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具无穷时滞的分数阶抽象积分-微分方程

S-渐近ω-周期弱解的存在性
王奇，王志杰，张洪彦，丁敏敏

安徽大学数学科学学院，合肥　230039

摘要：本文讨论了具无穷时滞的分数阶抽象积分-微分方程S-渐近ω-周期弱解的存在性问题，

利用压缩映射原理得到了上述方程S-渐近ω-周期弱解的存在唯一性，并且给出一个实例来说明

本文的主要结果。
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solutions for abstract fractional

integro-differential equations with infinite delay
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Abstract: In this paper, existence of S-asymptotically ω-periodic mild solutions for abstract

integro-differential equation with fractional order is considered. The main results are obtained

by the contraction mapping principle. Moreover, an example is given to illustrate the main

results.
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0 Introduction

The existence of almost periodic, asymptotically almost periodic, almost automorphic,

asymptotically almost automorphic, and pseudo-almost periodic solutions is one of the most

attracting topics in the qualitative theory of differential equations, due to its mathematical

interest and applications. Some recent contributions on the existence of such solutions for
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abstract differential equations and fractional differential equations have been made, see [1-8]

for details. The literature concerning the study of the existence of S-asymptotically ω-periodic

solutions of ordinary differential equations described on finite dimensional spaces(see [9-13]).

Recently Henŕıquez et al. [14], concerned a theory of S-asymptotically ω-periodic functions

with values in Banach spaces. Fractional differential equations serve as an excellent tool for

the description of hereditary properties of various materials and processes. In consequence,

the subject of fractional differential equations is gaining much importance and attention. For

details, see [15-23] and the references therein.

Motivated by above works, in this paper, we study the following fractional partial integro-

differential neutral equation with infinite delay:

d

dt
D(t, ut) =

∫ t

0

(t− s)α−2

Γ(α− 1)
AD(s, us)ds+ g(t, ut), t ≥ 0, (1.1)

with u0 = φ ∈ B, where 1 < α < 2, D(t, φ) = φ(0) + f(t, φ), A : D(A) ⊂ X → X is a

linear densely defined operator of sectorial type on a complex Banach space X. the history

ut : (−∞, 0] → X defined by ut(θ) = u(t+ θ) belongs to some abstract phase space B defined

axiomatically. f, g : [0,∞) × X → X are appropriate function. The fractional derivative Dα
t

is to be understood in Riemann-Liouville sense. To the best of the authors’ knowledge, the

existence of S-asymptotically ω-periodic mild solutions for abstract partial fractional integro-

differential neutral equation with infinite delay is a subject that has not been treated in the

literature.

The organization of this paper is as follows. In Section 2, we introduce some definitions

and lemmas. In Section 3, by using the method of the contraction mapping principle, we obtain

the existence of S-asymptotically ω-periodic mild solutions of system (1.1). In Section 2, we

examine sufficient conditions for the existence and uniqueness of S-asymptotically ω-periodic

mild solutions for a concrete example.

1 Preliminaries

Definition 1. [24] The fractional integral of order α > 0 with the lower limit t0 for a function

f is defined as

Iαf(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1f(s)ds, t > t0, α > 0,

provided the right-hand side is pointwise defined on [t0,∞), where Γ is the Gamma function.

Definition 2. [24] Riemann-Liouville derivative of order α > 0 with the lower limit t0 for a

function f : [t0,∞) → R can be written as

Dα
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

t0

(t− s)−αf(s)ds, t > t0, n− 1 < α < n.
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More details of fractional differential equations, see [24] for details.

In the following, we give the definitions of sectorial linear operators and their associated

solution operator.

A closed linear operator (A,D(A)) with dense domain D(A) in a Banach space X is said

to be sectorial of type ω and angle θ if there are constants ω ∈ R, θ ∈ (0, π
2
),M > 0 such that

its resolvent exists outside the sector

ω + Sθ := {ω + λ : λ ∈ C, |arg(−λ)| < θ}, and ∥(λ−A)−1∥ ≤ M

|λ− ω|
, λ ∈ ω + Sθ.

Sectorial operators are well studied in the literature, usually for the case ω = 0. For a recent

reference including several examples and properties we refer the reader to [25]. Note that an

operator A is sectorial of type ω if and only if ωI −A is sectorial of type 0.

Definition 3. [26] Let A be a closed and linear operator with domain D(A) defined on a Banach

space X. We call A is the generator of a solution operator if there are ω ∈ R and a strongly

continuous function Sα : R+ → L(X) such that {λα : Reλ > ω} ⊆ ρ(A) and

λα−1(λα −A)−1x =

∫ ∞

0

e−λtSα(t)xdt,Reλ > ω, x ∈ X.

In this case, Sα(t) is called the solution operator generated by A.

If A is sectorial of type ω with 0 ≤ θ ≤ π(1 − α
2
), then A is the generator of a solution

operator given by

Sα(t) :=
1

2πi

∫
γ

e−λtλα−1(λα −A)−1dλ, (2.1)

where γ is a suitable path lying outside the sector ω+ Sθ (cf. [26]). In [27], Cuesta has proved

that if A is a sectorial operator of type ω < 0 for some M > 0 and 0 ≤ θ ≤ π(1 − α
2
), then

there exists C > 0 such that

∥Sα(t)∥B(X) ≤
CM

1 + |ω|tα
, (2.2)

for t ≥ 0. In the border case α = 1, this is analogous to saying that A is the generator of a

exponentially stable C0-semigroup. The main difference is that in the case α > 1 the solution

family Sα(t) decays like t
−α. Cuesta′s result proves that Sα(t) is integrable. We also note that∫ ∞

0

1

1 + |ω|sα
ds =

ω− 1
απ

α sin π
α

, for 1 < α < 2 (2.3).

therefore Sα(t) is integrable. The concept of a solution operator is closely related to the

concept of a resolvent family (see [28, Chapter I]). For the scalar case, where there is a large

bibliography, we refer the reader to the monograph [29], and references therein. Because of the

uniqueness of the Laplace transform, in the border case α = 1 the family Sα(t) corresponds

to a C0-semigroup, whereas in the case α = 2 a solution operator corresponds to the concept

of a cosine family; see [30]. We note that solution operators, as well as resolvent families, are
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a particular case of (a, k)-regularized families introduced in [31]. According to [31] a solution

operator Sα(t) corresponds to (1, t
α−1

Γ(α)
)-regularized family.

In this work we will employ an axiomatic definition of the phase space B introduced in

[32]. More precisely, B is a linear space of functions mapping (−∞, 0] into X endowed with a

seminorm ∥ · ∥B such that the next axioms hold.

(A) If x : (−∞, σ + a) → X, a > 0, σ ∈ R is continuous on [σ, σ + a) and xσ ∈ B, then for

every t ∈ [σ, σ + a), the followings hold:

(i) xt ∈ B,
(ii) ∥xt∥X ≤ H∥xt∥B,
(iii) ∥xt∥B ≤ K(t− σ) sup{∥x(s)∥ : σ ≤ s ≤ t}+M(t− σ)∥xσ∥B,

where H > 0 is a constant; K,M : [0,∞) → [1,∞),K is continuous, M is locally bounded and

H,K,M ar independent of x(·).
(A1) For the function x(·) appearing in condition (A), the function t → xt is continuous

from [σ, σ + a) into B.
(B) The space B is complete.

(C) If (φn)n∈N is a uniformly bounded sequence in BC((−∞, 0], X) given by functions with

compact support and φn → φ in the compact open topology, then φ ∈ B and ∥φn − φ∥B → 0

as n→ ∞.

Let the space B0 = {φ ∈ B : φ(0) = 0} and the operator S(t) : B → B defined by

S(t)ϕ(θ) =

{
ϕ(0), θ ∈ [−t, 0],
ϕ(t+ θ), θ ∈ (−∞,−t].

It is well known that {S(t)t≥0} is a C0-semigroup [32].

Definition 4. The phase space B is called a fading memory space if ∥Sφ∥B → 0 as t→ ∞ for

every φ ∈ B0. We said that B is a uniform fading memory space if ∥S∥L(B) → 0 as t→ ∞.

Remark 1. Since B satisfies axiom (C), the space Cb((−∞, 0], X) consisting of all continuous

and bounded functions ψ : (−∞, 0] → X, is continuously included in B. Thus, there exists a

constant L ≥ 0 such that ∥ψ∥B ≤ L∥ψ∥∞, for every ψ ∈ Cb((−∞, 0], X)[32, Proposition 7.1.1].

Moreover, if B is a fading memory space, then K,M are bounded functions [32, Proposition

7.1.5].

In this work Cb([0,∞), X) denotes the space consisting of the continuous and bounded

functions from [0,∞) into X, endowed with the norm of the uniform convergence which is

denoted by ∥ · ∥∞. Let us recall the notion of S-asymptotic ω-periodicity which will come into

play later on.

Definition 5. [14] A function f ∈ Cb([0,∞), X) is called S-asymptotically periodic if there

exists ω > 0 such that limt→∞(f(t+ω)−f(t)) = 0. In this case, we say that ω is an asymptotic

period of f and that f is S-asymptotically ω-periodic.
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In this work the notation SAPω(X) stands for the subspace of Cb([0,∞), X) consisting of

the S-asymptotically ω-periodic functions. We note that SAPω(X) is a Banach space (see [14],

Proposition 3.5)

Definition 6. [14] A continuous function f ∈ [0,∞)×X → X is called uniformly S-asymptotically

ω-periodic on bounded subset K of X, the set {f(t, x) : t ≥ 0, x ∈ K} is bounded and

limt→∞(f(t+ ω, x)− f(t, x)) = 0 uniformly in x ∈ K.

Definition 7. [14] A continuous function f : [0,∞)×X → X is called asymptotically uniformly

continuous on bounded subsets if for every ε > 0 and every bounded subset K of X, there exist

tε,K ≥ 0 and δε,K > 0 such that ∥f(t, x) − f(t, y)∥ ≤ ε for all t ≥ tε,K and all x, y ∈ K with

∥x− y∥ ≤ δε,K .

Definition 8. [14] Let f : [0,∞)×X → X be uniformly S-asymptotically periodic on bounded

subset and asymptotically uniformly continuous on bounded seta and let u : [0,∞) → X be

S-asymptotically periodic function. Then then function v(t) = f(t, u(t)) is S-asymptotically

periodic.

Definition 9. [14] A function f ∈ Cb([0,∞), X) is called asymptotically asymptotically ω-

periodic if there exists an ω-periodic function g and ϕ ∈ C0([0,∞), X) such that f = g+ϕ(here

C0([0,∞), X) denotes the subspace of Cb([0,∞), X) such that limt→∞ ∥x(t)∥ = 0).

Lemma 1. [33] Let f : [0,∞) × Z → W be S-asymptotically ω-periodic on bounded sets and

asymptotically uniformly continuous on bounded sets and let u ∈ SAPω(X). Then limt→∞(f(t+

ω, u(t+ ω))− f(t, u(t))) = 0.

Lemma 2. [33] Assume that B is a fading memory space. Let u : R → X be a function with

u0 ∈ B and u|[0,∞) ∈ SAPω(X). Then the function t→ ut ∈ SAPω(B).

2 Main results

Definition 10. Suppose A generates an integrable solution operator Sα(t). A function u ∈
Cb([0,∞), X) is said to be an S-asymptotically ω-periodic mild solutions to (1.1) if u(·) is

S-asymptotically ω-periodic such that

u(t) = Sα(φ(0), f(0, φ(0)))− f(t, ut) +

∫ t

−∞
Sα(t− s)g(s, us)ds, t ≥ 0.

Lemma 3. [34] Assume that A is sectorial of type µ < 0. Let u ∈ SAPω(X) and let vα :

[0,∞) → X be the function defined by vα(t) =
∫ t

0
Sα(t− s)u(s)ds. Then vα ∈ SAPω(X).

Following the method of [34], we will the following theorems.
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Theorem 1. Assume that A is sectorial of type ω < 0 and that B is a fading memory space.

Let f, g : [0,∞) × B → X be functions uniformly S-asymptotically ω-periodic on bounded sets

and there are two positive constants Lf , Lg such that

∥f(t, x)− f(t, y)∥ ≤ Lf∥x− y∥B,
∥g(t, x)− g(t, y)∥ ≤ Lg∥x− y∥B, for all x, y ∈ B, t ≥ 0.

If L(Lf + CMLg
|µ|−

1
α π

α sin( π
α )
) < 1. Then (1.1) has a unique S-asymptotically ω-periodic mild solu-

tion.

Proof. We firstly define a set SAPω,0(X) = {x ∈ SAPω(X) : x(0) = 0}. It is easy

to see that SAPω,0(X) is a closed subspace of SAPω(X). Secondly, we identify the elements

x ∈ SAPω,0(X) with its extension to R given by x(θ) = 0, θ ≤ 0. Moreover, we denote by y(·)
the function defined by y0 = φ and y(t) = Sαφ(0) for t ≥ 0. Since supt≥0 ∥Sα(t)∥B(X) < ∞,

we have y ∈ Cb([0,∞), X). On the other hand, (2.2) implies that y|[0,∞) ∈ SAPω(X). So by

Lemma 2, we have yt ∈ SAPω(B). In the following, we define the map Tα on SAPω,0(X) by

(Tαx)0 = 0 and

(Tαx)(t) = −f(t, xt + yt) + vα(t), t ≥ 0, (3.1)

where vα(t) =
∫ t

0
Sα(t − s)g(s, xs + ys)ds. Taking into account that B is a fading memory

space and Lemma 2, we have that the function g(s, xs + ys) ∈ SAPω(B). In view of f being

asymptotically uniformly continuous on bounded sets. By Lemma 1, we conclude that the

function g(s, xs + ys) ∈ SAPω(X). From Lemma 3, we infer that vα is a map from SAPω,0(X)

to SAPω,0(X). We also infer that vα is a map from SAPω(X) to SAPω(X). Furthermore,

g(s, xs + ys) is a map from SAPω,0(X) to SAPω,0(X). Moreover, we have the estimation

∥(Tαx)(t)− (Tαz)(t)∥ ≤ Lf∥xt − zt∥B + CMLg

∫ t

0
∥xs−zs∥B

1+|µ|(t−s)α
ds

≤ LLf∥x− z∥∞ + CMLLg

∫ t

0
∥xs−zs∥∞
1+|µ|sα ds

≤ L(Lf + CMLg
|µ|−

1
α π

α sin( π
α )
)∥x− z∥∞

It is not difficult to verify that the maps Tα is a contraction mapping. By the contraction

mapping principle, we see that Tα has a unique fixed point x ∈ SAPω,0(X). Define u(t) =

y(t) + x(t) for t ≥ 0, we can confirm that u ∈ SAPω(X) is a unique S-asymptotically ω-

periodic mild solution of (1.1).

Theorem 2. Assume that A is sectorial of type ω < 0 and that B is a fading memory space.

Let g : [0,∞)×B → X be functions uniformly S-asymptotically ω-periodic on bounded sets and

there is a positive constant Lg such that

∥g(t, x)− g(t, y)∥ ≤ Lg∥x− y∥B, for all x, y ∈ B, t ≥ 0.
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Let f : [0,∞)×B → X be functions uniformly S-asymptotically ω-periodic on bounded sets and

satisfies the Lipschitz condition

∥f(t, x)− f(t, y)∥ ≤ Lf (t)∥x− y∥B, for all x, y ∈ B, t ≥ 0,

where Lf (t) ∈ L1(R). If L(Lf + Cα∥Lg∥1) < 1. Then (1.1) has a unique S-asymptotically

ω-periodic mild solution.

Proof. Using the notation introduced in the proof of Theorem 1, we consider the map Tα

defined on SAPω,0(X). It follows from our assumptions that Tα is well defined. Let x, z be in

SAPω,0(X) and define Cα = supt≥0 ∥Sα(t)∥B(X). We have

∥(Tαx)(t)− (Tαz)(t)∥ ≤ Lf∥xt − zt∥B +
∫ t

0
∥Sα(t− s)(g(s, xs + ys)− g(s, xs + zs))∥Xds

≤ LLf∥x− z∥∞ + Cα

∫ t

0
L(s)∥xs − zs∥Bds

≤ L(Lf + Cα∥Lg∥1)∥x− z∥∞

It is not difficult to verify that the maps Tα is a contraction mapping. By the contraction

mapping principle, we see that Tα has a unique fixed point x ∈ SAPω,0(X). Define u(t) =

y(t) + x(t) for t ≥ 0, we can confirm that u ∈ SAPω(X) is a unique S-asymptotically ω-

periodic mild solution of (1.1).

3 Application

Consider the following fractional differential equation

∂
∂t

[
u(t, ξ) +

∫ t

−∞ a1(t− s)u(s, ξ)ds
]
= Jα−1

t

(
∂2

∂ξ2
− v

)[
u(t, ξ) +

∫ t

−∞ a1(t− s)u(s, ξ)ds
]
dξ

+
∫ t

−∞ a2(t− s)u(s, ξ)ds,

u(t, 0) = u(t, π) = 0, t ≥ 0, u(0, ξ) = φ(0, ξ),

(4.1)

for (t, ξ) ∈ [0,∞) × [0, π], v > 0. Choose the space X = L2([0, π]). In what follows, A :

D(A) ⊆ X → X is the operator given by Ax = x′′ − vx with the domain D(A) = {x ∈ X :

x′′ ∈ X,x(0) = x(π) = 0}. It is well known that ∆x = x′′ is the infinitesimal generator of an

analytic semigroup on L2([0, π]). Hence, A is a sectorial of type µ = −v < 0. Moreover, we have

identified φ(0, ξ) = φ(0, ξ) ∈ X. The functions a1, a2 : [0,∞) → R are continuous functions

with Lf =
√∫ 0

−∞ a21(−s)ds <∞, Lg =
√∫ 0

−∞ a22(−s)ds <∞. Setting f, g : [0,∞)×B → X by

f(t, φ)(ξ) =
∫ t

−∞ a1(t− s)φ(s)(ξ)ds, D(t, φ) = φ(0)(ξ) + f(t, φ)(ξ),

g(t, φ)(ξ) =
∫ t

−∞ a2(t− s)φ(s)(ξ)ds, Jα−1
t f(t) =

∫ t

0
(t−s)α−2

Γ(α−1)
f(s)ds.

On can rewrite (4.1) as the form (1.1). Moreover, f, g are bounded linear operators satisfying

∥f(t, x)− f(t, y)∥ ≤ Lf∥x− y∥B, ∥g(t, x)− g(t, y)∥ ≤ Lg∥x− y∥B.

- 7 -



http://www.paper.edu.cn

Theorem 3. Under the assumptions of Theorem 2, (4.1) has a unique S-asymptotically ω-

periodic mild solution whenever Lf , Lg are small enough.

4 Conclusion

In this paper, existence of S-asymptotically ω-periodic solutions for an abstract fractional

integro-differential neutral equations with infinite delay is considered. By using contraction

mapping principle, some sufficient conditions for the existence of S-asymptotically ω-periodic

mild solutions of system (1.1) are obtained. In the end, we examine sufficient conditions for the

existence and uniqueness of S-asymptotically ω-periodic mild solutions for a concrete example.
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