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Abstract: In this paper, existence of S-asymptotically w-periodic mild solutions for abstract
integro-differential equation with fractional order is considered. The main results are obtained
by the contraction mapping principle. Moreover, an example is given to illustrate the main
results.
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0 Introduction

The existence of almost periodic, asymptotically almost periodic, almost automorphic,
asymptotically almost automorphic, and pseudo-almost periodic solutions is one of the most
attracting topics in the qualitative theory of differential equations, due to its mathematical

interest and applications. Some recent contributions on the existence of such solutions for
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abstract differential equations and fractional differential equations have been made, see [1-8]
for details. The literature concerning the study of the existence of S-asymptotically w-periodic
solutions of ordinary differential equations described on finite dimensional spaces(see [9-13]).
Recently Henriquez et al. [14], concerned a theory of S-asymptotically w-periodic functions
with values in Banach spaces. Fractional differential equations serve as an excellent tool for
the description of hereditary properties of various materials and processes. In consequence,
the subject of fractional differential equations is gaining much importance and attention. For
details, see [15-23] and the references therein.

Motivated by above works, in this paper, we study the following fractional partial integro-
differential neutral equation with infinite delay:

t o2

%D(t,ut) = /0 mAD(s,us)ds +g(t,ut), t >0, (1.1)
with ug = ¢ € B, where 1 < a < 2,D(t,¢) = ¢(0) + f(t,9),A: D(A) C X - X is a
linear densely defined operator of sectorial type on a complex Banach space X. the history
ug 1 (—00,0] = X defined by u.(6) = u(t + 0) belongs to some abstract phase space B defined
axiomatically. f,g :[0,00) x X — X are appropriate function. The fractional derivative D
is to be understood in Riemann-Liouville sense. To the best of the authors’ knowledge, the
existence of S-asymptotically w-periodic mild solutions for abstract partial fractional integro-
differential neutral equation with infinite delay is a subject that has not been treated in the
literature.

The organization of this paper is as follows. In Section 2, we introduce some definitions
and lemmas. In Section 3, by using the method of the contraction mapping principle, we obtain
the existence of S-asymptotically w-periodic mild solutions of system (1.1). In Section 2, we
examine sufficient conditions for the existence and uniqueness of S-asymptotically w-periodic

mild solutions for a concrete example.

1 Preliminaries

Definition 1. 4 The fractional integral of order o > 0 with the lower limit to for a function

f is defined as

I°f(t) = P(la) /tt(t — ) f(s)ds,t > to, 0 > 0,

provided the right-hand side is pointwise defined on [to,o0), where T' is the Gamma function.

Definition 2. *4 Riemann-Liouville derivative of order o > 0 with the lower limit ty for a

function f : [ty,00) = R can be written as

« 1 dn ! —«
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More details of fractional differential equations, see [24] for details.

In the following, we give the definitions of sectorial linear operators and their associated
solution operator.

A closed linear operator (A, D(A)) with dense domain D(A) in a Banach space X is said
to be sectorial of type w and angle 6 if there are constants w € R,6 € (0,%), M > 0 such that
its resolvent exists outside the sector

M
w+ Sy i={w+A: A€, |arg(—\)| <0}, and [[(A— A) || < m,/\ € w+ 5.

Sectorial operators are well studied in the literature, usually for the case w = 0. For a recent
reference including several examples and properties we refer the reader to [25]. Note that an

operator A is sectorial of type w if and only if wl — A is sectorial of type 0.

Definition 3. /2% Let A be a closed and linear operator with domain D(A) defined on a Banach
space X. We call A is the generator of a solution operator if there are w € R and a strongly
continuous function S, : Rt — L(X) such that {\* : ReA > w} C p(A) and

AT — A) e = / e MG, (t)xdt, ReX > w,z € X.
0

In this case, S, (t) is called the solution operator generated by A.
If A is sectorial of type w with 0 < § < 7(1 — §), then A is the generator of a solution
operator given by
S (t) = 2;/76”&1(” Ay, (2.1)
where 7 is a suitable path lying outside the sector w + Sy (cf. [26]). In [27], Cuesta has proved
that if A is a sectorial operator of type w < 0 for some M > 0 and 0 < 6 < 7(1 — §), then

there exists C > 0 such that
CM

S, (¢ < 2 2.2
ISaOllsc) < T4 T (22)

for t > 0. In the border case a = 1, this is analogous to saying that A is the generator of a
exponentially stable Cy-semigroup. The main difference is that in the case o > 1 the solution

family S, (t) decays like t~*. Cuesta’s result proves that S, (t) is integrable. We also note that

o0 1 —iﬂ'
/ ds =" forl<a<?2 (2.3).
; 3

s
1+ |w|s asin T

therefore S, (t) is integrable. The concept of a solution operator is closely related to the
concept of a resolvent family (see [28, Chapter I]). For the scalar case, where there is a large
bibliography, we refer the reader to the monograph [29], and references therein. Because of the
uniqueness of the Laplace transform, in the border case o = 1 the family S, (¢) corresponds
to a Cy-semigroup, whereas in the case o = 2 a solution operator corresponds to the concept

of a cosine family; see [30]. We note that solution operators, as well as resolvent families, are

-3
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a particular case of (a, k)-regularized families introduced in [31]. According to [31] a solution
operator S, (t) corresponds to (1, %)—regularized family.

In this work we will employ an axiomatic definition of the phase space B introduced in
[32]. More precisely, B is a linear space of functions mapping (—oo, 0] into X endowed with a
seminorm || - ||z such that the next axioms hold.

(A)If z: (—o00,0 +a) - X,a > 0,0 € R is continuous on [o,0 + a) and x, € B, then for
every t € [0,0 + a), the followings hold:

(1) x4 € B,

(@) lzellx < Hljzels,

(iii) ||lzel|p < K(t — o) sup{[lz(s)[| : 0 < s <t} + M(t - o)z, ]|,
where H > 0 is a constant; K, M : [0,00) — [1,00), K is continuous, M is locally bounded and
H, K, M ar independent of z(-).

(A1) For the function z(-) appearing in condition (A), the function ¢ — x; is continuous
from [o,0 + a) into B.

(B) The space B is complete.

(C) If (¢™) nen is a uniformly bounded sequence in BC((—o0, 0], X) given by functions with
compact support and ¢™ — ¢ in the compact open topology, then ¢ € B and [|¢" — ¢|lg — 0
as n — oo.

Let the space By = {¢ € B : ¢(0) = 0} and the operator S(t) : B — B defined by

¢(0), 0 € [-,0],
ot +86), 8 (—o0,—t].
It is well known that {S(t);>0} is a Cp-semigroup [32].

S(t)e(0) = {

Definition 4. The phase space B is called a fading memory space if ||Sells — 0 ast — oo for
every ¢ € By. We said that B is a uniform fading memory space if ||S||rs) — 0 as t — oo.

Remark 1. Since B satisfies axiom (C), the space Cy((—00,0], X) consisting of all continuous
and bounded functions 1 : (—00,0] — X, is continuously included in B. Thus, there exists a
constant L > 0 such that ||¢||g < L||¢ |0, for every ¢ € Cy((—o0, 0], X)[32, Proposition 7.1.1].
Moreover, if B is a fading memory space, then K, M are bounded functions [32, Proposition
7.1.5].

In this work Cj(]0,00), X) denotes the space consisting of the continuous and bounded
functions from [0, 00) into X, endowed with the norm of the uniform convergence which is
denoted by || - ||o- Let us recall the notion of S-asymptotic w-periodicity which will come into

play later on.

Definition 5. "4/ A function f € Cy([0,00),X) is called S-asymptotically periodic if there
exists w > 0 such that lim; o (f(t+w)— f(t)) = 0. In this case, we say that w is an asymptotic
period of f and that f is S-asymptotically w-periodic.

4.
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In this work the notation SAP, (X) stands for the subspace of Cy([0,00), X) consisting of
the S-asymptotically w-periodic functions. We note that SAP, (X) is a Banach space (see [14],
Proposition 3.5)

Definition 6. "4/ A continuous function f € [0,00)x X — X is called uniformly S-asymptotically
w-periodic on bounded subset K of X, the set {f(t,z) : t > 0,z € K} is bounded and
limy oo (f(t+w,x) — f(t,2)) = 0 uniformly in x € K.

Definition 7. "4/ A continuous function f : [0,00) x X — X is called asymptotically uniformly
continuous on bounded subsets if for every € > 0 and every bounded subset K of X, there exist
tex > 0 and 0. x > 0 such that ||f(t,z) — f(t,y)|| < e for allt > t. x and all z,y € K with
[z =yl < 6 k.

Definition 8. "4/ Let f : [0,00) x X — X be uniformly S-asymptotically periodic on bounded
subset and asymptotically uniformly continuous on bounded seta and let u : [0,00) — X be
S-asymptotically periodic function. Then then function v(t) = f(t,u(t)) is S-asymptotically

pertodic.

Definition 9. "4 A function f € Cy(]0,00),X) is called asymptotically asymptotically w-
periodic if there exists an w-periodic function g and ¢ € Cy([0,00), X) such that f = g+ ¢ (here
Co([0,00), X) denotes the subspace of Cy([0,00), X) such that lim;_,. ||z(t)]| = 0).

Lemma 1. %9 Let f : [0,00) x Z — W be S-asymptotically w-periodic on bounded sets and
asymptotically uniformly continuous on bounded sets and let u € SAP,,(X). Then lim;_, o (f(t+

w,u(t +w)) — f(t,u(t))) =0.

Lemma 2. %% Assume that B is a fading memory space. Let v : R — X be a function with
ug € B and u|jo,o0) € SAP,(X). Then the function t — u, € SAP,(B).

2 Main results

Definition 10. Suppose A generates an integrable solution operator S,(t). A function u €
Cy([0,00), X) is said to be an S-asymptotically w-periodic mild solutions to (1.1) if u(-) is
S-asymptotically w-periodic such that

u(t) = Sa(#(0), £(0,9(0))) — f(t,u) + /_ Sa(t —5)g(s,us)ds, t > 0.

Lemma 3. %4 Assume that A is sectorial of type u < 0. Let u € SAP,(X) and let v, :
[0,00) = X be the function defined by v, (t) = fot So(t — s)u(s)ds. Then v, € SAP,(X).

Following the method of [34], we will the following theorems.
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Theorem 1. Assume that A is sectorial of type w < 0 and that B is a fading memory space.
Let f,g:[0,00) x B = X be functions uniformly S-asymptotically w-periodic on bounded sets

and there are two positive constants Ly, L, such that

1t z) = ft )l < Lillz — ylls,
lg(t,xz) — g(t,y)|| < Lgllz —ylls, for all x,y € B,t > 0.

If L(Ly + CML, 1 C”T) < 1. Then (1.1) has a unique S-asymptotically w-periodic mild solu-

9 asin(Z)

tion.

Proof. We firstly define a set SAP, o(X) = { € SAP,(X) : z(0) = 0}. It is easy
to see that SAP, o(X) is a closed subspace of SAP,(X). Secondly, we identify the elements
x € SAP, o(X) with its extension to R given by z(8) = 0,6 < 0. Moreover, we denote by y(-)
the function defined by yo = ¢ and y(t) = S,p(0) for ¢ > 0. Since sup;sg [|Sa(t)||px) < 0,
we have y € Cy([0,00), X). On the other hand, (2.2) implies that y|j0,-) € SAF,(X). So by
Lemma 2, we have y; € SAP,(B). In the following, we define the map 7, on SAP, ((X) by
(Thx)o =0 and

(Toz)(t) = —f(t,xe +y1) + va(t), t >0, (3.1)

where v, (¢ fo (s,xs + ys)ds. Taking into account that B is a fading memory
space and Lemma 2, we have that the function g(s,zs +ys) € SAP,(B). In view of f being
asymptotically uniformly continuous on bounded sets. By Lemma 1, we conclude that the
function g(s,zs +ys) € SAP,(X). From Lemma 3, we infer that v, is a map from SAP, o(X)
to SAP, o(X). We also infer that v, is a map from SAP,(X) to SAP,(X). Furthermore,
g(s,xs +ys) is a map from SAP, o(X) to SAP, o(X). Moreover, we have the estimation

I(Taz)(t) = (Ta2) Ol < Lyl = zills + CML, [y A5zle_ds
< LLgle =2l + CMLL, Jo Laerzell= s
< L(Lf+CMngQm”)||x—z||oo

It is not difficult to verify that the maps T, is a contraction mapping. By the contraction
mapping principle, we see that T, has a unique fixed point x € SAP, o(X). Define u(t) =
y(t) + x(t) for t > 0, we can confirm that v € SAP,(X) is a unique S-asymptotically w-
periodic mild solution of (1.1).

Theorem 2. Assume that A is sectorial of type w < 0 and that B is a fading memory space.
Let g : [0,00) x B — X be functions uniformly S-asymptotically w-periodic on bounded sets and

there is a positive constant L, such that

Hg(t,.’IJ) - g(tvy)H S Lg”$ - yH37 fO’/‘ all z,Yy € Bat 2 0.
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Let f :[0,00) x B — X be functions uniformly S-asymptotically w-periodic on bounded sets and

satisfies the Lipschitz condition
£t @) = f(E&y)ll < Lyl — ylls, for all z,y € B,t >0,

where Ly(t) € L'(R). If L(L; + Col|Lyll1) < 1. Then (1.1) has a unique S-asymptotically

w-periodic mild solution.

Proof. Using the notation introduced in the proof of Theorem 1, we consider the map T,
defined on SAP, ¢(X). It follows from our assumptions that T, is well defined. Let z, z be in
SAP,o(X) and define C,, = sup;>q [|Sa(t)||B(x). We have

I(Taz)(t) = (Taz) O < Lyllze = zells + fy 1Salt = 5)(9(s, 2 +y,) = (5,2, + 25)) | xds
< LLglw = 2llos + Ca Jy L(s)llz, — 2|sds
< L(Ly + CallLgll)llx = 2l

It is not difficult to verify that the maps T, is a contraction mapping. By the contraction
mapping principle, we see that T, has a unique fixed point x € SAP, ((X). Define u(t) =
y(t) + x(t) for t > 0, we can confirm that v € SAP,(X) is a unique S-asymptotically w-

periodic mild solution of (1.1).

3 Application

Consider the following fractional differential equation

[ t£+f ay(t — s)u (sf)ds]—Jf‘l(a—gg—v>[ t§+f ay(t — s)u(s, )ds}df
—I-f as(t — s)u(s, &)ds,

u(t,0) = u(t,m) =0, t >0, u(0,§) = ¢(0,8),
(4.1)

for (t,€) € [0,00) x [0,7],v > 0. Choose the space X = L?([0,7]). In what follows, A :
D(A) C X — X is the operator given by Az = 2" — va with the domain D(A) = {z € X :
2" € X,x(0) = z(7) = 0}. It is well known that Az = 2’ is the infinitesimal generator of an
analytic semigroup on L?([0, 7r]). Hence, A is a sectorial of type u = —v < 0. Moreover, we have
identified ¢(0,&) = ¢(0,&) € X. The functions a;,as : [0,00) — R are continuous functions
with Ly = \/fi)oo a?(—s)ds < oo, L, = \/fi)oo a3(—s)ds < co. Setting f,g:[0,00) x B— X by

FE@)(€) = [ art — 5)p(s)(€)ds, Dt ,w — () + {(t 2)(©),
9(t9)(€) = [ aalt — $)p(s)(E)ds, Te (1) = [i G f(s)ds.

On can rewrite (4.1) as the form (1.1). Moreover, f, g are bounded linear operators satisfying

1t z) = f(E Il < Lellz —ylls, [lgt,z) — gt 9)l| < Lgllz — ylls.

-7
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Theorem 3. Under the assumptions of Theorem 2, (4.1) has a unique S-asymptotically w-

periodic mild solution whenever L, L, are small enough.

4 Conclusion

In this paper, existence of S-asymptotically w-periodic solutions for an abstract fractional
integro-differential neutral equations with infinite delay is considered. By using contraction
mapping principle, some sufficient conditions for the existence of S-asymptotically w-periodic
mild solutions of system (1.1) are obtained. In the end, we examine sufficient conditions for the

existence and uniqueness of S-asymptotically w-periodic mild solutions for a concrete example.
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