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Abstract

In this paper, we study periodic solutions for a class of Duffing type p-Laplacian equations.
By using the Mandasevich-Mawhin continuation theorem, some new results on the existence of
periodic solutions are obtained.
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1 Introduction

In recent years, many works have focused on the investigation of existence and
uniqueness of periodic solutions for Duffing equations, see, for instance, [3, 4, 5, 7,
8, 9, 10] and references therein.

In [1], Zhang and Li considered the one-dimensional Duffing type p-Laplacian
equation

(0p(2'(1)))" + C2'(t) + g(t, z(t)) = e(?t), (1)
where t,z € R, p > 1, ¢, : R — R is given by ¢,(s) = [s[f7%s for s # 0 and
©,(0) = 0, C is a constant, g(¢,z) is continuous and g(t,-) = g(t + T,-), e(t) is a
continuous function, e(t) = e(t + T, fOT e(t)dt = 0. They showed that if

(A1) (g(t,u1) — g(t,ug))(ur — ug) < 0 for uy # ug, t € R;

(A2) zg(t,x) <0 for |z| > 0, t € R;

(A3) There exist constants K > 0 and M > 0, such that

2 PMTP <1, g(t,x) > -M|X[P"'— K, for x>0, t€R,
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hold, then equation (1) has a unique periodic solution.

Then Tang and Li[2] improved the above result. Under the assumptions (A1)
and

(A2*) There exists a constant d > 0 such that zg(¢t,z) < 0 for |z| > d, t € R,
they obtained the existence and uniqueness of periodic solution for equation (1).

However, these previously known results are just about one-dimensional case,
and they exclude the cases xg(t,z) > 0 and fo t)dt # 0. The main purpose
of this paper is to present a existence result of periodic solutions for Duffing type
p-Laplacian equations.

We consider the following Duffing type p-Laplacian equations

(0p(='(1)))" + jtVF( (1)) + 9(t,z(1)) = e(t), (2)

where p > 1 and ¢, : R" — R™ is given by ¢,(s) = |s|P~2s for s # 0 and ¢,(0) = 0,
F:R" — Ris a C? function, g : R x R" — R" is continuous with g(¢,-) = g(t+1T,-),
and e : R — R" is continuous with e(t) = e(t + 7).

Let C}. := {z € CY(R") : z(0) = z(T),2'(0) = 2/(T)}. For x € C}, define

2]l = [2]oo + [2"|oo,

where

ol = IO, I = e

Then C} is a Banach space.
Throughout this paper, we denote B, = {z € C} : ||z|| < r} and we make the
following assumptions:
(H1) There exist constants d > 0, M > 0 with M(T/2)? < 1, such that for
|z > d,
(gt 2(2))) < Mal? 3)

and
g(t,z(l)) —e(t) # 0; (4)

(H2) There exists a consequence {r;}3°,, r; € Ry, r, — +o00, such that the
Brouwer degree
deg(G, B,, N"R",0) # 0,

where G : R" — R" is defined by

We have the following result.
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Theorem 1.1. Assume that (H1), (H2) hold. Then equation (2) has at least one
T-periodic solution.

Remark 1.1. Theorem 1 can be regarded as the improvement of the results in
[1] and [2]. In fact, when n = 1, VF(z) = Cu, fOTe(t)dt = 0, equations (2) is
reduced to equation (1). Furthermore, under our assumptions, it is possible that
xg(t,x) = 0. More precisely, xg(t,x) can increase as |z|P increase.

Remark 1.2. It should be pointed out that the existence of T-periodic solution
of (2) can not be ensured without (H2), by observing the equation

(ep(='(8))) +1=0.

This paper is organized as follows. In section 2, we prove Theorem 1.1 by using
Manésevich-Mawhin continuation theorem. Then in section 3, an example is given

to illustrate our result.

2 Proof of the Theorem 1.1

To prove the Theorem 1.1, we first introduce the following lemma.
Lemma 2.1. (Mandsevich-Mawhin [6]). Consider the equations
(ep(2'()))" = f(t,2,2), (5)

where f: R xR" x R — R" is continuous and f(¢,-,-) = f(t+17T,-,-). Assume that
(1) For each A € (0,1) the equations

(op(@'(1))) = Af(t, 2, 2)

has no T-periodic solution on 0B,.
(2) G(a) = 0 has no solution on 0B, NR", where

1 (T
G(a) == —/ f(t,a,0)dt.
T Jo
(3) The Brouwer degree
deg(G, B, NR",0) # 0.
Then equation (5) has at least one T-periodic solution in B,.

Proof of Theorem 1.1. Consider the following homotopy equation

(op(='(1)) + A%VF(éﬂ(lt)) +Ag(t,2(t)) = Ae(t), A el0,1]. (6)
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We first prove that the set of all possible T-periodic solutions of equation (6) is
a bounded subset of C..

Let z(t) € C} be an arbitrary T-periodic solution of the equation (6). Since
z(0) = z(T), 2'(0) = 2/(T), integrating equation (6) from 0 to T, we get

T
| tatt.ate) = ey = . o
So there exists € € [0, 7] such that

9(&,2(£)) —e(§) = 0.

By (4) we know that
2 ()] < d.

Therefore

o) = Je(©) + [ e)dsl <+ [ 1ol teleerT)
3 3
)] = lalt=T)| = lo(©) = [ wyis|<d+ [ lolds relee+T)

Consequently, we have

0o = = t
|z e |z (t)] e |z (t)]

< max {d+ = /|ZE |ds+/ |2’ (s)|ds)}

teg,6+T)
< d+;/0 |2’ (s)|ds. (8)
Let
Ei={t:t€]0,T],|x(t)| >d}, Ey={t:tel0,T],|z(t) <d}.

Multiplying equation (6) by x(¢) and integrating from 0 to T', by (3), we get

/0 "

=~ [ tola' @)y atey

0

= )\/0 <;ltVF( (1)), x(t))dt+)\/0 <g(t,x(t)),x(t)>dt—)\/0 (e(t), x(t))dt

= [attao).a®)at = [ .2 )

4
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= )\/E (g(t,:c(t)),x(t))dt—ir)\/E <g(t,x(t)),:1:(t)>dt—)\/0 (e(t),z(t))dt

N

T
M |x|Pdt t,x(t t)|dt t t)|dt
[ et [ e otz @l [ eiie)
< MT|z|%, + DT|x|s, (9)

where D = max{|g(t, z(t))|,t € [0,T], |z| < d} + |e|oo-
We claim that there exists a constant M; > 0, such that |z|, < M;. In fact, by
(9), there exists a constant M, > M with M,(T/2)? < 1 such that for large ||,

T
/ ! (£)[Pdt < M.T)a|”.. (10)
0

Holder inequality follows

/0 2/ (8)]dt < ( / 2 ()Pt / 1) = T / wOPd)E. (1)

Therefore, by (8), (10), (11), we obtain

1, o, [T | 1, 1
e < d T ([ [P OPa)} < dt ST ol (12)
0
Since M,(T/2)? < 1, (12) implies that
T 1
’.CC‘OO < d(l — EM*p)il

Hence, there exists a constant M, such that
|z]0o < M. (13)
Now we show there exists a constant My > 0 such that |2/|, < Ms. Since

z(0) = z(T), there exists ty € [0, 7] such that 2'(ty) = 0. By ¢,(0) = 0 we have

P = max |o,(¢'(H) = max_| / oyl (5)))ds]

te[0,7 €[to,to+T)]

< | / £VF<w<s>>ds\+ / l9(s, 2(s))lds + / Je(s)lds

T T
< IVF(a(t) - VF(a(to)] + / (e, 2(t))dt + / ()| dt
0 0
< 2 VF T £ Tlelo..
s (VR +T o [g(t.0)| + Tl

Thus, there exists Ms, such that

2|0 < M. (14)

5
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Combining (13) and (14), we get
2] = |2]so + |2'[oc < My + M. (15)

This means that the set of all possible T-periodic solutions of equation (6) is a
bounded subset of Ct.
Define

Gla) = 7 / (et) — glt, a))dt.

Then from assumption (H2), there exists a constant r > M; + My +d + 1, such that
the Brouwer degree

deg(G, B, NR",0) # 0.

By (15), the homotopy equation (6) has no T-periodic solution on dB,. Furthermore,
by (4), we know that G(a) = 0 has no solution on 0B, N R™. Hence, by the
Mandsevich-Mawhin theorem, equation (2) has at least one solution in B,. This
completes the proof.O

3 An Example

Example 3.1. To illustrate our result, we consider the one-dimensional Duffing

type p-Laplacian equation
(0a(2' (1)) + 22 (t)2' (t) + Co(2 + cost)z® = sin®(t), (16)

where constant Cj satisfies |Cy| < 3
s

Note that fOQﬂ sin®(t) # 0, and when Cy > 0 we have Cy(2 + cost)z* > 0.
Furthermore, the second term of the left side is 22(¢)2’(t) but not Ca’(t). Therefore
the results in [1] or [2] are not applicable to (16).

Let d = 1. Then we can easily check that (H1) holds. Furthermore, for any
ri > |Co|~3, we have G(r;) < 0, G(—r;) > 0, so there exists a consequence {r;}2,,
r; € Ry, r; — +00, such that the Brouwer degree

deg(G, B, NR",0) # 0.

Thus (H2) holds. By Theorem 1.1, the equation has at least one 27-periodic solution.
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