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Abstract

In this paper, we study periodic solutions for a class of Duffing type p-Laplacian equations.

By using the Manásevich-Mawhin continuation theorem, some new results on the existence of

periodic solutions are obtained.
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1 Introduction

In recent years, many works have focused on the investigation of existence and

uniqueness of periodic solutions for Duffing equations, see, for instance, [3, 4, 5, 7,

8, 9, 10] and references therein.

In [1], Zhang and Li considered the one-dimensional Duffing type p-Laplacian

equation

(ϕp(x
′(t)))′ + Cx′(t) + g(t, x(t)) = e(t), (1)

where t, x ∈ R, p > 1, ϕp : R → R is given by ϕp(s) = |s|p−2s for s 6= 0 and

ϕp(0) = 0, C is a constant, g(t, x) is continuous and g(t, ·) = g(t + T, ·), e(t) is a

continuous function, e(t) = e(t + T ),
∫ T

0
e(t)dt = 0. They showed that if

(A1) (g(t, u1)− g(t, u2))(u1 − u2) < 0 for u1 6= u2, t ∈ R;

(A2) xg(t, x) < 0 for |x| > 0, t ∈ R;

(A3) There exist constants K > 0 and M > 0, such that

22−pMT p < 1, g(t, x) > −M |X|p−1 −K, for x > 0, t ∈ R,
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hold, then equation (1) has a unique periodic solution.

Then Tang and Li[2] improved the above result. Under the assumptions (A1)

and

(A2∗) There exists a constant d > 0 such that xg(t, x) < 0 for |x| > d, t ∈ R,

they obtained the existence and uniqueness of periodic solution for equation (1).

However, these previously known results are just about one-dimensional case,

and they exclude the cases xg(t, x) > 0 and
∫ T

0
e(t)dt 6= 0. The main purpose

of this paper is to present a existence result of periodic solutions for Duffing type

p-Laplacian equations.

We consider the following Duffing type p-Laplacian equations

(ϕp(x
′(t)))′ +

d

dt
∇F (x(t)) + g(t, x(t)) = e(t), (2)

where p > 1 and ϕp : Rn → Rn is given by ϕp(s) = |s|p−2s for s 6= 0 and ϕp(0) = 0,

F : Rn → R is a C1 function, g : R×Rn → Rn is continuous with g(t, ·) = g(t+T, ·),
and e : R→ Rn is continuous with e(t) = e(t + T ).

Let C1
T := {x ∈ C1(Rn) : x(0) = x(T ), x′(0) = x′(T )}. For x ∈ C1

T , define

‖x‖ = |x|∞ + |x′|∞,

where

|x|∞ = max
t∈[0,T ]

|x(t)|, |x′|∞ = max
t∈[0,T ]

|x′(t)|.

Then C1
T is a Banach space.

Throughout this paper, we denote Br = {x ∈ C1
T : ‖x‖ < r} and we make the

following assumptions:

(H1) There exist constants d > 0, M > 0 with M(T/2)p < 1, such that for

|x| > d,

〈x, g(t, x(t))〉 6 M |x|p (3)

and

g(t, x(t))− e(t) 6= 0; (4)

(H2) There exists a consequence {ri}∞i=1, ri ∈ R+, ri → +∞, such that the

Brouwer degree

deg(G,Bri
∩ Rn, 0) 6= 0,

where G : Rn → Rn is defined by

G(a) =
1

T

∫ T

0

(e(t)− g(t, a))dt.

We have the following result.
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Theorem 1.1. Assume that (H1), (H2) hold. Then equation (2) has at least one

T -periodic solution.

Remark 1.1. Theorem 1 can be regarded as the improvement of the results in

[1] and [2]. In fact, when n = 1, ∇F (x) = Cx,
∫ T

0
e(t)dt = 0, equations (2) is

reduced to equation (1). Furthermore, under our assumptions, it is possible that

xg(t, x) > 0. More precisely, xg(t, x) can increase as |x|p increase.

Remark 1.2. It should be pointed out that the existence of T -periodic solution

of (2) can not be ensured without (H2), by observing the equation

(ϕp(x
′(t)))′ + 1 = 0.

This paper is organized as follows. In section 2, we prove Theorem 1.1 by using

Manásevich-Mawhin continuation theorem. Then in section 3, an example is given

to illustrate our result.

2 Proof of the Theorem 1.1

To prove the Theorem 1.1, we first introduce the following lemma.

Lemma 2.1. (Manásevich-Mawhin [6]). Consider the equations

(ϕp(x
′(t)))′ = f(t, x, x′), (5)

where f : R×Rn×Rn → Rn is continuous and f(t, ·, ·) = f(t+T, ·, ·). Assume that

(1) For each λ ∈ (0, 1) the equations

(ϕp(x
′(t)))′ = λf(t, x, x′)

has no T -periodic solution on ∂Br.

(2) G(a) = 0 has no solution on ∂Br ∩ Rn, where

G(a) :=
1

T

∫ T

0

f(t, a, 0)dt.

(3) The Brouwer degree

deg(G,Br ∩ Rn, 0) 6= 0.

Then equation (5) has at least one T -periodic solution in Br.

Proof of Theorem 1.1. Consider the following homotopy equation

(ϕp(x
′(t)))′ + λ

d

dt
∇F (x(t)) + λg(t, x(t)) = λe(t), λ ∈ [0, 1]. (6)
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We first prove that the set of all possible T -periodic solutions of equation (6) is

a bounded subset of C1
T .

Let x(t) ∈ C1
T be an arbitrary T -periodic solution of the equation (6). Since

x(0) = x(T ), x′(0) = x′(T ), integrating equation (6) from 0 to T , we get

∫ T

0

(g(t, x(t))− e(t))dt = 0. (7)

So there exists ξ ∈ [0, T ] such that

g(ξ, x(ξ))− e(ξ) = 0.

By (4) we know that

|x(ξ)| 6 d.

Therefore

|x(t)| = |x(ξ) +

∫ t

ξ

x′(s)ds| 6 d +

∫ t

ξ

|x′(s)|ds, t ∈ [ξ, ξ + T ],

|x(t)| = |x(t− T )| = |x(ξ)−
∫ ξ

t−T

x′(s)ds| 6 d +

∫ ξ

t−T

|x′(s)|ds, t ∈ [ξ, ξ + T ].

Consequently, we have

|x|∞ = max
t∈[0,T ]

|x(t)| = max
t∈[ξ,ξ+T ]

|x(t)|

6 max
t∈[ξ,ξ+T ]

{d +
1

2
(

∫ t

ξ

|x′(s)|ds +

∫ ξ

t−T

|x′(s)|ds)}

6 d +
1

2

∫ T

0

|x′(s)|ds. (8)

Let

E1 = {t : t ∈ [0, T ], |x(t)| > d}, E2 = {t : t ∈ [0, T ], |x(t)| 6 d}.

Multiplying equation (6) by x(t) and integrating from 0 to T , by (3), we get

∫ T

0

|x′(t)|pdt

= −
∫ T

0

〈(ϕp(x
′(t)))′, x(t)〉dt

= λ

∫ T

0

〈 d

dt
∇F (x(t)), x(t)〉dt + λ

∫ T

0

〈g(t, x(t)), x(t)〉dt− λ

∫ T

0

〈e(t), x(t)〉dt

= λ

∫ T

0

〈g(t, x(t)), x(t)〉dt− λ

∫ T

0

〈e(t), x(t)〉dt
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= λ

∫

E1

〈g(t, x(t)), x(t)〉dt + λ

∫

E2

〈g(t, x(t)), x(t)〉dt− λ

∫ T

0

〈e(t), x(t)〉dt

6
∫ T

0

M |x|pdt +

∫ T

0

max
t∈[0,T ],|x|6d

|g(t, x(t))||x(t)|dt +

∫ T

0

|e(t)||x(t)|dt

6 MT |x|p∞ + DT |x|∞, (9)

where D = max{|g(t, x(t))|, t ∈ [0, T ], |x| 6 d}+ |e|∞.

We claim that there exists a constant M1 > 0, such that |x|∞ 6 M1. In fact, by

(9), there exists a constant M∗ > M with M∗(T/2)p < 1 such that for large |x|∞,

∫ T

0

|x′(t)|pdt 6 M∗T |x|p∞. (10)

Hölder inequality follows
∫ T

0

|x′(t)|dt 6 (

∫ T

0

|x′(t)|pdt)
1
p (

∫ T

0

1dt)
p−1
p = T

p−1
p (

∫ T

0

|x′(t)|pdt)
1
p . (11)

Therefore, by (8), (10), (11), we obtain

|x|∞ 6 d +
1

2
T

p−1
p (

∫ T

0

|x′(t)|pdt)
1
p 6 d +

1

2
TM

1
p
∗ |x|∞. (12)

Since M∗(T/2)p < 1, (12) implies that

|x|∞ 6 d(1− T

2
M

1
p
∗ )−1.

Hence, there exists a constant M1, such that

|x|∞ 6 M1. (13)

Now we show there exists a constant M2 > 0 such that |x′|∞ 6 M2. Since

x(0) = x(T ), there exists t0 ∈ [0, T ] such that x′(t0) = 0. By ϕp(0) = 0 we have

|x′|p−1
∞ = max

t∈[0,T ]
|ϕp(x

′(t))| = max
t∈[t0,t0+T ]

|
∫ t

t0

(ϕp(x
′(s)))′ds|

6 |
∫ t

t0

d

ds
∇F (x(s))ds|+

∫ t

t0

|g(s, x(s))|ds +

∫ t

t0

|e(s)|ds

6 |∇F (x(t))−∇F (x(t0))|+
∫ T

0

|g(t, x(t))|dt +

∫ T

0

|e(t)|dt

6 2 max
|x|6M1

|∇F (x)|+ T max
t∈[0,T ],|x|6M1

|g(t, x)|+ T |e|∞.

Thus, there exists M2, such that

|x′|∞ 6 M2. (14)
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Combining (13) and (14), we get

‖x‖ = |x|∞ + |x′|∞ 6 M1 + M2. (15)

This means that the set of all possible T -periodic solutions of equation (6) is a

bounded subset of C1
T .

Define

G(a) =
1

T

∫ T

0

(e(t)− g(t, a))dt.

Then from assumption (H2), there exists a constant r > M1 +M2 + d+1, such that

the Brouwer degree

deg(G,Br ∩ Rn, 0) 6= 0.

By (15), the homotopy equation (6) has no T -periodic solution on ∂Br. Furthermore,

by (4), we know that G(a) = 0 has no solution on ∂Br ∩ Rn. Hence, by the

Manásevich-Mawhin theorem, equation (2) has at least one solution in Br. This

completes the proof.2

3 An Example

Example 3.1. To illustrate our result, we consider the one-dimensional Duffing

type p-Laplacian equation

(ϕ4(x
′(t)))′ + 2x(t)x′(t) + C0(2 + cos t)x3 = sin2(t), (16)

where constant C0 satisfies |C0| < 1

3π4
.

Note that
∫ 2π

0
sin2(t) 6= 0, and when C0 > 0 we have C0(2 + cos t)x4 > 0.

Furthermore, the second term of the left side is 2x(t)x′(t) but not Cx′(t). Therefore

the results in [1] or [2] are not applicable to (16).

Let d = 1. Then we can easily check that (H1) holds. Furthermore, for any

ri > |C0|− 1
3 , we have G(ri) < 0, G(−ri) > 0, so there exists a consequence {ri}∞i=1,

ri ∈ R+, ri → +∞, such that the Brouwer degree

deg(G,Bri
∩ Rn, 0) 6= 0.

Thus (H2) holds. By Theorem 1.1, the equation has at least one 2π-periodic solution.
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