MERBEXES o pape
B i RE A AR RS T B HAREN VBT =R

RAKF
RlFKFRF R, £i5200092
WE: X BLFY, KNFAR—AEAAZ AR LR % R GRERGBE R LT HESX
8 B AR 0T A Ko EABE IR B AT R RO N B B3 T 53 -TFa A, R
) 4 e BAR R A2 69 K 3R A BAR % 69 48 & B it [X 18] 4 o) o0 3 395 52
KPEIR): ABEAVEIN; B, Hopf 9% ; HZEEX
FESES: 0175

Spatio-temporal patterns of periodic oscillations

in delay-coupled neural loops

SONG Yong-Li
Department of Mathematics, Tongji University, Shanghai 200092
Abstract: In this paper, we investigate the spatio-temporal patterns of Hopf bifurcating
periodic oscillations induced by the coupling time delay in a pair of identical tri-neuron
network coupled with time delay. The explicit intervals of delay and the regions in the plane
of the coupling strength and the gain of the inherent response function for the existence of
synchronized in-phase or anti-phase oscillation are obtained.
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0 Introduction

Research on Hopfield-type neural networks with delays, first introduced by Marcus and
Westervelt [1], has shown that delays can modify dynamics in interesting ways. Since then
delays have been inserted into various simple neural networks. Many authors have also inves-
tigated the dynamics of the neural networks of two or more neurons with delays, and have
shown various types of dynamical behaviors like Hopf bifurcations, nonlinear waves and syn-
chronization (see, for example, [2-12] and references therein). However, most of these work
only considered the individual neural network but did not investigate the interactions between
different neural networks.

As a matter of fact, coupled networks, which are combined by different subnetworks and

each subnetwork has its own dynamical property, are ubiquitous and also common in many
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branches of science [13]. For instance, in order to describe the complicated interaction between
billions of neurons in large neural networks, the neurons are often lumped into highly connected
subnetworks and the brain organization can be viewed in gross sense as a number of local
subnetworks coupled by long distance connections [14]. In [15], Campbell et al. studied the
delayed neural network model coupled by a pair of Hopfield-like tri-neuron loops, in which
they analyzed the roots of characteristic equation explicitly and specially investigated the local
stability and bifurcation and observed some in-phase or anti-phase oscillations in numerical
simulations. Recently, Hsu et al. [16] extended the results of Campbell et al. [15] to a delayed
model consisting of a pair of loops each with n neurons. However, authors considered only
the case when the delayed coupling exists between a single neuron of each loop in [15, 16]. In
[17], we proposed a general system consisting of two three-neuron neural loops with three-way
connections, i.e., the coupling exists between three neurons of each loop. To emphasize the
interaction of neural loops, the delay is introduced in the coupling between the loops rather
than in the connection within the individual loop. This network is modelled by the following

system of nonlinear delay differential equations
@i (t) = —i(t) + bf (g1 (1)) + cg(yi(t — 7)),
§i(t) = —yi(t) + bf (yir1 (1)) + cglai(t — 7)),

Here x;,y; represent the voltages of the corresponding neuron, b € R is the gain of the inherent

i=1,2,3 (mod 3). (1)

response function, assumed equal for each neuron, ¢ € R is coupling strength between two
individual loops and f,g : R — R are synaptic (transfer) functions. The interactions are
inhibitory if b < 0, and excitatory if b > 0. The coupling is inhibitory if ¢ < 0, and excitatory
if ¢ > 0.

In [17], taking the coupling delay as the bifurcating parameter, conditional/absolute sta-
bility, stability switches and Hopf bifurcations induced by time delay have been investigated
and stability switches are also found as the coupling time delay varies. In [18], the authors in-
vestigated the properties of Hopf bifurcations and the explicit conditions ensuring the stability
and direction of Hopf bifurcations induced by the coupling time delay have been determined
by applying the normal form theory and the center manifold theorem for functional differential
equations. In the present paper, we are interested in studying spatio-temporal patterns of such
bifurcating periodic oscillations. Spatio-temporal patterns involve the information of nonlinear
oscillations relating space and time and how patterns are created and developed. Such area of
research within coupled networks have been the focus of considerable recent interest (see [19, 20]
and references therein). Synchronization phenomena in the coupled system is ubiquitous and
of interest to researchers in different research fields. It was found that epilepsy, Parkinson’s
disease, Alzheimer’s disease, and schizophrenia are associated with synchronized firings of neu-
rons. These findings highlight the desire to explore the mechanism of synchronization so that

we can develop efficient methods for preventing the formation of synchronization. Recently,
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based on extensive numerical simulations and explicit experimental verification, Prasad et al.
[19, 20] found that the phase-flip bifurcation, where the coupled system alternate from a state
of in-phase to anti-phase, is a general and important property of time-delay coupled nonlinear
system. In this paper, we attempt to analytically investigate how the coupling time delay and

the coupling strength affect spatio-temporal patterns of bifurcating periodic oscillations.

1 Spatio-temporal patterns of bifurcating periodic

solutions

To simply the analysis, the synaptic (transfer) functions f,g : R — R are assumed to be
sufficiently smooth and without loss of generality we also assume the following condition is
satisfied:

(HL) f,g,€ C', £(0) =g(0) =0, f(0) =g'(0) = L.
First we introduce the following results from our previous work [17].
Theorem 1. Assuming that (H1) is satisfied, we have the following: If [1+b/2| < |c| < |1—b],
then system (1) undergoes Hopf bifurcations at the critical values 7'ki such that Tf # T, for any
non-negative integer numbers j,n; if |c| > max{|1 + b/2|,|1 — b|}, then system (1) undergoes
Hopf bifurcations at the critical values Tki, T such that no any two critical values of Tj+, T, and
7, being equal for any non-negative integer numbers j,n,l; and if |1 —b| < |c| < |1+ b/2|, then

system (1) undergoes Hopf bifurcations at T = 73,. Here 7,7, 7, and 7 are defined as follows:

1 —-2-0
= o {arccos ( 2/c] ) +k7r}, (2)

- {— arccos <_22|c_‘b) + (k+ 1)77} el < VITH+b+02,
\Tl—| {arccos (_22|C_|b> + kTF} , le| > V1 +b+0b2

T = % {(k + 1)7 — arccos <1|c|b> } , (4)

wi:?b|i1/02<1+g> , w=1/c2—(1-0)2 (5)

For going ahead further, we should specify the corresponding relationship between the

T, =

(3)

and

where

critical values and the eigenvalues. Set
T
U;t = (lj7 il]) ) (6)

where j =0,1,2, [; = (1,Xk,x2k)T and ¥ = e ¥, Note that v; = v{ and v; = v;. So, from

[17], we also have the following results.
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Theorem 2. Assume that ¢ > 0, 7,7, 7,7, 7. and v; are defined by (2), (3), (4) and (6),

respectively.

(i) For the critical values of the coupling time delay 7',?, system (1) around the zero solution
has a pair of purely imaginary eigenvalues £v"i for k being odd and +vii for k being

even;

(73) For the critical values of the coupling time delay T, , then when ¢ < V1 +0b+ b2, system
(1) around the zero solution has a pair of purely imaginary eigenvalues +vii for k being
even and vy i for k being odd, but when ¢ > \/1+ b+ b2, system (1) around the zero
solution has a pair of purely imaginary eigenvalues £vi for k being odd and vy i for k

being even;

(ii3) For the critical values of the coupling time delay Ty, system (1) around the zero solution
has a pair of purely imaginary eigenvalues +vii for k being odd and +vyi for k being

even.

Theorem 3. Assume that ¢ < 0, 7,7, 7,7, 7 and v; are defined by (2), (3), (4) and (6),

respectively.

(i) For the critical values of the coupling time delay 7, , system (1) around the zero solution
has a pair of purely imaginary eigenvalues vy for k being even and vy i for k being
odd;

(79) For the critical values of the coupling time delay 7, , then when ¢ < V1 +0b+ b2, system
(1) around the zero solution has a pair of purely imaginary eigenvalues +vii for k being
odd and +vii for k being even, but when ¢ > \/1+b+ b2, system (1) around the zero
solution has a pair of purely imaginary eigenvalues +v;7i for k being even and +vi i for
k being odd;

(#i1) For the critical values of the coupling time delay Ty, system (1) around the zero solution
has a pair of purely imaginary eigenvalues £vi for k being even and +vy i for k being
odd.

In this section, we further investigate the spatio-temporal patterns of bifurcating periodic
solutions. For simplification of notations, throughout this section, we also assume that the
characteristic equation has a pair of simple purely imaginary roots +iw, at the critical value
Tp. But keep in mind that +iw, and 7; have different expressions in different bifurcation
regions (see Lemma 1 and Fig.1). We refer to [21] for explanation of the terminology used in
this section. To investigate the spatio-temporal patterns of bifurcating periodic solutions, we
first have a discussion of the isotropy subgroup of Z3 x Z, x S' and its fixed point subspace

on the eigenspace spanned by the eigenvectors associated with a Hopf bifurcation. Then,
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we determine the existence of the Hopf bifurcating periodic solutions with spatio-temporal
symmetries is obtained.

The symmetry of a system is important in determining the patterns of oscillation. We first
explore the symmetry in system (1). Let G : C — R™ and T be a compact Li group. It follows
from [21, 22] that the system u(t) = G(u;) is said to be I'-equivariant if G(pu;) = pG(uy)
for all p € I'. Let I' = Z3 x Zy be a group of 6 elements generated by p; and psy, that is
Zs X Zy = {p1, pa), where p? = e, p3 = e and e is the identity map. The action of p; and p, on
RS is given by

pi(z,y)" = (pix, piy), i = 1,2, (7)

for all z,y € R3, where

(p12)i = Tig1, (P1Y)i = Yig1, (P27)i = Yis (p2y)i = 5, i =1,2,3 (mod 3) (8)

Letting G(ut) be the vector field of system (1), it is easy to very that G(p;u:) = p;G(u:). Then

the following lemma follows immediately.
Theorem 4. System (1) is equivariant with respect to the group Zz X Zs.

It is well known [23] that a linear functional differential equation generates a strongly

continuous semigroup of linear operators with infinitesimal generator A(7) given by
A(t)p = ¢, ¢ € Dom(A),
Dom(A) = {p € C,9(0) = L(7)¢}

with L(7) being defined by the linearization of system (1) at the zero solution. Moreover, the
spectrum o(A(7)) of A(T) consists of roots of the characteristic equation of system (1) around
the zero solution. It follows from [23] that the eigenspace, denoted by U, (A(7})), of A(7))
for +iw, is spanned by the eigenvectors Re{e™+%v}, Im{e™~?v}, where v is from v; according

to the associated critical values of the coupling time delay, i.e.,
Uiw. (A(13)) = {x161(0) + 2262(0), 21,22 € R},
where
£1(0) = cos(w.0)Re(v) — sin(w.0)Im(v), e3(0) = sin(w.0)Re(v) + cos(w.0)Im(v).

Denote by P, the Banach space of all continuous w—periodic mappings from R into R,
equipped with the supremum norm. Let w = i—” and denote by SP, the subspace of P,

consisting of all w—periodic solutions of (1) at 7 = 7;;. Then

SP, = {me1(t) + n2e2(t), m,n2 € R}.
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For the circle group S', the action of I x S on the subspace SP, can be defined by the shifting

arguments as follows
(pise®) u(t) = piu(t +0), (p;,0) €' x S, u(t) € SP,, i =1,2.
Clearly, for any 6 € (0,w),
20 — {(pi,ei%w)} Ci=1,2,
is a subgroup of I' x S. We first determine the fixed point set
Fix(30 ,SP,) = {u(t) € SP; (pi,e”)u=u forall (p;e”)ex’}
which is directly related to the different types of periodic solutions.

Theorem 5. (i)
SP,, iff= %w,

{0}, if0# S,

where j = 0,1 corresponds to the subscript of v,f and then

Fin(¥ | SP,) =

pP1?

2, if =3y,
dim Fia(3,,SP,) = °
0, iff+# lw.

SP,, either § = mw for v or § = (m + 3) w for vy,
Fir(s?, SP,) =
{0}, otherwise,

where m € Z, and then

[N}

) , either 6 = mw for v or 6 = (m + %) w for vy,
dim Fix(%

p2?

SP,) =

0, otherwise.
Lemma. Note that
297

pr(Re(v¥)) = cos (3) Re(v¥) + sin <2§T> Im(v),

pr(Im(vF)) = — sin <27;T> Re(v¥) + cos <2§T> Im(v),

p2(Re(v])) = Re(v]"), p2(Re(v;)) = —Re(v;),

and
pa(Im(v)) = Im(uf), pp(Im(v})) = ~Tm(v] ).
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Consequently,
pr(mer(t) + mae2(t))
= oos (2 p (Relo7)) —sin (26) pu(Im(u)]
+ns [sin (27t) pr(Re(v})) + cos (25¢) pr(Im(v;))]
= (meos (2) — masin (25)) 1(6) + (s sin (22) + macos (25)) (),
pa(mer(t) +maea(t)) = m [cos (3t) p2(Re(v)) — sin (2t) pao(Tm(v))]
+n2 [sin (%t) p2(Re(v)) + cos (Zt) p2(Im(v))]
mer(t) + mea(t),  for v=10?,
N { —mei(t) — mea(t), for v=vy,
and

—m [sin (22t) cos (226) + cos (2¢) sin (226) ] Im(v)
4132 [sin (22t) cos (226) + cos (22 Re(v)
(

= [771 cos (%’TG) + 19 8in (%’TG)] e1(t) + [—171 sin (%”9) + 13 cos (

Next, we look for conditions guaranteeing the following equality

pi(mer(t) +maea(t)) = mer(t + 0) + meea(t + 0),

to be satisfied. For the case of i = 1, we must have

25 . [ 29m 27 . (27
mecos| — ) —mesin| — | =nycos | —0 ) +nesin | —0
3 3 w w
2j 2j 2 2
71 sin kil + 12 coS ST~ —7 sin Ty + 19 COS Ty .
3 3 w w

Thus, (9) with ¢ = 1 holds if and only if

and

Hz%w n1,M2 € R, or
H;A ]w m =mn2 = 0.

- 8-
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+
7o

27 . (27 . (27 27
mecos| —0O | +nesin| —0 ) =n, —msin| —0) +mnycos| —0) =mn
w w w w

and, for v},

2T . 2T . 2 21
xrcos | —O | +xosin | —0 ) =—n1, —x18in| —0 | +zoco8| —0 | = —ns.
w w w w

So, (9) with 7 = 2 holds if and only if

For the case of i = 2, we must have, for v

0 = mw for v

., or

0= (m+%)w for vy, or
nm =12 = 0, otherwise.
where m € Z. This completes the proof. O
Lemmas 1-5 allow us to apply the symmetric Hopf bifurcation theorem for delay differential

equations due to Wu [21] to obtain the following results.

csoarticle 1. Assume that ¢ > 0, 7,7, 7., and 71, are defined by (2), (3) and (4), respectively,

and p is the corresponding period of the bifurcating periodic solution.

(i) The bifurcating periodic solutions of system (1), occurring at the critical values 7,7 with
k being odd, T, with k being even and ¢ < V1+b+b%, or 7,7 with k being odd and
c>V1+b+ b2, or 1, with k being odd, satisfy

2 (t) = 2 (t - % ) -~ (t - % ) , (10)

zi(t) = i (b), (11)

where i = 1,2,3 (mod 3), 7 corresponds to j =0, 7,7 and T, correspond to j = 1.

and

(ii) The bifurcating periodic solutions of system (1), occurring at the critical values 7,7 with
k being even, T, with k being odd and ¢ < V1+b+b%, or 7, with k being even and
c>V1+4+b+4 0%, or 7, with k being even, satisfy (10)

x;(t) =y (t + ;p) , 1 =1,2,3 (mod 3), (12)

csoarticle 2. Assume that ¢ < 0, 7,7, 7,7 and 73, are defined by (2), (3) and (4), respectively,

and p is the corresponding period of the bifurcating periodic solution.

(i) The bifurcating periodic solutions of system (1), occurring at the critical values T, with
k being even, T, with k being odd and ¢ > —/1+b+ 0%, or 7, with k being even and
¢ < —V1+4+b+ b2, or 7, with k being even, satisfy (10) and (11);

9.
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(ii) The bifurcating periodic solutions of system (1), occurring at the critical values 7,0 with

k being odd, T, with k being even and ¢ > —1+b+0b%, or 7, with k being odd and
c< —V14+b+4 0% or 7, with k being odd, satisfy (10) and (12).

Theorems 1 and 2 have shown that there are different spatio-temporal patterns for three
types of critical values of the coupling time delay. According to (2), (3),(4), and Lemma 1,
the distribution of critical values of the coupling time delay can be plotted in Fig.1, which
is very helpful for us to understand the above results. Regions D;; and D;y,i = 1,2,3, are
bounded by four solid straight lines. In each region, the in-phase and anti-phase oscillations
between two loops coexist, but the spatio-temporal patterns within each loop are different. In
regions Dy, and Di,, the oscillations within each loop are phase-locked with one third period.
In regions Dy; and Dy, within each loop the phase-locked oscillations with one third period
and synchronized oscillations coexist. In regions D3y and Ds,, the oscillations within each loop
are synchronous. In each three-neuron loop, there are discrete travelling and the two loops are
either synchronized or half a period out of phase with each other. Theorems 1 and 2 also have
show that the coupling time delay does not affect the spatio-temporal patterns of the individual
neural loop but it has the significant impact on the spatio-temporal patterns between the two
loops. For instance, as the increasing of the coupling time delay the oscillation patterns between
the two loops can be from anti-phase motion to in-phase motion in the region Ds3; but vice

versa in the region Ds;.

s Ti T
5 \S\ZVW D21 =bi2+1 7
1 >
k T D
T 31
ssf
s Absolutely stable region S
tability switches regions JE——Y
SZ
= o D
. T eemTTT K7
12 .- ;\ D S
.- Ry =-bl2-1 ]
’,"(, =/T+b +b2 + 22 AN <
. Tk Tk N
- o

K 1: Distribution of critical values of the coupling time delay for Hopf bifurcations and regions
of different spatio-temporal patterns. Regions D;; and D;s,i = 1,2,3, are bounded by four
solid straight lines. In each region, the in-phase and anti-phase oscillations between two loops
coexist, but the spatio-temporal patterns within each loop are different. In regions D;; and
D15, the oscillations within each loop are phase-locked with one third period. In regions D
and Dagy, within each loop the phase-locked oscillations with one third period and synchronized

oscillations coexist. In regions D3; and D3, the oscillations within each loop are synchronous.

- 10 -
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2 Conclusions

The synchronization of coupled networks can be either in-phase state or anti-phase state
[24]. Recently, the phase-flip bifurcation has been considered as a general and important
property of time-delay coupled systems. In this paper, we analytically investigate the influence
of the coupling delay and strength on such phenomenon. We found that there are different
synchronized in-phase and anti-phase oscillation in the plane of the coupling strength and
the gain of the inherent response function. A remarkable finding is that the spatio-temporal
patterns between the two loops depend not only on the parity of the critical value k£ of the
coupling time delay, but also on the parameter region where the bifurcation occurs, while
the spatio-temporal patterns within each loop only depend on the parameter region where the
bifurcation occurs and are independent of the parity of critical values(see Theorems 1 and 2 and
Fig.1). For each neural loop, there are two types of the spatio-temporal patterns: one is phase-
locked with one third period (in regions Dii, Dia, D1, Dss) and the other is synchronous
(in regions Day, Do, D31 and Dsy). For the coupled neural loops, in each regions D;; and
D;s,i = 1,2,3, there are also two types of the spatio-temporal patterns: one is in-phase and

the other is anti-phase.
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