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On critical cases of Sobolev's inequalities for Carnot

groups
Yang Qiaohua
(School of Mathematics and Statistics, Wuhan University, WuHan 430072)

Abstract: In this paper we deal with the problem of Sobolev imbedding in thecritical cases on Carnot
groups. We prove some Trudinger-type inequalities on the whole Carnot group, extending to this
context the Euclidean results by T. Ozawa and the Heisenberg groups by the same author. The
procedure depend also on optimal growth rate of Gagliardo-Nirenberg inequalities. We note the
condition m>\max{Q/q,1} in [1], Theorem 1.4, can be replaced by m>Q/q though a new inequality
on G. Using these inequalities, we also obtain the Brezis-Gallouet-Wainger inequality on Carnot group.
Keywords: Carnot group; Sobolev's inequality; Brezis-Gallouet-Wainger inequality

0 Introduction

This paper is a continuation of the paper [1]. In [1], it is proved that for every p
withl< p < oo, it holds

Q

1-p plg _ 2p,|f-p/q
Ul gy, < Coo Il UIZS, I(-A)PP U2 (D

for all ueC,; (H,) and for all g with p<(q<oo, where A, is the Kohn's sublaplace

on H, and CQ'p is a constant depending only on Q and p, but not on g. Inequality (1)

generalized the result of T. Ozawa [2]. Using inequality (1), the author obtain some other
inequalities which characterize the critical imbedding in the Sobolev space and the
Brezis-Gallouet-Wainger type inequality.

The aim of this note is to prove analogous inequality (1) on the Carnot group G. Recall that if

.
G is a Carnot group, then the Lie algebra of of G can be written by ¢ =@Vi which
i=1

satisfy[V;,V;]=V,, ;. The homogeneous dimension of G isQ = > idimV;. Let X,,---, X,

;
i=1
be a basis of V,. The second order differential operator

k

k
8o =2 XX, = 3]
j=

j=1
is called a sub-Laplacian on G.
To this end we have:

Theorem 1. Letl< p <oo. Then there exists a constant C depending only on Q and p

Qp’
such that for allu € C;’(G) ,
Q
[ Ull ) < Co p Il UlIFE (=g )P Ul
Theorem 1 implies the following result.
Theorem 2. Letl< p<oo. There exist positive constant « and C>0 such that for all
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Q
f €Cy(G) withll(-Ag)*"ull,, o, <1,

je[exp(m f(é)|p')—20<,-<p1;,-€N%(a| f(é)P’)"jdgscn g,

where p'=(p-1)/p is the Holder conjugate of p.
Finally, we obtain the following Brezis-Gallouet-Wainger inequality on G.

Theorem 2. Letl< p<o, 1< (g<oo and m>Q/q. Then there exits a constant C such that

forall f e HYP?(G)NH™(G) withll fll <1,

HQ/PVP(G)

1

11l < C@+log@HI(-Ag)2ull, (G)))?.

1 Notations and preliminaries

We begin by quoting some preliminary facts which will be needed inthe sequel and refer to
[3] for more precise information on this subject. Let G be a Carnot group. Consider the Lie algebra

.
g= @Vi of G. Let . By the assumption on the Lie algebra one immediately sees that the system
i=1

Xl,n-,Xk satisfies the well-know finite rank condition, therefore the operator

k k
Aq =—ZXJ.Xj =ZXJ.2 is hypoelliptic.

=1 =

.
As a simply connected nilpotent group, G is differential with R", n= ZdimVi, via the
i=1

exponential map exp: g — G. The Haar measure on G is induced by the exponential mapping
from the Lebesgue measureon R".

For 1>0, we define §,:9 — g by setting 5,(X)=A'X if X €V, and extending
by linearity. Via conjugation with exponential mapping, o, induces an automorphism of G
onto itself which we also denote by O,. The Jacobian determinant of &, (relative to Haar
measure) is everywhere equal to A%, where

Q= i idimV,

i=1

is the so-called homogeneous dimension of ~ G. We shall denote by the V =(X,,--+, X,)
the related subelliptic gradient. Note that V is &, -homogenous of degree one. In other words,

Vs (U°8,)=A(Vu)°o,.

We call a curve y:[a,b]—> G a horizontal curve connecting two points &£,7€G if
y@=<¢, yb)=n and p(s)espan{X,,---, X} for all s. The Carnot-Caratheodory

distance between &,7 s defined as

e (&) = inf [ J(7(5), 7(5)ds
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where the infimum is taken over all horizontal curves y connecting & and 7. It is known
that any two points & and 77 on G can be joined by a horizontal curve of finite length and

then d_ isa metric on G. Animportant feature of this distance function is that the distance is

cc
left-invariant. For simplicity, we always write d_ (&) =d_.(&,€), where e=(0,0) is the origin of
G.

Givenany £eG,set & = . (&) . The polar coordinates on G associated with d_,

5dcc(§)7
is the following (cf. [4]):

[ t©de=["[ 122 dod A, fel'(G),

where 2={&e€G;d_ (&) =1} isthe unitsphererelatedto d .

Let P, (h>0) denote the heat kernel (that is, the integral kernel of e™ on G. For
convenience, we set Ph(x,t):Ph((x,t);e). The following  global estimates for P, can be

found in [5]: for every & >0, there exist constants C,, >0 such that

i)
e (4+E)h ) (2)

1

R(xt)<C,, o

2 The proofs
Consider the potential |, of order A € (0,Q), defined by

(1, 1)) = d.. (7€) f (.
Similar arguments to those in [1] show that

Lemma 1. There exists CQ'p depends only on p and Q such that for any g with

1< p<g<ow and f €C;(G),

1-1/p
I IQ(llpfllq) fHL“(G) SCQ,pq I f“Lp(G) '
where p'=(p-1)/p is the Holder conjugate of p.
Using Lemma 1, we have the following:

Lemma 2. There exists CQ'p depends only on p and Q such that for any g with

1< p<g<w and f €C;(G),
Q

1
l ulle g, <Cpo@”I(=A6)? P *ul
where p'=(p-1)/p is the Holder conjugate of p.

Proof. By the following identity
(—Ag) ™ L
[(u)7°

we have, using the estimates (2),

| (=A)* P01 | () =

1
p
LP(G)’

1
rQ/2Q/p-1/q)

_[000 thZ(l/p—l/q)—lph « fdh
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PR J[ ez [ e
I(Q/2Q/ p-1/q))
S Vi— g G £ e
rQ/21/p-1/q)) 0
95 <Ch. Uowowa | F DE):

Therefore,
_ QU p-1/q) 1-1/p
I(-Ag) Fllaey < Coll Towp ey | T 1leg) < Cop o Pl Tl .

The desired result follows by choosing & € (0,1/4) .

Proof of Theorem 1. It has been proved in [6] and [7], though the Littlewood-Paley
100 analysis on G, that

o ) 12
I-26)? Fll, ¢, :H(Zjez 21| A f |2)

L*(G)

By the Interpolation inequality,

. 12 . 12
(oot =ofEzia
LP

Therefore, the following Gagliardo-Niremberg inequality holds for
105 all feCy(G) and 8€(0,1):

1-6

1/2
(2 18,1 F)

<c|

LP LP

o(1-0)

I=Ag) 2 fll, g, <Coull(=Ac)? FIET I I

LP(G) LP@G)"

The desired result follows from Lemma 2.
Proof of Theorem 2. Recalling the results in Theorem 1, we can see that the proof is

completely analogue to the context of R" and Heisenberg group. These complete the proof of
110  Theorem 2.
To prove the Theorem 1.3, we firstly need the following lemma:

Lemma3. Let 1< p<oo.Foreveryswith Qp/(Q+p)<s<p, there holds

'[G“Q/p (687771) - IQ/p (éf) |5 dé: < Cdcc (U)Q(l—s/p').
Proof. Note

115 J‘G“le(é:nil)_ IQ/p(Sg) ¥ d§=-[dcc(§)£2dcc(n) | Ile(énil)_ IQ/p(SZ) [ dé
+~[dcc(§)>2dcc(7;) | |Q/p(§7771)_ Ile(g) [ d&

= J+J,.

since d,, (&™) < C(d,, (&) + o, (7)) , we have
J; < Idcc(g)smcc(q) | IQ/p(§7771) I d§+~[dcc(§)smm(q) | Ile(é) [ dS

120 <[ oiemon Han@F 02+ s o 1 1an@F dE
<Cd,, (77)°""").



125

130

135

140

145

|I| E ﬂ- H iE -x.- Eﬁ http://www.paper.edu.cn

Q.p

On the other hand, using the inequalities (see [2])

[ rp (677 =1 (£) 1< Cll () ()
Whend_, (&) > 2d_(77) , we obtain

J, <Cd. ()’ Idcc(§)>2dcc o) d. (f)fQS”H dé <Cd, (77)Q(1’5’p')

The desired results follow.
Lemma 3 implies the following embedding theorem:

| (&)= ()< Cli(=2ag) ™ Il d o (§17)7
withoc=m-Q/qe(0,1).
Proof of Theorem 3.  We assume 0<m-Q/g<1. Then

| (&)= T () < Cll(=Ag) ™ Fll die (S 7).
Now Let O<e<e™® andlet 7eG satisfyingd, () <1. Then,

m
| f(&)— f(&e(e7)) < Cell(-Ag)?2 f||Lq(G),
whereac=m—-Q/q e (0,1) . By Holder inequality and Theorem 1, there exists a constant

such that foranyr > p,

Ir

[y onl HEo(ee) dr s[f dmdr] [I | TN drj

1-Ur
-QIr -Q/r 1-1/p
S(jdcc(r)ﬂdrj el f”L’(G) SCQ,pE rel fHHQ’PJ’(G)

-Q/r 1-1/p
SCqpe TR
Lete=€".Thenforany e with O<e<e™” we have
Jy ol HEo(er) dr<Cy 62 <Cy, (~loge)
Similar arguments to those in [5] and [7], we have

1
| £()] :I—

dg, (1)<l dr

1-1/p

)171/ p

m
oo 1@1dz < Cque”l=86)7 fll g, +Co, (~loge
The desired result follows by setting
1

€=

m
p _ 2 1o
e’ +l(-A,) fHL“(Hn)

In the casem—Q/q>1, we choose S satisfying s—Q/qe(0,1) ands>1. Similar

arguments to those in [5], we have

1

11l < CA+log@HI(=Ay)2ull, 6, )"

On the other hand, by Gagliardo-Niremberg inequalities in the proof of Theorem 1,

s m m
2 2 s/m 1-s/m P
I(-A6)2 flloe, <ClI-Ag)? FIET IR <Cl(-Ag)? Fllyg, +Cll fllane,
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<Cl(-Ag)? flly o, +C

The result now follows.
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