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Abstract. A brief introduction to theories of the gravitational fieldtiva Lagrangian that is a
function of the scalar curvature is given. The emphasis béllplaced in formal developments,
while comparison to observation will be discussed in theptdreby S. Joras in this volume.
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INTRODUCTION

The predictions of General Relativity (GR) are confirmed toirapressive degree by
observations in number of situations [1]. In spite of thistfdheories that differ from
GR either in the limit of low or high curvature have been irsigely studied lately,
and have a long tradition, starting with a paper by Weyl in8 . Although Weyl's
motivation was related to the unification of GR and Electrwaiyics, the current revival
of these theories is twofold. In the case of low curvature, am is to describe the
accelerated expansion of the universe that follows froneisgwobservations [3] (when
interpreted in the standard cosmological model 4]Regarding the high-curvature
regime, it is important to note that there is no observatienalence of the behaviour
of the gravitational field for very large values of the cutrat This makes objects such
as black holes and neutron stars the ideal places to lookdaations from General
Relativity in the strong regime. In fact, the Kerr soluti@miot unique inf (R) theories
[33]. Consequently, any deviation from Kerr's spacetimeeompact objects will be
unequivocally signaling the need of changes in our desonptf strong gravity. The
task of understanding what kind of deviations can be expeard their relation to
observable quantities is of relevance in view of severakebgments that offer the
prospect of observing properties of black holes in the vigiof the horizon [11].

In this short review we will be concerned with gravitatiottsories described by the

action
s— [d'x/=gf(R). (1)

whereg is the determinant of the metrg;,, and f is an arbitrary function of the the
curvature scalaR[. The functionf must satisfy certain constraints, some of which

1 The possibility of describing the current accelerated esfmm of the universe usinf(R) theories was
first discussed in_[5].

2 This choice if favoured by a theorem by Ostrograd$ki [12] roagrangians built with invariants
obtained from the the Ricci and Riemann tensors.
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are necessary for the theory to be well-defirsdd initio, and others to account for
observational facts. Those in the first class will be disedss this review, while those
in the second class are presented in the chapter by S. Jatfdis olumeld. We shall
begin by reviewing in the next section some general featwiréss type of theories.

THE THREE VERSIONS OF f(R) THEORIES

We shall see in this section th&(R) theories can be classified in three different types,
according to the role attibuted to the connection. In allhaf versions, the equation for
the energy-momentum conservation is valid, since the {gtavitational plus matter)
action is diffeomorphism-invariant and gravity and matee minimaly coupled by
hypothesis (see for instance [10], [21]).

Metric version

In the metric version of (R) theories, the action

S— %/d“x\/—_gf(R)JrSw(guv,lﬂ), 2)

is varied with respect tg,,,. Here,Sy is the matter action, which is independent of the
connection. The resultant equations of motion are of foartter in the derivatives of
the metric tensor:

df(R 1 df(R
d(R)R“V_éf(Rm“V_ [DuDv—guvD] % = KTy, (3)
whereT,, is the energy-momentum of he matter fields, defined by
T 2 0Su
V=g agh

and the covariant derivative is defined using the usual Gavita connection. Taking

the trace, we obtain R R
df(R df(R

which is to be compared te= —kT, the result in GR.

3 There are several reviews that deal with different aspdcfgR) theories, see [6].[7].[8], and also the
recent book[9].



Equivalence with Brans-Dicke theory

As shown for instance in [13], the gravitational part of tlei@n given in Eqnl(R) is
equivalent to the following action:

s— [ a7 [‘g_f_u«p)] | ()

where

U(g) = ox(9) ;Kf(x(fp))j 5)

@ = fy(x), andx =R, corresponding to a Brans-Dicke theory with= 0 [15]. Note
that the absence of a kinetic term for the scalar field doesmesn that it is non-
dynamical: its evolution, due to the non-minimal couplinghahe gravitational field, is
given by the variation of the action wgt

du
3D(p+2U((p)—(pd—(p =KT. (6)

Through a conformal transformation of the metric and a redein of the scalar field,
the action given in Eqgri.[4) can be taken to that of a scalad fi@himally coupled
with gravity, and with nonzero kinetic term and potentigieEe representations tfR)
theories show that there is a massive scalar degree of frgedhich manifests as a
longitudinal mode in gravitational radiation (see for arste [23] for the cosmological
case).

We close this section by stating that the equivalent reptatens are convenient
since the associated equations of motion are of order tw@, Wword of caution is needed
because sometimes the potential in Edn.(5) is typicallytiwalled (see for instance
[16][17]). It may be better to work directly in the origina@presentation, as for instance
in Ref.[14] in the case of compact stars.

Palatini version
In this second type off (R) theories, the metric and the connection are taken as

independent fields, and the matter actin is independent of the connection. So the
starting point is the action

S— %/d“x\/—_g H(%) + Su (. W), (7)

where # = g"YZ%,,v, and the corresponding Riemann tensor is constructed with a
connectiod” a priori independent of the metric.



From the variation of the action wrt the metric anave gefd (see for instance [8])

() ) — 51 ()G = KTy ®
Or(v=g f'(#)g"") =0, )

where the prime denotes derivative w#t and the barred covariant derivative is built
with the connectiof. GR is recovered by settin %) = Z in these equations. Taking
the trace of Eqri.{8) we obtain

(R % — 2 (%) = KT, (10)

which shows that in this case the relation betwégandT is algebraic, hence no scalar
mode is present.
From Eqnl(9), it follows that |8]

1

rﬁv = %g)\g [au(f/(%)gvo) +dv(f/(%)gu0) - do(f/(%)guv)] . (11)

Since this expression relatésto % and the metric, andZ and T are in principle
interchangeable through Edn.[10), the connection can periciple expressed in terms
of the matter fields and the metric. In other words, it is anlary field. In fact, Eqnl(8)
can be rewritten as

K 1 f 1
G = FT/JV_Eguv (%__) +(0u0v — g (12)

)7 %
31 1
572 {(Duf’)(ﬂvf’) - quv(Df’>z]

where the Einstein tensor and the covariant derivativedaile with the Levi-Civita
connection, and? is expressed in terms a@f using Eqn[(10). It follows that this version
of f(R) theories can be interpreted as GR with a modified source.apsrthe most
important modification is that third order derivatives oé tmatter fields appear on the
rhs of Eqnl(1B). As reported in [24], this feature may caws@ss problems in static
spherically symmetric solutions with a polytropic fluid tviindex 32 <y < 2 as a
source. Note however that this result result was challeimyéte review [250.

4 In the case of GR, this method furnishes the same result anélréc case, but this is not the case in
more general theories as discussed for example in [19].

5t has also been claimed that the Cauchy problem is not veeleg for the Palatin version df(R)
theories|[8]. For an updated discussion see [26].



Metric-affine theories

In this case, the matter action depends of the connectiachviga priori independent
of the metric. The action is given by

1
S= o [ /=1 () + Sulguw: T ¥). (13)

Depending on the matter fields, the theory may display nopggating torsion and
non-metricity (see |8] and [35] for details).

NONMINIMAL COUPLING

Metric f (R) theories have been generalized by allowing a nonminimallaogibetween
the curvature and the matter Lagrangian, with action giwen b

S:/{%fl(R)—l-[l—i—)\fz(R)]gm} v=gd™, (14)

where f; and f, are arbitrary functions oR, andA is a constant. A particular case of
this action was considered in [27] in the context of the amreeéd expansion of the
universe. Later, it was shown in [28] that this type of thelegds to a modification of

the conservation law of the matter energy-momentum tensongly

m_ _ A (m)
T = g T 9 D= T ] OHR. (15)
The presence of a nonzero rhs leads to non-geodesic motidrit was suggested in

[2€] that this may be related to MOND.
A more general type of theories was propposed.in [29], wittobagiven by

S= [ 1R Zn)v=ge'% (16)

where f is an arbitrary function oR and of the matter Lagrangian. As in the previous
case, an extra force, perpendicular to the 4-velocity,lacates the particles.

ASSORTED APPLICATIONS

f(R) theories have been used to describe different aspectatiVistic astrophysics and
cosmology. Since the low curvature limit, which has beeulisa primarily to explain
the accelerated expansion of the universe, is discussdtkeichapter by S. Joras in
this volume, only one example will be given here in this regimfterwards, some
applications in the strong-curvature regime will be disads



Low curvature

In the case of th& = 0 Friedmann-Lemaitre-Robertson-Walker metric, the EQOM (3
can be written as

i aR
__/ - //_
p=—FtRe—5+3f T (17)

/ 3R
p=- L RerR+ - 1 (/-2 e 18)

Let us remark that it is safe to asssume that most of the dumatter content of the
universe (assumed here to be normal matter, as opposedktertagy) is pressureless.
This matter must satisfy the conditiopg > 0 andpg = 0, where the subindex 0 means
that the quantity is evaluated today. Using Eqns.(17) a&), (ke shall rewrite these
conditions in terms of following kinematical parametetse Hubble and deceleration
parameters, the jerk, and the snap, respectively givenljy [4

H_a ~la . la S_l'a'

“a YT TRza T Rsw ~ H%a’

While the current value of the first two parameters is reddyiwell-established today,
the value ofjg is not known with high precision, and no acceptable valug bfas been
reported yet [42]. By writingog > O in terms of the kinematical parameters we get

300HE T~ 2 1843 (jo— 00— 2) >0 (19)
This inequality gives a relation that the parameters andléreatives of a giverf (R)
must satisfy today and, as shown|in|[43], it limits the poesialues of the parameters
of a given theory. Notice that Eqn.(18) involves the snapofigh R). If we had a
measurement odp, we could use the equatigm = O to obtain another constraint on
f(R). Since this is not the case, we shall exprpgs= 0 in such a way that it gives a
forecast fo the possible current values of the snap for angiyR):

/ i

f f ) .
So= GHgf” (do—2) +6Hg%<_q0+ Jo— 2)2 —[do(Ao+6) +2(1+ jo)] —
0'0 0

__0
12H4F]
(20)

Strong curvature

« The possibility of nonsingular cosmological solutionsfifR) theories has been
considered in [30] and [31]. In the latter article, a necassandition for a bounce
to occur in a Friedmann-Lematre-Robertson-Walker settiag obtained, and it is
given by

y f
Q  Po b 21)

0 T 2R



with N
do
=6l—+— |, 22
R=6( a%) @2)
and the subindek means that the quantity is evaluated at the bounce. Corttrary
the case of GR, a bounce may occur for any valui.of
« It was shown in|[32] that the theory given by

R
f(R =R+ -—+- 23
has an inflationary solution given by
2
H~H— |vl?(t—ti),

M?2 )
araiexp | Hi(t—t) - 75 (t-t)%,

wheret; marks the beginning of the inflationary epoch. Several featwf this
model have been studied in detail (see references in [7h.r€bults of WMAP
constraintM ~ 102 GeV, and the spectral index for this modelrig ~ 0.964,
which is in the range allowed by WMAP 5-year constraint. Teesor to scalar
ratio r also satisfies the current observational bound, but isréiftefrom that of
the chaotic inflation model. Hence, future observationd sascthe Planck satellite
may be able to discriminate between these two models.

- Compact stars have been repeatedly studied for a numbigiRpftheories, either
in the conformal representatian [36], or directly in theribuorder version (see for
instancel[14]).

« Regarding black holes if(R) theories, it was shown in [33] that an observational
verification of the Kerr solution for an astrophysical oltjeannot be used in
distinguishing between GR arfdR) theories. Hence, the observation of deviations
from the Kerr spacetime may point to changes in our undedgtgrof gravitation.
Other features of black holes ii{R) theories have been analyzediin/[34].

CONCLUSIONS

In this short review, | intended to show that several aspEct$R) theories (in its various
representations) have been extensively studied in thetitee. There are many other
aspects that | had to left aside such as “good propagatienapsence of shocks) [37],
the loop representation [38], and the Hamiltonian repriegiem 39]. Although the low-
curvature regime and its consequences has attracted adtienfion due to its possible
relevance in Cosmology, the high-curvature regime is aflsmterest independently
of the low-curvature regime, and the consequences of a roatidn in such regime
may be testable in the near future (as in the inflationary miad&2], and through the
observation of electromagnetic [11] and gravitational @aj0] in the case of compact
objects).
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