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Abstract
In this p aper, we s tudy a kind o f L ienard t ype p-L aplacian e quation w ith de viating a rguments as
follows ((pp (X'())) + F(x@))'x®)+g(t,xt—z(t, X|w))) =e(t) .A new result on the e xistence

and uniqueness of p eriodic solutions of this equation is given by M awhin continuation theorem and
some new techniques.
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1 Introduction

In this present paper, we st udy t he e xistence and uniqueness of pe riodic s olutions of t he
following lienard type p-Laplacian non-autonomous equation with deviating arguments

(@, (X'(1)+ F (XX (®) + g(t, x(t—7(t,]X]))) = e(t) (L.1)

or an equivalent system:

X'(1) =|y(® - (x®)" sen(y(t) -y (x(1)),
y'(t) =—g(t xt—7(t,|x| ) +e(t),

Where p,q>1,1/p+1/q=1; @, :R—>R,0,(s)= |S|p72 S isao ne-dimensional

(1.2)

p-Laplacian;
w(x)=[ Wy, y®) = o, (XOW(XV): . € C(R.R). g « C(R*.R). g(t. X).e(t)

are T-periodic functions with respect tot, T > 0.
As we know, Lienard equation appears in a number of physical modles and is always used to
describe fluid mechanical and nonlinear elastic mechanical phenomena [1~5].

For example, In [ 1], Huang and Xiang studied the following type of Duffing equation with a
single constant deviating argument

X"(t)+ g(x(t—7)) = p(t). (1.3)
In[2], Ma studied a kind of delay Duffing equation of type
X"()+m*x(t) + g(x(t—7)) = p(t). (1.4)

In[3], Shipeng Luand W eigao Ge considered Periodic s olutions ofa kind Lienard equation
with a deviating argument

X"()+ f(xX()X'(t)+ g(x(t—z(t))) =e(t). ( 15
On the other hand, some other p- Laplacian equation also received much attention lately. In

[6], Y ong Wang, Xianzhi Dai and Xiaoxu Xia studied Lienard type p-Laplacian non-autonomous
equation as follows

(@, (X'(1))) + f(X(E)X'(t) + g(t, (1)) =e(t). (1.6)
As far as we know, there exist much fewer results on the existence and unique of periodic

solution of (1.1) The main difficulty lies in the first term (¢, (X'(1)))" of (1.1) (the p-Laplacian
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-2 . .
operator @, :R—> R, (s)= |S| """ 5 is nonlinear when p # 2 ). For example,

In [7], Cheung and Ren first studied the following p-Laplacian Rayleigh delay equation

(@, (X'0))'+ F(x(1)) + Bg(x(t—z(1))) = (V). (1.7)
In [8], Peng and Zhu considered the Reyleigh type p-Laplacian delay equation
(@, (X)) + F(X' (1) + g(x(t —z(1))) = e(t). (1.8)

The main purpose in this work is to give some sufficient conditions for securing the existence
of a unique T-periodic solution to (1.1) by using Mawhin continuation theorem[10,11,12,13,14,15]
and some new techniques. Our results are new and extend some preciously known results.

2 Main Lemmas
Set CT1 = {X eC'(R,R),x(t+T)= X(t)} , WhichisaB anachs pace en dowed w ith t he

X| :max{ X

te[0.T] te[0.T]

'w} ,and

Let

gt (ta X(t -

I, =] xefy.

ag(t,x) (t X) ag(t, x) (t X)

ot g, (X ( - _ jOT e(t)dt .

X0 =

The following conditions Wlll be used later:

R

(H1) there exists a constant d > 0 such that X(g(t, X) —€) < 0 for all|X| >dandteR.

(H2)g e C'(R?,

, X|w) =r,7€R,and g, (t,X) <0, forallt,xeR.
For the periodic boundary value problem
(@, (X'(1)))" = h(t, x,x), x(0) = X(T),X'(0) = X'(T), 2.1
where h € C(R’, R) s T-periodic in the first variable. T he following ¢ ontinuation t heorem
can be induced directly from the theory in [16], and is citied as Lemma 1 in [19].
Lemma 1.(Mawhin [16]). Let B = {X € C% : ||X|| < I’} for some I > 0. Suppose the following

two conditions hold:
(i) For each A € (0,1) the problem (¢, (X'(t)))" = AN(t, X, X') has no solution on OB .

17
(ii) The continuous function F defined on R by F(a) = ?Io h(t,a,0)dt is such that

F(-r)F(r)<0.

Then the periodic boundary value problem (2.1) has at least one T-periodic solution on B

Consider the homotopic equation of (1.1):

(@,
We have the following lemma,
Lemma 2. Suppose (H1) holds. Then the set of T-periodic solutions of (2.2) are bounded

Al
inC; .

X)) =2et),2e(0,]) (22

Proof. LetS C% be the set of T-periodic solutions of (2.2). If S =, the proof is ended.
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Suppose S # &, andletX € S Noticing that X(0) = x(T), X'(0) = x'(T )and ,(0) =0, it

follows from (2.2) that
T

[ atxt-=,

Which implies that there existst, €[0, T ] such that

g(ty, x(t, —7(t,, DO))) =€

By (H1), we have

Ix(t, - (t,.[x|, | < d ( 23)

Let

t0 - T(tO ’

X

)dt=Te.

X

X

X

) =KT+¢&
where K is an integer and & € [0, T ].
Then, for anyt €[t,,t, +T]

IX(t)|= ‘x(é) + ; x'(s)ds‘

<d +jT X(s)|ds
N 0
which leads to

X <d+|x

(2.4)

1

Define E, = {t :te[0,T],

x(t)>d},E,={t:te[0,T],

X(t)| < d} .Mu ltiplyingt wo

sides of (2.2) with X(t) and integrating from 0 to T , by (H1) we have
7X@ dt =] (g, (KO XK

=4 IOT (g(t,x(T)—8)x(t)dt — A jOT (e(t) —&)x(t)dt

=2[_ (@t.xT)-E)xOdt + A]_(g(t.x(T)-E)x(t)dt

~A[ (e -E)x(tydt
<A L (g(t,X(T)) - E)x(t)dt — A jOT (e(t)—&)x(t)dt

<(max (9(t.x)—&)+[e—2| )T|x,

te[0,T1x<d

LetM; =( max (9(t, x)—§)+|e—§|w)T . Then we obtain

te[0,T 1,|x|<d

!

X

p
S < MJP x| " (2.5)
Letq > 1 such that1/ p+1/q =1. Then by the holder inequality we have
’ ’ _Tlalyr
], e, =], co
By (2.4),(2.5) and (2.6), we can get
Vang | ;
CSTVIMYP(d +]x] )P

X' X'
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Which yields that there exists M| > 0 such that |X'|1 < M;since p >1, and this together with

(2.4) implies that

X <d+M,. ( 2.7)

M eanwhile, there exists {, €[0,T ]such that X'(t,) = 0 since X(0) = X(T). Then by ( 2.2)
we have, fort €[, +T],

o, (<)<} (0, ()Y

= z‘ j; (f (X(S)X(S)+9(s, X(s—7(5,|X]_ ) + e(s))ds‘

< .[OT (| f (x(s))||X'(3)]+ ‘ g(s, X(s—7(s, x|w)))‘ +[e(s)))ds

<FM, +(G+|e| )T

where F = max {|f (X)]:[¥|<d +M,},G =max{|g(t,x)|:t€[0,T],|x<d+M,} .S o
we obtain

x| = max{‘(pp(x'(t))r/ “’“} <(FM, +(G +[e] )T)/*.

te[0,T]

Let M = max{d +M,,(FM, +(G +|e|w)T)l/(p71)} .Then ”X” <M . T his ¢ ompletest he
proof.

Lemma 3. Suppose (H2) holds, if. Then (1.1) has at most one T-periodic solutions.

Proof. Suppose that X, (t) and X, (t) are two T-periodic s olutions of (1.1). Then, from (1.2),

we obtain

{Xi'(t) =y, —w ()" sen(y, )~y (x ©),

(2.8)
Y/ () =-g(t,x (t—1)) +e(t),i =12,
Setting
V) =X O =x1), u®=y,t)-y,®. (2.9)

It follows from (2.8) that
{v’ (®) =]y, O~ (x )" sgn(y,(©) —w(x (O —|y, O —w ()" sgn(y, (©) —w (%, (1)),

u'(t) =—{g(t,x (t-2) - g(t, %, (t - 7).
(2.10)
Now, we prove that

u(t)<o0 forall teR.

Contrarily, in view of U € C*[0,T Jandu(t) =u(t +T) for allt € R, we obtain

maxy t)>0.

teR

Then, there existst” € R (for convenience, we can chooset” €[0, T ]) such that

u(t )=maxu®=maxu() >0,

te[0,T] teR
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which implies that
u'(t) =gt x, (" =7) - 9(t, X, (1" = 7))] =0 2.11)
u"(t") = g, (L, X (t=7)) + 9, (&, X, (t-)X, (t)]‘t_t*

HO (=) + 0, (X =7 (D)

t=t"

=g, (t", %" = 7))+ g, (", Xt =) (t)]

HG X =)+ G, (17, %, = ))x,) ()]
<0 ( 2.12)
Since g, (t,X) <O for allt € R, from (2.10) and (2.11), we get

Xt —7)=x,(t"—7)
g(t*’ Xl(t* —‘[)) = g(t*a Xz(t* - ‘[))

and

U"(t") = =g, (", % (" =)D () =%, (t)]
=—0, (", DY, () = (4 ()" sgn(y, () -y (%, (1)
[y, =y ) sgn(y,® - w(x, D))
=—0, (", DY, () = (4 ()" sgn(y, () -y (%, (1)

|y, () = (x ()] sgn(y, (©) —w (% O] ( 2.13)
In view of
-0, (t, ) >0,ut”) =y, (") - y,(t")>0 (2.14)

It follows from (2.13) that
U"(t") = =g, (", Dy, O —w (O sgn(y, () -y (X, (1))

[y, = O sgn(y, () —p (% 1)]

>0, (2.15)
which contradicts (2.12). This contradiction implies that
ut)=y,t)-y,(t)<0 forallteR

By using a similar argument, we can also show that
Y,)—y,(t)<0 forallteR

Therefore, we obtain

y,t)=y,(t) forallteR

Then, from (2.10), we get

9t x (t=7)) = g(t, %, (t-7))

again from g, (t, X) <0, w hich implies that

X () =x,(t) forallte R

Hence
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(@, (X' (1)) + F(x(®))'x(t) + g(t, x(t—7)) =e(t)

has at most one T-periodic solution. The proof of lemma 3 is now completed.

3 Main Results

Now we are in the position to give our main results.
Theorem 1. Suppose (H1) hold. Then (1.1) has at least a T-periodic solution.
Proof. Set

h(t, x(t), x(t —z(t,

X, ). X (1) == (x(®) x(t) - g(t, x(t - =(t,

then (2.2) is equivalent to the following equation
(2, (X'(©))" = h(t, x(V), X(t = (L,[x], ), X (1) (32)

By Lemma 2, there exists a constant I > d such that, for any T-periodic solution X(t) of (3.2)

X)) +e(t).(3.1)

x| <r (3.3)
Set
BZ{XIXECTI,X||<I’} (3.4)

By (3.1), we know that (3.2) has no solution on 0B as A € (0,1) , so condition (i) of Lemma 1

is satisfied. By the definition of F in Lemma 1 we get

Fa)=— [ h(t,a,0)dt = [ [e(®) — g(t.a)dt = — [ [§ - g(t,a)ldt
(@)=, h(t,a,0)dt =—[ [e() - g(t.a)dt =—[ [E - g(t.a)]

This together with (H1) yields that F(r)F(—r) <0, condition (ii) of Lemma 1 is sa tisfied.
Therefore, it follows from Lemma that there exists a T-periodic solution X(t) of (1.1)

Theorem 2. Suppose (H1) and (H2) hold. Then

(9, (X'(1)))"+ F(X(1)'X(1) + g(t, x(t—7)) = e(t) (3.5)

has a unique T-periodic solution.

Proof. If (H1) and (H2) hold, it follows from Lemm3 and Theorem] that (3.5) exists a unique
T-periodic solution.

4 Example
2 p-2
Examplel. Let p=+/2,9(t,x) = —1/(100+cos* t)|x|" " xfor allt € R, x> 0 and

t,X)=—Xx?(x—1) fora It € R,X <0 .Then, t he f ollowing L ienardt ypep-Laplacian
g g

equation with a deviating argument
(2, (X'(1))) + X" (DX'(t) + g (t, X(t —|cos()])) = cost

Has at least one 27 -periodic solution.
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