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We provide a model in which both the inflaton and the curvaton are obtained from within the
minimal supersymmetric Standard Model, with known gauge and Yukawa interactions. Since now
both the inflaton and curvaton fields are successfully embedded within a visible sector, their decay
products thermalize very quickly and before the electroweak scale. This results in two important
features of the model: firstly, there will be no residual isocurvature perturbations, and secondly,
observable non-Gaussianities may be generated with the non-Gaussianity parameter fNL ∼ O(10−
1000) being determined solely by microscopic parameters which can be constrained at the LHC.

The curvaton scenario [1–3] is an alternative
mechanism for the generation of the primordial per-
turbations whose spectrum is observed in the cosmic
microwave background (CMB) [4]. In this scenario,
the density perturbations are sourced by the quan-
tum fluctuations of a light scalar field φ, the cur-
vaton, which makes a negligible contribution to the
energy density during inflation and decays after the
decay of the inflaton σ into radiation. (For a review
on inflation and the curvaton mechanism, see [5].)

If the curvaton dominates energy density at the
time of its decay, it would be solely responsible
for creating the source perturbations for the CMB
anisotropies, and exciting all the Standard Model
(SM) degrees of freedom (dof ) [6, 7]. However, if
the curvaton does not totally dominate while decay-
ing, then it might leave two potentially observable
imprints:

Isocurvature perturbations: If either the inflaton
or curvaton belong to a hidden sector, then they may
couple to a myriad other hidden sectors beyond the
SM as well to the SM dof. There is no guarantee
that the hidden and visible sector dof should reach
thermal equilibrium before Big Bang Nucleosynthe-
sis (BBN) [8] takes place. In such a case, residual
isocurvature perturbations are expected. These are
tightly constrained by the CMB data to be less than
10% [4].

Primordial non-Gaussianity: The initial isocur-
vature perturbations of the curvaton field are con-
verted into adiabatic curvature perturbations, and
as the curvaton oscillates or rotates, non-Gaussian
fluctuations can be enhanced to the level which can
be constrained by the PLANCK mission. The en-
hancement in non-Gaussianity is typically given by
fNL ∼ 5/(4r) for r < 1, where r ≡ ρφ/ρrad at the
time the curvaton decays [1]. The factor r is also
known as the inefficiency factor.

The challenge for any viable curvaton scenario
in which the curvaton leaves its imprints on non-
Gaussianity is two-fold: firstly the curvaton must

be light during inflation, and secondly the inflaton
decay products and the curvaton decay products
must thermalize before the time of nucleosynthe-
sis, as there are stringent constraints on any non-
SM like hidden radiation after BBN [8]. In order to
achieve this, we wish to the entire inflation-curvaton
paradigm within visible-sector physics, which is a
daunting task in itself, given that only very recently
we have understood how to embed the inflationary
paradigm within a visible sector with known gauge
interactions [9].

The aim of this paper is to show, for the first
time, that it is indeed possible to embed the infla-
tion and curvaton paradigms within a viable visible
sector model beyond the SM, where all the interac-
tions are solely governed by the SM gauge interac-
tions, without involving any hidden sector. We will
do this in the context of the MSSM (minimal super-
symmetric Standard Model) by showing that there
exists an interesting landscape constructed by gauge
invariant field operators for which one can find both
inflaton and curvaton candidates within the MSSM.
We will thus provide a cosmological solution to a
general problem of the curvaton scenario, i.e. how to
generate measurable non-Gaussianity without large
residual isocurvature fluctuations.

Let us first consider the total potential to be the
sum of inflaton vacuum, denoted by V0, and curva-
ton potential V (φ)

Vtotal = V0 + V (φ) . (1)

We assume V ′′(φ) ∼ m2
φ(φI) ≪ H2

I ∼ V0/M
2
P

(MP ∼ 1018 GeV) where the subscript I indicates
the quantities are evaluated during inflation. This
condition is required for a successful curvaton sce-
nario. The curvaton acquires vacuum induced quan-
tum fluctuations, which have amplitude

δ =
HI

2πφI
. (2)
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These fluctuations are converted into the adiabatic
density perturbations when the curvaton decays dur-
ing its coherent oscillations or rotations. In order to
match the observed amplitude of the fluctuations on
the CMB, δ ∼ 10−5.
Let us first discuss the origin of the curvaton,

which we take to be an R-parity conservingD-flat di-
rection of the MSSM (for a review see [10]). The two
candidate fields are LLe (where L denotes the left-
handed slepton superfield and e the right-handed su-
perfield), or udd (where u and d denote the right-
handed squark superfields), which are lifted by the
operator

W ⊃ λ

n

Φn

Mn−3
P

, (3)

where λ ∼ O(1). The scalar component of the Φ
superfield is denoted by φ. At the lowest order the
potential along the φ direction is given by:

V (φ) =
m2

φ|φ|2
2

+λ2 |φ|2(n−1)

M2n−3
P

+

(

Aλ
φn

Mn−3
P

+ h.c.

)

,

(4)
where A ∼ mφ ∼ O(100−1000) GeV, mφ is the soft
SUSY-breaking mass term, and n = 6 for udd, LLe.
During inflation if m2

φ ≪ H2
I , the fluctuations along

this nearly massless direction would create a homo-
geneous condensate with a VEV given by

φI ∼
(

mφM
n−3
P

)1/n−2 ∼ 1014 GeV. (5)

For mφ ∼ 100 − 1000 GeV, and n = 6, in order to
match the amplitude of the density perturbations δ,
the Hubble expansion rate during inflation should
be HI ∼ 1010 GeV.
There is a distinction between a positive and a

negative phase of the A term. The difference in dy-
namics arises after the end of inflation. In the case
of positive A-term the curvaton starts rolling towars
the origin immediately, but in the case of a negative
phase, for values of A ≥

√
40mφ, it may remain in a

false vacuum with the VEV given by Eq. (5). In this
case the curvaton rotates instead of oscillates around
its global minimum at φ = 0. In either scenario, the
curvaton mass is negligible compared to the Hubble
expansion rate. In fact, for A =

√
40mφ and a neg-

ative phase the curvaton is actually massless along
the real direction, and obtains inflaton-induced ran-
dom fluctuations of order δφ ≈ HI/2π.
We now provide two distinct possibilities for the

origin of V0 within the MSSM.
(a) False vacuum from MSSM landscape: Let us

consider a particular combination from the renor-
malizable part of the MSSM superpotential, QHuu,
the monomial with associated Yukawa coupling
yQHuu, where Q, u, and Hu denote the left-handed
squark, right-handed up-type squark and the Higgs

(which gives mass to the up-type quarks) fields. It
represents a D-flat direction σ = ( 1√

3
)(Q+Hu +u).

The gauge invariance allows higher order superpo-
tential terms, i.e. (QHuu)

n and (QHuu)
n(HuHd).

After rewriting them in terms of σ and χ ≡ Hd, the
superpotential reads (to the lowest order) [11]

W ⊃ y
σ3

3
+ λ

σ6

6M3
P

+ λ′ σ
4χ

4M2
P

+ . . . , (6)

where λ, λ′ are constants of O(1). The scalar poten-
tial along the flat direction follows (note that here
we denote both the superfield and the field by σ):

V (σ) = |yσ2 + λ
σ5

M3
P

|2 +
(

λ′2|σ|8
16M4

P

)

+ . . . . (7)

We would also have contributions from soft SUSY-
breaking terms, but these terms are subdominant at
higher VEVs. The first term on the right-hand side
of Eq. (7) vanishes at the origin σ = 0 and three
other points with radial and angular coordinates
(σ0, θ0) where σ0 = (y/λ)1/3MP, 3θ0 + θλ − θy =
π, 3π, 5π. Here θy, θλ are the phases of the y and
λ couplings respectively. Note that y ≪ 1 except for
the top quark Yukawa, and hence σ0 ≪ MP. This
implies that the higher order terms in Eq. (6) (de-
noted by . . .) have a subleading contribution. These
minima are separated from the origin by a barrier
whose height is given by [11]

Vbarrier =
9

25

(

2

5

)4/3

y2
( y

λ

)4/3

M4
P. (8)

The second term on the right-hand side of Eq. (7)
is positive-definite and lifts the potential at |σ| 6= 0.
This results in having three false minima at |σ| ∼
σ0. Depending on the relative size of y, λ and λ′,
the potential at these false minima can assume any
value V0 . Vbarrier. False vacuum inflation in these
minima has a Hubble expansion rate

HI .
V

1/2
barrier√
3MP

. y5/3MP . (9)

For y ∼ 10−5 − 10−2 (which is the case for all of the
SM Yukawa couplings except for the top quark) the
false vacuum inflation could be driven at a Hubble
rate as large as HI ∼ 1010 − 1014 GeV for λ ∼ λ′ ∼
O(1).
If the inflaton is locked in a false vacuum inflation

can happen eternally, but it would eventually tunnel
to the true vacuum, σ = 0, by bubble nucleation.
However, the curvaton already belongs to the true
vacuum. The fluctuations of the curvaton φ would
lead to the structure formation. In this case the ideal
curvaton candidate would be: φ =

(

1√
3

)

(L+L+ e)

which could also be lifted simultaneously. Given a



3

rapid tunnelling rate and bubble collisions, which
is possible within the MSSM, the potential energy
density V0 can eventually be transferred to a thermal
bath of MSSM dof.
(b) Slow roll inflation within MSSM landscape: In

this scenario we consider two flat directions, LLe
and udd, one of which is the inflaton and the other
the curvaton. We take the inflaton direction to be
σ, and gauge invariance here allows terms like m =
2, 3, 4, . . .

W =
∑

m

λm

3m

σ3m

M3m−3
P

. (10)

The potential at the lowest order would be:

V =

∣

∣

∣

∣

λ2
σ5

M3
P

+ λ3
σ8

M6
P

+ λ4
σ11

M9
P

+ . . .

∣

∣

∣

∣

2

(11)

where . . . contain the higher order terms. Such po-
tentials were studied in Refs. [12, 13]. For λ2 ≪
λ3 ≪ λ4 ≪ λn ≤ O(1), such potentials provide a
unique solution for which first and second derivatives
of the potential vanish along both radial and angular
direction in the complex plane: ∂V/∂σ = ∂V/∂σ∗ =
∂2V/∂σ2 = ∂2V/∂σ∗2 = 0 (a saddle point condi-
tion) [14]. For the first three terms in Eq. (11), it is
possible to show that this happens when

λ2
3 =

55

16
λ2λ4 , (12)

at the VEVs: σ = σ0 exp [iπ/3, iπ, i5π/3], σ0 =
(2/11)(λ3/λ4)

1/3MP. Concentrating on the real di-
rection, the potential energy density stored in the
inflaton sector is given by:

V0 ∼
(

153

88

)2

λ2
2

σ5
0

MP
, (13)

where σ0 ≪ MP. Note that inflation happens near
the saddle point σ0, where the effective mass van-
ishes. However, the third derivative of the potential
is not negligible, V ′′′ ∼ λ2

2σ
2
0/MP 6= 0, which leads

to the end of slow roll inflation. The corresponding
Hubble expansion rate is given by HI ∼ λ2

2σ
5
0/M

3
P.

For σ0 ∼ 1014 GeV and λ2 ∼ 10−3 − 10−4, it is
possible to obtain HI ∼ 1010 GeV, required for a
successful curvaton scenario.
Now let us consider the aftermath of inflation. In

either of the cases (a) or (b), the inflaton would de-
cay primarily into MSSM dof. The coherent oscilla-
tions of the inflaton would give rise to instant pre-
heating and thermalization of the light MSSM dof
as discussed in Ref. [15], with a reheat temperature

TR ∼ [HIMP]
1/2 ∼ 1013 GeV . (14)

Note that depending on the nature of flat direc-
tion curvaton, not all of the MSSM dof need be

in thermal equilibrium. For instance, consider the
case where inflation is driven by either QHuu in
scenario (a), or udd in scenario (b), and the cur-
vaton direction is LLe. If both inflaton and curva-
ton simultaneously take large VEVs, the SU(2)W
dof would not reach thermal equilibrium, since the
LLe VEV would induce large masses to those dof.
This can play a crucial role in determining the non-
Gaussianity parameter fNL, as we shall show below.
The curvaton φ starts to rotate about the ori-

gin when H = Hosc ∼ mφ. The field value at

this time is |φosc| ∼ (mφM
n−3
P )1/n−2. During this

epoch the universe is already radiation-dominated
following the decay of the inflaton. However, the
curvaton cannot decay immediately, due to the fact
that the curvaton VEV induces large masses h〈φ(t)〉
for gauge bosons, gauginos and (s)leptons, where h
is the gauge or Yukawa coupling. The curvaton’s
decay at leading order is kinematically forbidden if
h〈φ〉 ≥ mφ/2. Decays do not occur until the Hub-
ble expansion has redshifted φ down tomφ/2h. Note
that the Yukawa couplings are typically smaller than
the gauge couplings. During the rotations, the cur-
vaton VEV will scale as φ(t) ∝ a−3/2, as a ∝ H−1/2

during radiation dominated epoch. Therefore, the
curvaton decays when [16]

H = Hdec ∼ mφ

(

mφ

hφ(t)

)4/3

, (15)

For large φ, the decay time is naturally longer than
the normal decay rate into the massless dof. The
radiation energy density stored in the inflaton decay
products scales as ρvis ∝ H2, where the subscript
denotes the visible dof. The ratio of the energy den-
sities at the time the curvaton decays is given by

r ≡ ρφ
ρvis

∼ ρφ
ρvis

∣

∣

∣

∣

osc

(

Hdec

Hosc

)−1/2

,

∼
(

mφ

MP

)2/(n−2)(
mφ

hφ

)−2/3

≤ 1 . (16)

The kinematical blocking due to the curvaton VEV
enhances the inefficiency factor, r, therefore the cur-
vaton rotations prolong the mater dominated epoch
till it decays completely. For soft SUSY-breaking
mass mφ . 1000 GeV, the inefficiency parameter is

r ∼ O(1)h2/3. Depending on the SM Yukawas in-
volved in the interactions, the non-Gaussianity pa-
rameter would then be expected to be in the range

fNL ∼ 5

4r
∼ O(1)h−2/3 ∼ 10− 103 , (17)

for h ∼ 10−2 − 10−5. The temperature at which the
curvaton decay products reach thermal equilibrium
is determined by Eq. (15). A thermal bath filled
with MSSM dof would be obtained by

T ∼ (HdecMP)
1/2 ∼ 104.5 − 106.5 GeV (18)
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for h ∼ 10−2−10−5. Such a temperature is sufficient
to excite weakly interacting massive particles and for
baryogenesis [17]. Note that both the temperatures
from Eqs. (14) and (18) are sufficiently high to excite
thermal/non-thermal gravitinos. If the gravitinos
are the lightest SUSY particle, this causes two prob-
lems for this scenario: over-production of graviti-
nos with both helicities would be bad for BBN, and
the gravitinos would thermally decouple even before
the curvaton has started decaying. This would gen-
erate large residual isocurvature perturbations, be-
cause gravitinos can never come into thermal equi-
librium. Instead the ideal dark matter candidate
would be the neutralino, which decouples from the
thermal plasma at T ∼ 40− 50 GeV.
To summarize, the MSSM landscape has interest-

ing features—from the low energy point of view there

exist regions of false vacua, saddle points, and so
on—which allow us to construct a model in which
both the inflaton and curvaton can be embedded
within a visible sector of the MSSM. The radiation
created from the decay of the inflaton and curvaton
belong to the visible sector, avoiding the problem
of residual isocurvature fluctuations. The curvaton
mechanism in this model can create observable non-
Gaussianity. The non-Gaussianity parameter fNL

ranges from 10 − 1000, and depends crucially on
the microscopic details of the particle physics, which
will be tested directly at the LHC. Furthermore, the
model favours a visible-sector dark matter candidate
such as the lightest neutralino.
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