22

,
Cu2√
u21 + u22

)(

√
u21 + u22
C

)
1

α2

≥ m(
√
u21 + u22 )

1
α2 .

By convexity of the function F , one has

F (t, u1, u2) + F ′
1(t, u1, u2)(z1 − u1) + F ′

2(t, u1, u2)(z2 − u2) ≤ F (t, z1, z2).
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Let z = (z1, z2) run all over the ball B|u|(z) of radius centered at u = (u1, u2) in |u|, and
choose the maximum of F ′

1(t, u1, u2)(z1 − u1) +F ′
2(t, u1, u2)(z2 − u2). Then it is not difficult to

see that

|F ′(t, u1, u2)|
√
u21 + u22 ≤M(

√
z21 + z22 )

1
α2 −m(

√
u21 + u22 )

1
α2 .

By z ≤ 2|u| we get that

|F ′(t, u1, u2)| ≤ (2
1

α2M −m)(
√
u21 + u22 )

1
α2

−1.

Lemma 5.3 H ∈ C1(R3, R) is a strictly convex function and satisfies

H ′
1(t, 0, 0) = H ′

2(t, 0, 0) = 0, H(t, 0, 0) = 0, ∀t ∈ [0, 2γτ ],

Cα2

M
|ω|

1
1−α2 − C1 ≤ H(t, ω(t), ω(t− τ)) ≤ Cα2

m
|ω|

1
1−α2 + C2, (5.2)

C ′
α2
|ω|

α2
1−α2 − C4 ≤ |H ′(t, ω(t), ω(t− τ))| ≤ Cα2

(
2

1
1−α2

m
− 1

M
)|ω|

α2
1−α2 + C3, (5.3)

where C1, · · · , C4 are constants, Cα2
, C ′

α2
are constants depending on α2, and

|ω| =
√
ω2(t) + ω2(t− τ), |H ′(t, ω(t), ω(t−τ))| =

√
|H ′

1(t, ω(t), ω(t− τ))|2 + |H ′
2(t, ω(t), ω(t− τ))|2.

Moreover, the function H satisfies

lim
|ω|→0

H(t, ω(t), ω(t− τ))

|ω|2
= ∞. (5.4)

Proof By Corollary 3.1 and F ′
1(t, 0, 0) = F ′

2(t, 0, 0) = 0 =⇒ H ′
1(t, 0, 0) = H ′

2(t, 0, 0) =

0, ∀t ∈ [0, 2γτ ]. And by the definition of H, we know H(t, 0, 0) = 0.

Now we show that (5.2) holds. By (A5) one gets F (t, u1, u2) ≤ M |u|
1

α2 + C1, ∀u =

(u1, u2) ∈ R2. So, by Proposition 3.2 and Example 4.1, it is easy to see

H(t, ω(t), ω(t− τ)) ≥ Cα2

M
|ω|

1
1−α2 − C1,

where Cα2
= 2

1
1−α2 /M

α2
1−α2

−1( α
α2

1−α2
2 − α

1
1−α2
2 ).

Similar arguments in the proof of Lemma 5.2, we know that there exists a constant C2

such that

F (t, u1, u2) ≥ m|u|
1

α2 − C2.

So, it follows that

H(t, ω(t), ω(t− τ)) ≤ Cα2

m
|ω|

1
1−α2 + C2.

Then next we show that (5.3) holds. Again as in the proof of Lemma 5.2, we can estimate

H ′ by

|H ′(t, ω(t), ω(t− τ))| ≤ Cα2
(
2

1
1−α2

m
− 1

M
)|ω|

α2
1−α2 + C3,
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where C3 = max{C1 + C2, sup
|ω|<1

|H ′(t, ω(t), ω(t − τ))|}. By Lemma 5.2 again and the duality

principle

(u1, u2) = (H ′
1(t, ω(t), ω(t− τ)),H ′

2(t, ω(t), ω(t− τ)))

⇔ (ω(t), ω(t− τ)) = (F ′
1(t, u1, u2), F

′
2(t, u1, u2)),

when |H ′(t, ω(t), ω(t− τ))| ≥ C, we have

|ω| ≤ (2
1

α2M −m)|H ′(t, ω(t), ω(t− τ))|
1

α2
−1.

And since there exists a constant MC such that when |u| =
√
u21 + u22 = |H ′(t, ω(t), ω(t− τ)| ≤

C, we have

|ω| = |F ′(t, u1, u2)| ≤MC .

Choose

C ′
α2

= (2
1

α2M −m)
α2

α2−1 , C4 = C ′
α2
M

α2
1−α2

C .

Then it is not difficult to see

|H ′(t, ω(t), ω(t− τ))| ≥ C ′
α2
|ω|

α2
1−α2 − C4.

Finally, we show that (5.4) holds. By (A6), for all ε > 0, there exists δ > 0 so that when

|u| =
√
u21 + u22 < δ, we have

F (t, u1, u2) ≤ ε
√
u21 + u22.

Now, for all K > 0, choose ε = 1
4K

and let η = 2εδ(ε). Then when
√
ω2(t) + ω2(t− τ) < η,

and we get

H(t, ω(t), ω(t− τ)) ≥ 1

4ε
(ω2(t) + ω2(t− τ)) = K|ω|2.

That is,

lim
|ω|→0

H(t, ω(t), ω(t− τ))

|ω|2
= ∞.

Lemma 5.4 There exist constants Cδ and C ′
δ depending on δ, such that

H(t, ω(t), ω(t− τ)) ≥


Cδ|ω|2, when |ω| ≤ δ,

C ′
δ|ω|q, when |ω| ≥ δ,

and when δ → +0, Cδ → +∞.

Proof By (5.4), we know

lim
|ω|→0

H(t, ω(t), ω(t− τ))

|ω|2
= ∞.

So, when δ → +0, one gets Cδ△ inf{H(t, ω(t), ω(t− τ))/|ω|2 : |ω| ≤ δ} → +∞. That is

H(t, ω(t), ω(t− τ)) ≥ Cδ|ω|2, (5.5)
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when |ω| ≤ δ.

We next show that the second part of the inequality holds.

For all ω0 = (ω0(t), ω0(t− τ)), |ω0| = 1, let ϕω0
(β) = H(t, βω0(t), βω0(t− τ)). Then

ϕ′
ω0
(β) = H ′

1(t, βω0(t), βω0(t− τ))ω0(t) +H ′
2(t, βω0(t), βω0(t− τ))ω0(t− τ).

Since ϕω0
is a convex function, for all β > 0, we have

H ′
1(t, βω0(t), βω0(t− τ))ω0(t) +H ′

2(t, βω0(t), βω0(t− τ))ω0(t− τ) ≥ 1

β
ϕω0

(β).

So, by (5.5), one gets

H ′
1(t, δω0(t), δω0(t− τ))ω0(t) +H ′

2(t, δω0(t), δω0(t− τ))ω0(t− τ) ≥ Cδ · δ.

By convexity of H again, it is easy to see

H(t, sω0(t), sω0(t− τ)) ≥ H ′
1(t, δω0(t), δω0(t− τ))(s− δ)ω0(t)

+H ′
2(t, δω0(t), δω0(t− τ))(s− δ)ω0(t− τ) +H(t, δω0(t), δω0(t− τ))

≥ Cδ · δ(s− δ) + Cδδ
2 = Cδδs, ∀s > 0.

So, we get

H(t, ω(t), ω(t− τ)) ≥ Cδ · δ|ω|. (5.6)

And by Lemma 5.3, we get that there exists T > 0 such that

H(t, ω(t), ω(t− τ)) ≥ Cα2

2M
|ω|q. (5.7)

Let C ′
δ = min{Cα2

2M
, T 1−qδCδ}. By (5.5), (5.6) and (5.7) we obtain

H(t, ω(t), ω(t− τ)) ≥


Cδ|ω|2, |ω| ≤ δ,

C ′
δ|ω|q, |ω| ≥ δ.

Lemma 5.5 Let υm = (υm(t), υm(t − τ)) ⇀ υ = (υ(t), υ(t − τ)) (weakly convergent

sequence on Lq([0, 2γτ ]))2) and satisfy∫ 2γτ

0

H(t, υm)dt→
∫ 2γτ

0

H(t, υ)dt.

Then ∫ 2γτ

0

H(t, υm − υ)dt→ 0.

Proof (I) First, we show that the terms in {H(t, υm)} have equicontinuous integrals,

that is, for all ε > 0, there exists δ > 0 such that

∀ m,
∫
Ω

H(t, υm)dt < ε when µ(Ω) < δ.
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Since H is convex, we have

H ′
1(t, υ)(υ(t)− υm(t)) +H ′

2(t, υ)(υ(t− τ)− υm(t− τ)) ≤ H(t, υm)−H(t, υ).

So, from υm ⇀ υ and the above equality, one gets∫ 2γτ

0

H(t, υ)dt ≤ lim
m→∞

∫ 2γτ

0

H(t, υm)dt. (5.8)

And by H ≥ 0 and the assumption
∫ 2γτ

0
H(t, υ)dt→

∫ 2γτ

0
H(t, υm)dt, it is not difficult to see

lim
m→∞

∫
Ω

H(t, υm)dt =

∫
Ω

H(t, υ)dt, for all measurable sets Ω. (5.9)

Suppose to the contrary that {H(t, υm)} does not have equicontinuous integrals, that is,

there exists ε0 > 0 and the functions υmk
= (υmk

(t), υmk
(t− τ)) as well as measurable sets Ωk,

such that ∫
Ω

H(t,±υ)dt < ε0, for all measurable sets Ω and µ(Ω) < δ, (5.10)

holds, but ∫
Ωk

H(t, υmk
)dt ≥ ε0, µ(Ωk) <

δ

2k

also holds. Then choose Ω0 =
∞∪
k=1

Ωk. It is not difficult to obtain µ(Ω0) < δ and∫
Ω0

H(t, υmk
)dt ≥

∫
Ωk

H(t, υmk
)dt ≥ ε0,

which is a contradiction to (5.8) and (5.9).

(II) For all b > 0, we divide [0, 2γτ ] into the following three subsets:

Q1 = {t ∈ [0, 2γτ ] | |υ| =
√
υ2(t) + υ2(t− τ) > b},

Qm
2 = {t ∈ [0, 2γτ ] | |υ| ≤ b, |υm − υ| ≥ δ},

Qm
3 = {t ∈ [0, 2γτ ] | |υ| ≤ b, |υm − υ| < δ},

where |υm − υ| =
√
(υm(t)− υ(t))2 + (υm(t− τ)− υ(t− τ))2. By inequality (5.2), we know

that there exist constants K and L such that

H(t, 2z(t), 2z(t− τ)) ≤ KH(t, z(t), z(t− τ)) + L,∀(z(t), z(t− τ)) ∈ R2.

And by convexity of the function H on Q1, we obtain

H(t, υm − υ) ≤ 1

2
[H(t, 2υm) +H(t,−2υ)] ≤ K

2
(H(t, υm) +H(t,−υ)) + L.

So by (I), we may choose a constant b big enough and fixed such that µ(Q1) is small enough

so that ∫
Q1

H(t, υm − υ)dt ≤ K

2

∫
Q1

(H(t, υm) +H(t,−υ))dt+ Lµ(Q1) <
ε

3
. (5.11)
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For the fixed constant b, choose δ enough small and fix it, so that∫
Qm

3

H(t, υm − υ)dt <
ε

3
. (5.12)

For the fixed constants b and δ, let

κ = inf
|ω−z|≥δ,|z|≤b

[H(t, ω)−H(t, z)−H ′
1(t, ω)(ω(t)− z(t))−H ′

2(t, ω)(ω(t− τ)− z(t− τ))].

Then κ > 0. Now

κµ(Qm
2 ) ≤

∫
Qm

2

[H(t, υm)−H(t, υ)−H ′
1(t, υ)(υm(t)− υ(t))−H ′

2(t, υ)(υm(t− τ)− υ(t− τ))]dt

≤
∫ 2γτ

0

[H(t, υm)−H(t, υ)−H ′
1(t, υ)(υm(t)− υ(t))−H ′

2(t, υ)(υm(t− τ)− υ(t− τ))]dt.

Then we have µ(Qm
2 ) → 0 when m→ ∞. Hence, it is easy to see that

∫
Qm

2
H(t, υm) −→ 0.

Repeating the above argument on Q1, we know that there exists an n0 such that when

m > n0, we have ∫
Qm

2

H(t, υm − υ)dt <
ε

3
. (5.13)

From (5.11),(5.12) and (5.13), we get

lim
m→∞

∫ 2γτ

0

H(t, υm − υ)dt = 0.

Corollary 5.1 υm = (υm(t), υm(t−τ)) → υ = (υ(t), υ(t−τ)) ( Lq([0, 2γτ ])×Lq([0, 2γτ ]))

if only if ∫ 2γτ

0

H(t, υm − υ)dt = 0.

Proof (⇒). υm → υ contain υm ⇀ υ (weakly). And by inequality (5.2) and conti-

nuity of the composition operator, one gets H(t, υm) → H(t, υ) (L1([0, 2γτ ])), that is to say∫ 2γτ

0
H(t, υm)dt→

∫ 2γτ

0
H(t, υ)dt. So, by Lemma 5.5, we get the conclusion.

(⇐). By Lemma 5.4, there exists constants B1 and B2 > 0 such that∫ 2γτ

0

H(t, υ)dt ≥ B1

∫
|υ|≥δ

|υ|qdt+B2

∫
|υ|<δ

|υ|2dt ≥ Cδ min{
∫ 2γτ

0

|υ|qdt, (
∫ 2γτ

0

|υ|qdt) 2
q }.

Choose δ small enough. Then Cδ > 0 is a constant and it is not difficult to see the conclusion

is correct.

We next use the Maintain pass theorem to prove Theorem 5.1.

We divide our proof into three parts.

(i) We show that J satisfies the P. S. condition in E. Let {υn = (υn(t), υn(t− τ))} ⊂ E

and let the constants C1, C2 satisfy

C1 ≤ J(υn) ≤ C2 (5.14)
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and

J ′(υn) → θ. (5.15)

That is to say, we want to show that {υn} has a convergence subsequence in E.

First, we show that {υn} is bounded. In fact, by

zm = Kυm +H ′(t, υm)− χm → θ

and

C1 ≤
1

2
< Kυm, υm > +

∫ 2γτ

0

H(t, υm)dt ≤ C2,

where zm = (zm(t), zm(t−τ)), υm = (υm(t), υm(t−τ)), χm = (χm(t), χm(t− τ)). We know that

there exists n(ε) > 0 for all ε > 0 such that the following inequality holds when m ≥ m(ε):∫ 2γτ

0

H(t, υm)dt− 1

2
[H ′

1(t, υm)υm(t) +H ′
2(t, υm)υm(t− τ)]

≤ C2 +
ε

2
(∥υm(t)∥Lq + ∥υm(t− τ)∥Lq) = C2 + ε∥υm(t)∥Lq . (5.16)

On the other hand, by Lemma 5.1 and Lemma 5.2, one gets that there exist constants α2,

C3, C4 and C5 such that

H(t, ω) − 1
2
H ′

1(t, ω)ω(t)− 1
2
H ′

2(t, ω)ω(t− τ))

≥ ( 1
2α2

− 1)F (t, z(t), z(t− τ))− C3

≥ m|z|
1

α2 ( 1
2α2

− 1)− C4

≥ |ω|q − C5,

(5.17)

where ω(t) = F ′
1(t, z(t), z(t − τ)), ω(t − τ) = F ′

2(t, z(t), z(t − τ)); z(t) = H ′
1(t, ω(t), ω(t − τ)),

z(t− τ) = H ′
2(t, ω(t), ω(t− τ)); |ω| =

√
ω2(t) + ω2(t− τ); |z| =

√
z2(t) + z2(t− τ).

So, by (5.16) and (5.17), it is easy to see

∥υm(t)∥Lq [0,2γτ ] = ∥υm(t− τ)∥Lq [0,2γτ ] ≤ C6. (constant)

That is, {υn} is bounded. We next will show that {υn} has a convergence subsequence. Since

Lq[0, 2γτ ] is a reflexive Banach space, there exists a subsequence of {υn} which is weakly

convergent in Lq[0, 2γτ ]. We denote it by {υmk
}, that is to say, υmk

(t)⇀ υ∗(t), υmk
(t− τ)⇀

υ∗(t− τ). On the one hand, by convexity of the function H, we get

H(t, υ∗(t), υ∗(t− τ)) +H ′
1(t, υ

∗(t), υ∗(t− τ))(υmk
(t)− υ∗(t))

+H ′
2(t, υ

∗(t), υ∗(t− τ))(υmk
(t− τ)− υ∗(t− τ)) ≤ H(t, υmk

(t), υmk
(t− τ)).

So, we have ∫ 2γτ

0

H(t, υ∗(t), υ∗(t− τ))dt ≤ lim
k→∞

∫ 2γτ

0

H(t, υmk
(t), υmk

(t− τ))dt. (5.18)
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On the other hand, by convexity of the function H again, we obtain

H(t, υ∗(t), υ∗(t− τ)) ≥ H(t, υmk
(t), υmk

(t− τ)) +H ′
1(t, υmk

(t), υmk
(t− τ))(υ∗(t)− υmk

(t))

+H ′
2(t, υmk

(t), υmk
(t− τ))(υ∗(t− τ)− υmk

(t− τ))

= H(t, υmk
(t), υmk

(t− τ)) + (−Kυmk
+ zmk

+ χmk
) · (υ∗ − υmk

).

Since the operators A and K are compact and (zmk
(t), zmk

(t− τ)) → θ, we know

lim
k→∞

∫ 2γτ

0

H(t, υmk
(t), υmk

(t− τ))dt ≤
∫ 2γτ

0

H(t, υ∗(t), υ∗(t− τ))dt. (5.19)

By (5.18), (5.19), and making use of Lemma 5.5 and Corollary 5.1, it is not difficult to see

(υmk
(t), υmk

(t− 2τ)) → (υ∗(t), υ∗(t− τ)).

(ii) We will show that there exist constant ρ, r > 0, such that

J |∂Ωr
≥ ρ > 0, (5.20)

where ∂Ωr = {(υ(t), υ(t−τ)) ∈ Lq[0, 2γτ ]×Lq[0, 2γτ ] | ∥υ(t)∥Lq [0,2γτ ] = ∥υ(t−τ)∥Lq [0,2γτ ] = r}.
Let β = ∥K̂∥£(Lp,Lq), and choose δ > 0 such that the constant Cδ big enough and choose

r small enough so that, by Lemma 5.4, when ∥υ(t)∥Lq = r, there exists the constant C7 > 0

satisfying

Cδ

∫
|υ|<δ

|υ(t)|2dt− 4β(

∫
|υ|<δ

|υ(t)|qdt )
2
q ≥ C7(

∫
|υ|<δ

|υ(t)|qdt )
2
q , (5.21)

C ′
δ

∫
|υ|≥δ

|υ(t)|qdt− 4β(

∫
|υ|≥δ

|υ(t)|qdt )
2
q ≥ C7(

∫
|υ|≥δ

|υ(t)|qdt )
2
q , (5.22)

where |υ| =
√
υ2(t) + υ2(t− τ).

By (5.21), (5.22) and the inequality

ac + bc ≤ (a+ b)c ≤ 2c(ac + bc),

where a, b > 0, and c > 1, we get

J(υ) ≥ −β
2
∥υ(t)∥2Lq [0,2γτ ] −

β

2
∥υ(t)∥2Lq [0,2γτ ]

+ Cδ

∫
|υ|<δ

|υ(t)|2dt+ Cδ

∫
|υ|<δ

|υ(t− τ)|2dt+ C ′
δ

∫
|υ|≥δ

(
√
υ2(t) + υ2(t− τ) )qdt

≥ −β
2
∥υ(t)∥2Lq [0,2γτ ] −

β

2
∥υ(t)∥2Lq [0,2γτ ] + Cδ

∫
|υ|<δ

|υ(t)|2dt

+ Cδ

∫
|υ|<δ

|υ(t− τ)|2dt+ C ′
δ

∫
|υ|≥δ

|υ(t)|qdt

≥ C7[(

∫
|υ|<δ

|υ(t)|qdt )
2
q + (

∫
|υ|≥δ

|υ(t)|qdt )
2
q ] + Cδ

∫
|υ|<δ

|υ(t− τ)|2dt

≥ C7

2
2
q

∥υ(t)∥2Lq [0,2γτ ] =
C7

2
2
q

r2.
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Then choose ρ = C7

2
2
q
r2. That is the conclusion that we want to prove.

(iii) It is obvious J(θ) = 0. and J(υ) is an even function in υ.

From (i),(ii),(iii) and the Maintain pass theorem, we obtain the problem (4.2) has at least

one nontrivial 2γτ -periodic solution, that is Theorem 5.1 holds.
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