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时滞耦合神经环系统中周期振动的时空模式
宋永利
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摘要：在这篇文章中，我们研究一个由两个三元环形神经网络系统组成的耦合系统中时滞诱发

的周期振动的时空模式。在耦合强度和子系统的内在反应函数的增益所组成的参数平面内，同

相同步和反相同步存在的区域以及相关的耦合时滞区间被明确地确定。
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Spatio-temporal patterns of periodic oscillations

in delay-coupled neural loops
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Abstract: In this paper, we investigate the spatio-temporal patterns of Hopf bifurcating

periodic oscillations induced by the coupling time delay in a pair of identical tri-neuron

network coupled with time delay. The explicit intervals of delay and the regions in the plane

of the coupling strength and the gain of the inherent response function for the existence of

synchronized in-phase or anti-phase oscillation are obtained.
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0 Introduction

Research on Hopfield-type neural networks with delays, first introduced by Marcus and

Westervelt [1], has shown that delays can modify dynamics in interesting ways. Since then

delays have been inserted into various simple neural networks. Many authors have also inves-

tigated the dynamics of the neural networks of two or more neurons with delays, and have

shown various types of dynamical behaviors like Hopf bifurcations, nonlinear waves and syn-

chronization (see, for example, [2–12] and references therein). However, most of these work

only considered the individual neural network but did not investigate the interactions between

different neural networks.

As a matter of fact, coupled networks, which are combined by different subnetworks and

each subnetwork has its own dynamical property, are ubiquitous and also common in many
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branches of science [13]. For instance, in order to describe the complicated interaction between

billions of neurons in large neural networks, the neurons are often lumped into highly connected

subnetworks and the brain organization can be viewed in gross sense as a number of local

subnetworks coupled by long distance connections [14]. In [15], Campbell et al. studied the

delayed neural network model coupled by a pair of Hopfield-like tri-neuron loops, in which

they analyzed the roots of characteristic equation explicitly and specially investigated the local

stability and bifurcation and observed some in-phase or anti-phase oscillations in numerical

simulations. Recently, Hsu et al. [16] extended the results of Campbell et al. [15] to a delayed

model consisting of a pair of loops each with n neurons. However, authors considered only

the case when the delayed coupling exists between a single neuron of each loop in [15, 16]. In

[17], we proposed a general system consisting of two three-neuron neural loops with three-way

connections, i.e., the coupling exists between three neurons of each loop. To emphasize the

interaction of neural loops, the delay is introduced in the coupling between the loops rather

than in the connection within the individual loop. This network is modelled by the following

system of nonlinear delay differential equations ẋi(t) = −xi(t) + bf(xi+1(t)) + cg(yi(t− τ)),

ẏi(t) = −yi(t) + bf(yi+1(t)) + cg(xi(t− τ)),
i = 1, 2, 3 (mod 3). (1)

Here xi, yi represent the voltages of the corresponding neuron, b ∈ R is the gain of the inherent

response function, assumed equal for each neuron, c ∈ R is coupling strength between two

individual loops and f, g : R → R are synaptic (transfer) functions. The interactions are

inhibitory if b < 0, and excitatory if b > 0. The coupling is inhibitory if c < 0, and excitatory

if c > 0.

In [17], taking the coupling delay as the bifurcating parameter, conditional/absolute sta-

bility, stability switches and Hopf bifurcations induced by time delay have been investigated

and stability switches are also found as the coupling time delay varies. In [18], the authors in-

vestigated the properties of Hopf bifurcations and the explicit conditions ensuring the stability

and direction of Hopf bifurcations induced by the coupling time delay have been determined

by applying the normal form theory and the center manifold theorem for functional differential

equations. In the present paper, we are interested in studying spatio-temporal patterns of such

bifurcating periodic oscillations. Spatio-temporal patterns involve the information of nonlinear

oscillations relating space and time and how patterns are created and developed. Such area of

research within coupled networks have been the focus of considerable recent interest (see [19, 20]

and references therein). Synchronization phenomena in the coupled system is ubiquitous and

of interest to researchers in different research fields. It was found that epilepsy, Parkinson’s

disease, Alzheimer’s disease, and schizophrenia are associated with synchronized firings of neu-

rons. These findings highlight the desire to explore the mechanism of synchronization so that

we can develop efficient methods for preventing the formation of synchronization. Recently,
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based on extensive numerical simulations and explicit experimental verification, Prasad et al.

[19, 20] found that the phase-flip bifurcation, where the coupled system alternate from a state

of in-phase to anti-phase, is a general and important property of time-delay coupled nonlinear

system. In this paper, we attempt to analytically investigate how the coupling time delay and

the coupling strength affect spatio-temporal patterns of bifurcating periodic oscillations.

1 Spatio-temporal patterns of bifurcating periodic

solutions

To simply the analysis, the synaptic (transfer) functions f, g : R → R are assumed to be

sufficiently smooth and without loss of generality we also assume the following condition is

satisfied:

(H1) f, g,∈ C1, f(0) = g(0) = 0, f ′(0) = g′(0) = 1.

First we introduce the following results from our previous work [17].

Theorem 1. Assuming that (H1) is satisfied, we have the following: If |1+ b/2| < |c| < |1− b|,
then system (1) undergoes Hopf bifurcations at the critical values τ±

k such that τ+
j ̸= τ−

n for any

non-negative integer numbers j, n; if |c| > max{|1 + b/2|, |1 − b|}, then system (1) undergoes

Hopf bifurcations at the critical values τ±
k , τk such that no any two critical values of τ+

j , τ−
n and

τl being equal for any non-negative integer numbers j, n, l; and if |1− b| < |c| < |1 + b/2|, then
system (1) undergoes Hopf bifurcations at τ = τk. Here τ+

k , τ−
k and τk are defined as follows:

τ+
k =

1

ω+

{
arccos

(
−2− b

2|c|

)
+ kπ

}
, (2)

τ−
k =


1
ω−

{
− arccos

(
−2−b
2|c|

)
+ (k + 1)π

}
, |c| <

√
1 + b+ b2,

1
|ω−|

{
arccos

(
−2−b
2|c|

)
+ kπ

}
, |c| >

√
1 + b+ b2

(3)

and

τk =
1

ω

{
(k + 1)π − arccos

(
1− b

|c|

)}
, (4)

where

ω± =

√
3

2
|b| ±

√
c2 −

(
1 +

b

2

)2

, ω =
√
c2 − (1− b)2. (5)

For going ahead further, we should specify the corresponding relationship between the

critical values and the eigenvalues. Set

v±j = (lj ,±lj)
T
, (6)

where j = 0, 1, 2, lj =
(
1, χk, χ2k

)T
and χ = e

2π
3 i. Note that v+2 = v+1 and v−2 = v−1 . So, from

[17], we also have the following results.
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Theorem 2. Assume that c > 0, τ+
k , τ−

k , τk and vj are defined by (2), (3), (4) and (6),

respectively.

(i) For the critical values of the coupling time delay τ+
k , system (1) around the zero solution

has a pair of purely imaginary eigenvalues ±v+1 i for k being odd and ±v−1 i for k being

even;

(ii) For the critical values of the coupling time delay τ−
k , then when c <

√
1 + b+ b2, system

(1) around the zero solution has a pair of purely imaginary eigenvalues ±v+1 i for k being

even and ±v−1 i for k being odd, but when c >
√
1 + b+ b2, system (1) around the zero

solution has a pair of purely imaginary eigenvalues ±v+1 i for k being odd and ±v−1 i for k

being even;

(iii) For the critical values of the coupling time delay τk, system (1) around the zero solution

has a pair of purely imaginary eigenvalues ±v+0 i for k being odd and ±v−0 i for k being

even.

Theorem 3. Assume that c < 0, τ+
k , τ−

k , τk and vj are defined by (2), (3), (4) and (6),

respectively.

(i) For the critical values of the coupling time delay τ+
k , system (1) around the zero solution

has a pair of purely imaginary eigenvalues ±v+1 i for k being even and ±v−1 i for k being

odd;

(ii) For the critical values of the coupling time delay τ−
k , then when c <

√
1 + b+ b2, system

(1) around the zero solution has a pair of purely imaginary eigenvalues ±v+1 i for k being

odd and ±v−1 i for k being even, but when c >
√
1 + b+ b2, system (1) around the zero

solution has a pair of purely imaginary eigenvalues ±v+1 i for k being even and ±v−1 i for

k being odd;

(iii) For the critical values of the coupling time delay τk, system (1) around the zero solution

has a pair of purely imaginary eigenvalues ±v+0 i for k being even and ±v−0 i for k being

odd.

In this section, we further investigate the spatio-temporal patterns of bifurcating periodic

solutions. For simplification of notations, throughout this section, we also assume that the

characteristic equation has a pair of simple purely imaginary roots ±iω∗ at the critical value

τ∗
k . But keep in mind that ±iω∗ and τ∗

k have different expressions in different bifurcation

regions (see Lemma 1 and Fig.1). We refer to [21] for explanation of the terminology used in

this section. To investigate the spatio-temporal patterns of bifurcating periodic solutions, we

first have a discussion of the isotropy subgroup of Z3 × Z2 × S1 and its fixed point subspace

on the eigenspace spanned by the eigenvectors associated with a Hopf bifurcation. Then,
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we determine the existence of the Hopf bifurcating periodic solutions with spatio-temporal

symmetries is obtained.

The symmetry of a system is important in determining the patterns of oscillation. We first

explore the symmetry in system (1). Let G : C → Rn and Γ be a compact Li group. It follows

from [21, 22] that the system u̇(t) = G(ut) is said to be Γ-equivariant if G(ρut) = ρG(ut)

for all ρ ∈ Γ. Let Γ = Z3 × Z2 be a group of 6 elements generated by ρ1 and ρ2, that is

Z3 × Z2 = ⟨ρ1, ρ2⟩, where ρ31 = e, ρ22 = e and e is the identity map. The action of ρ1 and ρ2 on

R6 is given by

ρi(x, y)
T = (ρix, ρiy), i = 1, 2, (7)

for all x, y ∈ R3, where

(ρ1x)i = xi+1, (ρ1y)i = yi+1, (ρ2x)i = yi, (ρ2y)i = xi, i = 1, 2, 3 (mod 3) (8)

Letting G(ut) be the vector field of system (1), it is easy to very that G(ρiut) = ρiG(ut). Then

the following lemma follows immediately.

Theorem 4. System (1) is equivariant with respect to the group Z3 × Z2.

It is well known [23] that a linear functional differential equation generates a strongly

continuous semigroup of linear operators with infinitesimal generator A(τ) given by

A(τ)φ = φ̇, φ ∈ Dom(A),

Dom(A) = {φ ∈ C,φ(0) = L(τ)φ} ,

with L(τ) being defined by the linearization of system (1) at the zero solution. Moreover, the

spectrum σ(A(τ)) of A(τ) consists of roots of the characteristic equation of system (1) around

the zero solution. It follows from [23] that the eigenspace, denoted by Uiω∗(A(τ
∗
k )), of A(τ∗

k )

for ±iω∗ is spanned by the eigenvectors Re{eiω∗θv}, Im{eiω∗θv}, where v is from vj according

to the associated critical values of the coupling time delay, i.e.,

Uiω∗(A(τk)) = {x1ε1(θ) + x2ε2(θ), x1, x2 ∈ R} ,

where

ε1(θ) = cos(ω∗θ)Re(v)− sin(ω∗θ)Im(v), ε2(θ) = sin(ω∗θ)Re(v) + cos(ω∗θ)Im(v).

Denote by Pω the Banach space of all continuous ω−periodic mappings from R into R6,

equipped with the supremum norm. Let ω = 2π
ω∗

and denote by SPω the subspace of Pω

consisting of all ω−periodic solutions of (1) at τ = τ∗
k . Then

SPω = {η1ε1(t) + η2ε2(t), η1, η2 ∈ R} .
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For the circle group S1, the action of Γ×S1 on the subspace SPω can be defined by the shifting

arguments as follows(
ρi, e

iθ
)
u(t) = ρiu(t+ θ), (ρi, θ) ∈ Γ× S1, u(t) ∈ SPω, i = 1, 2.

Clearly, for any θ ∈ (0, ω),

Σθ
ρi

=
{(

ρi, e
i 2π

ω θ
)}

, i = 1, 2,

is a subgroup of Γ× S1. We first determine the fixed point set

Fix(Σθ
ρi
, SPω) =

{
u(t) ∈ SPω;

(
ρi, e

iθ
)
u = u for all

(
ρi, e

iθ
)
∈ Σθ

}
which is directly related to the different types of periodic solutions.

Theorem 5. (i)

Fix(Σθ
ρ1
, SPω) =

 SPω, if θ = 3−j
3
ω,

{0}, if θ ̸= 3−j
3
ω,

where j = 0, 1 corresponds to the subscript of v±k and then

dim Fix(Σθ
ρ1
, SPω) =

 2, if θ = 3−j
3
ω,

0, if θ ̸= 3−j
3
ω.

(ii)

Fix(Σθ
ρ2
, SPω) =

 SPω, either θ = mω for v+k or θ =
(
m+ 1

2

)
ω for v−k ,

{0}, otherwise,

where m ∈ Z, and then

dim Fix(Σθ
ρ2
, SPω) =

 2, either θ = mω for v+k or θ =
(
m+ 1

2

)
ω for v−k ,

0, otherwise.

Lemma. Note that

ρ1(Re(v
±
j )) = cos

(
2jπ

3

)
Re(v±j ) + sin

(
2jπ

3

)
Im(v±j ),

ρ1(Im(v±j )) = − sin

(
2jπ

3

)
Re(v±j ) + cos

(
2jπ

3

)
Im(v±j ),

ρ2(Re(v
+
j )) = Re(v+j ), ρ2(Re(v

−
j )) = −Re(v−j ),

and

ρ2(Im(v+j )) = Im(v+j ), ρ2(Im(v−j )) = −Im(v−j ).
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Consequently,

ρ1(η1ε1(t) + η2ε2(t))

= η1
[
cos

(
2π
ω
t
)
ρ1(Re(v

±
j ))− sin

(
2π
ω
t
)
ρ1(Im(v±j ))

]
+η2

[
sin

(
2π
ω
t
)
ρ1(Re(v

±
j )) + cos

(
2π
ω
t
)
ρ1(Im(v±j ))

]
=

(
η1 cos

(
2jπ
3

)
− η2 sin

(
2jπ
3

))
ε1(t) +

(
η1 sin

(
2jπ
3

)
+ η2 cos

(
2jπ
3

))
ε2(t),

ρ2(η1ε1(t) + η2ε2(t)) = η1
[
cos

(
2π
ω
t
)
ρ2(Re(v))− sin

(
2π
ω
t
)
ρ2(Im(v))

]
+η2

[
sin

(
2π
ω
t
)
ρ2(Re(v)) + cos

(
2π
ω
t
)
ρ2(Im(v))

]
=

 η1ε1(t) + η2ε2(t), for v = v+j ,

−η1ε1(t)− η2ε2(t), for v = v−j ,

and

η1ε1(t+ θ) + η2ε2(t+ θ)

= η1
[
cos

(
2π
ω
t
)
cos

(
2π
ω
θ
)
− sin

(
2π
ω
t
)
sin

(
2π
ω
θ
)]

Re(v)

−η1
[
sin

(
2π
ω
t
)
cos

(
2π
ω
θ
)
+ cos

(
2π
ω
t
)
sin

(
2π
ω
θ
)]

Im(v)

+η2
[
sin

(
2π
ω
t
)
cos

(
2π
ω
θ
)
+ cos

(
2π
ω
t
)
sin

(
2π
ω
θ
)]

Re(v)

+η2
[
cos

(
2π
ω
t
)
cos

(
2π
ω
θ
)
− sin

(
2π
ω
t
)
sin

(
2π
ω
θ
)]

Im(v)

= η1 cos
(
2π
ω
θ
) [

cos( 2π
ω
t
)
Re(v)− sin

(
2π
ω
t)Im(v)

]
−η1 sin

(
2π
ω
θ
) [

sin(2π
ω
t
)
Re(v) + cos

(
2π
ω
t)Im(v)

]
+η2 cos

(
2π
ω
θ
) [

sin(2π
ω
t
)
Re(v) + cos

(
2π
ω
t)Im(v)

]
+η2 sin

(
2π
ω
θ
) [

cos( 2π
ω
t
)
Re(v)− sin

(
2π
ω
t)Im(v)

]
=

[
η1 cos

(
2π
ω
θ
)
+ η2 sin

(
2π
ω
θ
)]

ε1(t) +
[
−η1 sin

(
2π
ω
θ
)
+ η2 cos

(
2π
ω
θ
)]

ε2(t).

Next, we look for conditions guaranteeing the following equality

ρi(η1ε1(t) + η2ε2(t)) = η1ε1(t+ θ) + η2ε2(t+ θ), (9)

to be satisfied. For the case of i = 1, we must have

η1 cos

(
2jπ

3

)
− η2 sin

(
2jπ

3

)
= η1 cos

(
2π

ω
θ

)
+ η2 sin

(
2π

ω
θ

)
and

η1 sin

(
2jπ

3

)
+ η2 cos

(
2jπ

3

)
= −η1 sin

(
2π

ω
θ

)
+ η2 cos

(
2π

ω
θ

)
.

Thus, (9) with i = 1 holds if and only if

θ = 3−j
3
ω, η1, η2 ∈ R, or

θ ̸= 3−j
3
ω, η1 = η2 = 0.
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For the case of i = 2, we must have, for v+j ,

η1 cos

(
2π

ω
θ

)
+ η2 sin

(
2π

ω
θ

)
= η1, −η1 sin

(
2π

ω
θ

)
+ η2 cos

(
2π

ω
θ

)
= η2

and, for v−j ,

x1 cos

(
2π

ω
θ

)
+ x2 sin

(
2π

ω
θ

)
= −η1, −x1 sin

(
2π

ω
θ

)
+ x2 cos

(
2π

ω
θ

)
= −η2.

So, (9) with i = 2 holds if and only if

θ = mω for v+j , or

θ =
(
m+ 1

2

)
ω for v−j , or

η1 = η2 = 0, otherwise.

where m ∈ Z. This completes the proof.

Lemmas 1-5 allow us to apply the symmetric Hopf bifurcation theorem for delay differential

equations due to Wu [21] to obtain the following results.

csoarticle 1. Assume that c > 0, τ+
k , τ−

k and τk are defined by (2), (3) and (4), respectively,

and p is the corresponding period of the bifurcating periodic solution.

(i) The bifurcating periodic solutions of system (1), occurring at the critical values τ+
k with

k being odd, τ−
k with k being even and c <

√
1 + b+ b2, or τ−

k with k being odd and

c >
√
1 + b+ b2, or τk with k being odd, satisfy

xi−1(t) = xi

(
t− j

3
p

)
, yi−1(t) = yi

(
t− j

3
p

)
, (10)

and

xi(t) = yi(t), (11)

where i = 1, 2, 3 (mod 3), τk corresponds to j = 0, τ+
k and τ−

k correspond to j = 1.

(ii) The bifurcating periodic solutions of system (1), occurring at the critical values τ+
k with

k being even, τ−
k with k being odd and c <

√
1 + b+ b2, or τ−

k with k being even and

c >
√
1 + b+ b2, or τk with k being even, satisfy (10)

xi(t) = yi

(
t+

1

2
p

)
, i = 1, 2, 3 (mod 3), (12)

csoarticle 2. Assume that c < 0, τ+
k , τ−

k and τk are defined by (2), (3) and (4), respectively,

and p is the corresponding period of the bifurcating periodic solution.

(i) The bifurcating periodic solutions of system (1), occurring at the critical values τ+
k with

k being even, τ−
k with k being odd and c > −

√
1 + b+ b2, or τ−

k with k being even and

c < −
√
1 + b+ b2, or τk with k being even, satisfy (10) and (11);
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(ii) The bifurcating periodic solutions of system (1), occurring at the critical values τ+
k with

k being odd, τ−
k with k being even and c > −

√
1 + b+ b2, or τ−

k with k being odd and

c < −
√
1 + b+ b2, or τk with k being odd, satisfy (10) and (12).

Theorems 1 and 2 have shown that there are different spatio-temporal patterns for three

types of critical values of the coupling time delay. According to (2), (3),(4), and Lemma 1,

the distribution of critical values of the coupling time delay can be plotted in Fig.1, which

is very helpful for us to understand the above results. Regions Di1 and Di2, i = 1, 2, 3, are

bounded by four solid straight lines. In each region, the in-phase and anti-phase oscillations

between two loops coexist, but the spatio-temporal patterns within each loop are different. In

regions D11 and D12, the oscillations within each loop are phase-locked with one third period.

In regions D21 and D22, within each loop the phase-locked oscillations with one third period

and synchronized oscillations coexist. In regions D31 and D32, the oscillations within each loop

are synchronous. In each three-neuron loop, there are discrete travelling and the two loops are

either synchronized or half a period out of phase with each other. Theorems 1 and 2 also have

show that the coupling time delay does not affect the spatio-temporal patterns of the individual

neural loop but it has the significant impact on the spatio-temporal patterns between the two

loops. For instance, as the increasing of the coupling time delay the oscillation patterns between

the two loops can be from anti-phase motion to in-phase motion in the region D31 but vice

versa in the region D31.

b
−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5
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Absolutely stable regionS
1

S
2

D
31

D
12

D
11

D
21

D
22

D
32

c =
√

1 +b +b2

c =−

√

1 +b +b2

τ
±

k
τk

τk

τk

τ
±

k

τ
±

k

τ
±

k τk

Stability switches regions 

图 1: Distribution of critical values of the coupling time delay for Hopf bifurcations and regions

of different spatio-temporal patterns. Regions Di1 and Di2, i = 1, 2, 3, are bounded by four

solid straight lines. In each region, the in-phase and anti-phase oscillations between two loops

coexist, but the spatio-temporal patterns within each loop are different. In regions D11 and

D12, the oscillations within each loop are phase-locked with one third period. In regions D21

and D22, within each loop the phase-locked oscillations with one third period and synchronized

oscillations coexist. In regions D31 and D32, the oscillations within each loop are synchronous.
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2 Conclusions

The synchronization of coupled networks can be either in-phase state or anti-phase state

[24]. Recently, the phase-flip bifurcation has been considered as a general and important

property of time-delay coupled systems. In this paper, we analytically investigate the influence

of the coupling delay and strength on such phenomenon. We found that there are different

synchronized in-phase and anti-phase oscillation in the plane of the coupling strength and

the gain of the inherent response function. A remarkable finding is that the spatio-temporal

patterns between the two loops depend not only on the parity of the critical value k of the

coupling time delay, but also on the parameter region where the bifurcation occurs, while

the spatio-temporal patterns within each loop only depend on the parameter region where the

bifurcation occurs and are independent of the parity of critical values(see Theorems 1 and 2 and

Fig.1). For each neural loop, there are two types of the spatio-temporal patterns: one is phase-

locked with one third period (in regions D11, D12, D21, D22) and the other is synchronous

(in regions D21, D22, D31 and D32). For the coupled neural loops, in each regions Di1 and

Di2, i = 1, 2, 3, there are also two types of the spatio-temporal patterns: one is in-phase and

the other is anti-phase.
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