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Abstract: In this paper we investigate the mixed initial-boundary value problem for the
equation of time-like extremal surfaces in Minkowski space R'*(1+™) in the first quadrant.
Under the assumptions that the initial data is bounded and the boundary data is small, we
prove the global existence and uniqueness of the C? solutions of the initial-boundary value
problem for this kind of equation. Based on the existence results on global classical solutions,
we also show that, as t tends to infinity, the first order derivatives of the solutions approach
C! travelling wave, under the appropriate conditions on the initial and boundary datum.
Geometrically, this means the extremal surface approaches a generalized cylinder.
Key words: Applied mathematics; Minkowski space; Timelike extremal surfaces;

Initial-boundary value problem

0 Introduction and Main results

The extremal surfaces play an important role in the theoretical apparatus of elementary
particle physics. A free string is a one-dimensional physical object whose motion is represented

by a time-like extremal surfaces in the Minkowski space. Since the inhomogenous boundary
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conditions play an important role in string theory and particle physics, this paper concerns the
global existence and asymptotic behavior of classical solutions of the mixed initial-boundary
value problem for the equation of time-like extremal surfaces in Minkowski space R*t(1+") By
(zo, 21, "+ ,Tnsr1) we denote a point in the 1+ (1 + n) dimensional Minkowski space endorsed
with the metric

ds® = —dxg +dai + - +da’,, (1.1)

Let
To=t,x1 = 2,09 = O1(t,x),+ , Xpy1 = On(t, x) (1.2)

be a two dimensional surface. Then the induced metric on the surface is
d,s? = —dt* + dz® + (dp1)* + - - + (do,,)?

= —(1— |¢e[*)dt® + (1 + |p|*)da® + 26 - podadt (1.3)

where ¢ = (¢1, -+, Pn)T, ¢; or ¢, denote partial differentiation with respect to ¢ or x respec-
tively and - denotes inner product in R™. We assume that the surface is time-like, i.e. the

induced metric is Lorentzian. Thus, it is easy to see that the area of the surface is

/ / JI= O+ 02 = P16al + (6r - 6u)dudt (1.4)

An extremal surface is defined to be the critical point of the area functional, hence it satisfies

the Euler-Lagrange equations

V1= 1% + [0a]® = [0e2] bl + (01 - 62)2 /¢
_< (1= 6*)62 + (60 - 62) ) 0 (1.5)
V1= 102 + 62> = 020l + (00 - 2)2/ &

This equation is called the generalized Born-Infeld equation. Recently the Born-Infeld theory
has received much attention because of the development of the string theory and relativity
theory. Gibbons gave a systematic study of the Born-Infeld equation theory in [1]. Brenier [2]
carried out the theory in connection to the Vlasov-Maxwell system of classical hydrodynamics
and electrodynamics in which he discussed an equation for generalized extremal surfaces in the

five dimensional Minkowski space.

The extremal surfaces in the Minkowski space are C? surfaces with vanishing mean curva-

ture. Then, the equation of the extremal surfaces can be reduced to

(]- + |¢w|2)¢tt - 2(¢t ' ¢m)¢tw - (]- - |¢t|2)¢ww =0

In mathematics, the extremal surfaces in the Minkowski space include the following four types:

space-like, time-like, light-like and mixed type. The time-like case have been investigated by

9.
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several authors (e.g.[3] and [4]). Milnor described all entire time-like minimal surfaces in the
three-dimensional Minkowski space via a kind of Weierstrass representation [4]. Barbashov et
al. studied the nonlinear differential equations describing in differential geometry the minimal
surfaces in the pseudo-Euclidean space [5]. Recently Kong et al. studied the equation of the
relativistic string moving and the equation for the time-like extremal surfaces in the Minkowski
space R'™™ (see [6], [7]). For the case of space-like extremal surfaces, we can see the classical
papers Calabi [8] and Cheng and Yau [9]. For the case of extremal surfaces of mixed type, Gu
gave a series of papers(e.g.[10], [11]). In addition, for the multidimensional cases or more general
framework we can refer to the papers by Hoppe et al. [12], Lindblad [13] and Chae and Huh [14].

In the following we consider the global existence and asymptotic behavior of classical
solutions of the mixed initial-boundary value problem for the equation of time-like extremal
surfaces in Minkowski space R'*(1*™) in the first quadrant.

On the domain
D ={(t,x)|t >0,z > 0}

we consider the mixed initial-boundary value problem of system (1.5) with initial condition

t=0: ¢(0,z) = f(z), ¢(0,2)=g(x) (1.6)

and Neumann boundary condition

x=0: ¢.(t,0) = h(t) (1.7)
or Dirichlet boundary condition

x=0: ¢(t,0) = H(t) (1.8)

where f, H are vector-valued C? functions and g, h are vector-valued C* function.

In the following section we first consider system (1.5) with initial condition (1.6) and
Neumann boundary condition (1.7). We suppose that at point (0,0) the conditions of C?

compatibility are satisfied, i.e.
f(0) = h(0), ¢'(0)=H(0) (1.9)
Let
U= ¢y, V= (1.10)

Then, system (1.5) can be equivalently rewritten as a first order system of conservation laws
for the unknown U (¢, z) = (u(t, x),v(t,x)) as follows

U — v =0
{ 2(u-v) -l _ (1.12)
Ve — 1+|u\2vm - 1+|u\2u95 -

-3
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The initial condition (1.6) then becomes
t=0: (u0,2),v(0,2)) = Us(z) = (f'(x), g(x)) (1.13)
The Neumann boundary condition can be written as
x=0: u=h(t) (1.14)

The aim of this paper is to get the global existence and asymptotic behavior of classical solu-

tions under some appropriate conditions on the initial and boundary datum.

For the general first order quasilinear hyperbolic systems, the global existence and asymp-
totic behavior of classical solutions of the Cauchy problem has been obtained by many authors
(see [3], [15-21] ). For the initial-boundary value problem in the first quadrant the global exis-
tence and asymptotic behavior of classical solutions is studied by Li and Wang [22] and Zhang
[23].

Then, the initial-boundary value problem with Neumann boundary condition can be writ-
ten as
U — v, =0

2(u-v) _ 1—|v|? _
T Ve~ Trup e = 0 (1.15)

t=0: u=f'(z),v=g(x)
x=0: u=h(t)
The system have two n-constant multiple eigenvalues
1
1+ |ul?

V¢ —

As(u,v) = (—(u-v) £ /A(u,v)) (1.16)

where A(u,v) =1 — |[v]? + |u|? — |[ul*|v]* + (u-v)? > 0, i.e. the surface is time-like.
Let
Ri :vi+/\+ui (Z: 1,...,n) (117)

Si=vi+Au (i=1,..,n) (1.18)
By direct computation (see [7]), The system of equations can be diagonalized as follows

O p A2t =0

ot

OR; OR; -

CEFASE=0 (i=1,..,n)

0 ox L

o ON_ (1.19)

W+)‘+W:0

t=0: A=A (2); A\.=A_(2); R =R)x); S;=5() (1.20)

where

As(@) = L+ P 9) £V gP + £ = 9P + (- 9)*) (1.21)

4.
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R}(z) = gi(x) + Ay (2) fi(2), S)(x) = gi(w) + A_(2) f](2) (1.22)
However, the boundary condition can not be decoupled, which is the main source of mathe-
matical difficulty of our paper.

To prove the global existence of C? solutions of system (1.5)-(1.7) on the domain D, it
suffices to prove that system (1.15) admits global classical solutions U = (u,v) on the domain
D. In this case, it is enough to get uniform a priori estimate on the C! norm of (u,v). Noting
(1.17), (1.18), the global classical solutions of system (1.15) satisfy

R;(t,x) — Si(t, A Si(t,z) — AR, (¢,
uit,) = bt ZS02) gy AeSilha) Z Al o)
)\+(t,$) _)‘—(t>x) /\+(t7$) _/\—(ta‘r)

(1.23)

Then, it suffices to get uniform a priori estimate on the C' norm of Ay (t,z), R;(t,z), S;(t, )
and a positive lower bound for A, (¢,z) — A_(t, x).
Suppose that Uy, h are C! functions with bounded C' norm and the initial data satisfies

sup A_(z) < —a<0<b< inf Ay(z) (1.24)

z€ERt z€ERt

Without loss of generality, we assume a < b. (Otherwise, we can always replace a by a smaller

positive number.) If the Neumann boundary data is sufficiently small, for example

b—a
<
hl <

(1.25)
Then we have the following global existence result for the initial-boundary value problem (1.5)-

(1.7):

Theorem 1.1 Suppose that the initial and Neumann boundary datum satisfy (1.24), (1.25)
and the conditions of C? compatibility (1.9) are satisfied, then the initial-boundary value prob-
lem (1.5)-(1.7) admits a unique global C? solution ¢ = ¢(t,z) on Rt x R*.

If we also suppose that the initial and boundary datum satisfy the following assumptions:

+o00

sué) {If"(x)| + 19 (z)]} = N < +o0, / |f(x)] + |g(z)|dz = Ny < 400 (1.26)

r€ERT 0

+o00o
sup {|f'(2)[ + |g(x)|} = No, / |f" (@) + |g'(2)|dz = N < +00 (1.27)
zeRt 0
+oo
/ |h(t)|dt = My < 400, sup |/ ()| =M < 400 (1.28)
0 teR+
+oo
/ |W/(t)|dt = My < +o00 (1.29)
0

Based on the global existence of classical solutions, we also prove the following Theorem:
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Theorem 1.2 Under the assumptions of Theorem 1.1 and above, there exists a unique C*
vector-valued function ®(z) = (®1(z), ..., ®,(x)) such that

((Pi)as (00)e) — (Pi(x — 1), —Pi(x —t)) i=1,..,n (1.30)

uniformly as ¢ tends to infinity.

Remark 1.1 u = ®(x — t),v = —®(z — t) is obviously a solution of system (1.12). It can
be proved that geometrically this extremal surface is a generalized cylinder. In fact, noting
(1.3), the first fundamental form is

I=—1—|®(x—t)A)dt* + (1 + |®(x — t)[*)da® + 2®(x — t) - P(z — t)dzdt

=d(z —t)(d(z+1t)+|®(x —t)Pd(x —t)) = d(x — t)d(z + t + D(x — 1))

Then, the first fundamental form is flat through the transformation of the variable. where ® is
the primitive function of |®|?.

Noting (1.2), we can calculate its second fundamental form

I; = —®)(x — t)dt* — ®)(x — t)da® + 2®)(x — t)dtdz = —P(x — t)(d(z — t))*

%

Remark 1.2
No = sup {|f'(x)] + |g(x)|}, we have Ny < Ns.

z€ERt

In fact, noting f0+oo lf"(z)| + |¢'(z)|de = Na < oo, 0+Oc If'(x)] + |g(x)|de = N1 < oo, we
conclude that
lim f'(z)=0, lim g(z)=0 (1.31)

g—s oo &—+too

This paper is organized as follows. In section 2, we get the global existence of classical
solutions of the initial-boundary value problem with Neumann boundary condition in the first
quadrant. In order to prove the asymptotic behavior of global classical solutions, in section 3
we obtain some uniform a priori estimate which play an important role in the proof of Theorem
1.2. In section 4, we study the asymptotic behavior of global classical solutions and obtain
that , as t tends to infinity, the first order derivatives of global classical solution approach C*
travelling wave. In section 5 we consider the initial-boundary value problem with Dirichlet
boundary condition in the first quadrant and get the same conclusion as the initial-boundary

value problem with Neumann boundary condition.
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1 Global existence of classical solutions of the
initial-boundary value problem with Neumann

boundary condition in the first quadrant

In this section, we will prove Theorem 1.1 and obtain some uniform a priori estimate which
also play an important role in the proof of Theorem 1.2. In order to prove Theorem 1.1, it
suffices to prove that under the assumptions of Theorem 1.1, the initial-boundary value problem
(1.15) have the uniform a priori estimate on the C'!' norm of global classical solutions, where
U1 = 1Ullo + ||Uzllo and || - ||o denote the C° norm. Noting (1.23), it suffices to prove that
IAxllr + [|Rillx + ||S:i|lx is bounded and Ay — A_ has a positive lower bound.

Firstly we consider the following system
{ A =0 (2.1)

N o
ot +)\+ or

t=0: Aslo) = (14 1FP) (7 9) £ VI= [P+ IFF — GPIFP + (o))
By Kong et al. [7], we have

1< A(ta) <1, —1< A (ta)<1 (2.2)

The system (2.1) enjoys the following property on the domain D.
Lemma 2.1 Under the assumptions of (1.9), (1.24) and (1.25), system (2.1) is strictly hyper-

bolicity. Furthermore, on the domain D we have
A(t,z) < —a<0<b<A(t,x) (2.3)
Lemma 2.2 Let R;, S; be as system (1.19), then
{IRi(t,2)],|Si(t, z)|} < C (2.4)

where C' is a positive constant only depending on a, b, Ny.

Remark 2.1 The positive constant C' only depends on a,b, Ny and is independent of
M, M,, My, N, N1, Ny. In the following sections the meaning of C' may change from line to line.
To estimate the first order derivatives of the solutions of system (1.19), we consider a linear

System

ol 958 _
{ 95 1wt )8 =0 2.5

oY Yy _
Bt + Z(t, .T)W =0
where z, w are regarded as given smooth functions. However, z,w are not arbitrary given. S =

z, Y = w itself is a solution of system (2.5). Assume that on the domain under consideration

w(t,x) —z(t,z) > 6 >0 (2.6)

-7 -
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where ¢ is positive constant. Then w and z are constant along characteristics respectively.
Under these assumptions, system (2.5) enjoys the following remarkable properties:
Lemma 2.3 Let

0 0 0 0
Tl—a+w(t,x)%,T2—a+Z(t,$)% (27)
Then
[Tl, Tg} = T1T2 - T2T1 = O (28)

For any Lipschitz continuous functions F and G, system (2.5) implies the conservation laws:

(2.9)

where 0, = %, Oy = a%'
Remark 2.2 Lemma 2.3 generalizes corresponding result of Serre [24], see also Chen [25] and
E and Kohn [26].

For any fixed T' > 0, we introduce

Woo(T) = max sup {| ON_(t,z), ORi(t,x),  0Si(t,x)

2.1
0<t<T 4t oz l oz 4 oz ! oz } (2.10)

Lemma 2.4 Under the assumptions of Theorem 1.1, there exists a positive constant C' only
depending on a, b, Ny such that
Wo(T) < C(M+ N) (2.11)

Remark 2.3 Obviously, from Lemma 2.4 we can get
Wy (o0) < C(M + N) (2.12)

Proof of Theorem 1.1 Under the assumptions of Theorem 1.1, by Lemma 2.1-2.4, on the
domain D
Al (Bl 1Slh < C(M + N + 1)

At z) = A_(t,z)) >b+a

Noting (1.23), we can get uniform a priori estimate of C' norm of u and v, i.e. system (1.15)
have the global C! solutions. Then, the system (1.5)-(1.7) have global C? solutions.

2 Uniform a priori estimate

In this section under the assumptions of Theorem 1.1 and (1.26)-(1.29), we will establish
some uniform a priori estimate to prove Theorem 1.2.

For any fixed T' > 0, we introduce

+oo +o0
Wi(T) = max sup { |6)\+(t,x)dx,/ |M|dx
0

i=1,...,no<t<T Jo ox ox

-8 -
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+oo +oo
8Ri(t,x 85' )
[, [ 2 (3.1)
0 0
. OA4(t
WA(T) = max {sup [ | +( x)|dt,su E ( oA-(t2),
i=1,..., n Cl Cl 02 C2
0S;(t
sup [ |2 ( OR6,2), )y up [ 25:02) ( ) |ty (3.2)
él Cl C2 02
where C stands for any given forward characteristic d—f = A, on the domain [0,T] x RT; C,

stands for any given backward characteristic fl—f = A_ on the domain [0,7] x R™.
Lemma 3.1 Under the assumptions of Theorem 1.2, there exists a positive constant C' only

depending on a, b, Ny such that, the following estimates hold:

Wi(T),W1(T) < C(Ny + M, + M;N) (3.3)

Remark 3.1 Obviously, from Lemma 3.1 we can get

Lemma 3.2 Under the assumptions of Theorem 1.2, we have

{/L (1= M. (t,2))dt, (1+)\_(t,x))dt,/L |Ri(t,x)dt,/L 1S:(t, x)|dt} < C(N, + M) (3.5)

L2
i (1—A+(t,x))dt,/ (1+A_(t,x))dt, [ Ri(t,x)|dt,/~ |Si(t, z)|dt} < C(Ny+ M) (3.6)
fol) Co o) Cs
where C; stands for any given forward characteristic f% = A, on the domain [0,7] x R*; Co
stands for any given backward characteristic ‘fl—f = A_ on the domain [0,7] x R*; L; stands for
any given radial that has the slope 1 on the domain [0,7] x RT; Ly stands for any given radial

that has the slope —1 on the domain [0,7] x R™.

3 Asymptotic behavior of global classical solutions of the
initial-boundary value problem with Neumann

boundary condition in the first quadrant

In this section we will study asymptotic behavior of the global classical solutions of system
(1.5)-(1.7) and give the proof of Theorem 1.2.

Let D 3 9
Dilt - a + % (4.1)
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Obviously, noting the system (1.19)

DA ON_
B =T+ (1= h) 5 (4.2)

In the following we consider Equation (4.2), i.e

DX_ O
=(1-X)— 4.
D~ LM%y (4.3)
For any fixed point (¢,z) € D, we define { =z — ¢
Case 1: £ > 0, it follows Equation (4.3) that
' O
A-(t2) = A (6,648 =A-(0,6) + [ (1= Ay)—~(s,E+ 5)ds (4.4)
0
By (2.12) and Lemma 3.2, we have
+oo
|/ (1—X)) —(s &+ s)ds| < Wy (00 )/ |1 —Ai(s,&+ s)|ds
0
< C(M + N)(M; + Ny) (4.5)

This implies that the integral fot )\+) ~(s,&+ s)ds converges uniformly for £ € RT, On the
other hand, noting that all functions in the right-hand side in Equation (4.4) are continuous
with respect to &, then, we observe that there exists a unique function 1[1({) € C°(R™) such
that

A_(t,x) — p(xz —t) t — +o0 (4.6)

Case 2: £ <0, it follows Equation (4.3) that

)\_(t,x)_)\_(t,§+t)—)\_(—5,0)+/£(1—/\+)8a)\ (s, + s)ds (4.7)

By (2.12) and Lemma 3.2, we can get

t aA t
— A s)ds < Wy 1—2X0)(s, s)ds
[ a0 e ) [ 1-2me+s)

< C(M + N)(M, + N) (4.8)

Then,we obtain that there exists a unique function (&) € C°(R™) such that

A_(t,z) — P(x —t) t — 400 (4.9)
Case 3: When ¢ — 0, noting the above cases we can get

$(€) — $(0) and (&) — (0) (4.10)

- 10 -
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Moreover,
$(0) = ¥(0) (4.11)

We define
© = { (). e R
P(§), £€R;
Hence from above we have proved the following lemma

Lemma 4.1 There exists a unique function ¢ (z — t) € C°(R), such that

A(t,z) — (z —t) t — +00 (4.12)

Remark 4.1 In the same way, we can obtain that there exists a unique function ;(z —t) €
C°(R) such that
Sit,x) — Yi(x—t) t— 40 i=1,..,n (4.13)

Lemma 4.2 When t — +00, we have
Ap(t,z) — 1 (4.14)
Ri(t,z) — 0 i=1,...,n (4.15)

uniformly for all z > 0.

Noting (1.23), when = > 0, we can get

. (o im z( 7x) z( x) _ —i(z — 1) P (r—
e MS(LO) ARG el .
i vilt, )—ti,m M) ha)  I-va—p  wle—H (417

We next prove that ®;(£) € C'(R). Noting v;(£),%(£) € C°(R), we need to show that
d(v:(£))/dE, d((€))/dE € C°(R). Tt suffices to show that (), :(§) € C*(R).
In the following we only prove ¥ (&) € C*(R).

Lemma 4.3 Under the assumptions of Theorem 1.2, the limit

OM_
li —(t t =" 4.18
Jm == (t, 21 (8, 6)) = 97 (5) (4.18)
exists and is continuous with respect to § € R. Moreover

[ (B)] < C(M + N)(N2 + My + My N) (4.19)

Remark 4.2 In the similar way, for any ¢ € {1,...,n} we can obtain

im 2% (1, B)) = v (8) (4.20)

t—s+oo Ox

- 11 -
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¥ (F) are continuous with respect to 3 € R and

(2

7 (B)] < C(M + N)(Mz + N2+ M N) (4.21)
Lemma 4.4 The limit
li —(t t
t—lg-loo T ( ’§+ )

exists and is continuous with respect to £ € R.

Lemma 4.5

d ON_
in(;) lim (4. (4.22)

Remark 4.3 In the similar way, we can also prove

. 0S; di; (&)
1 — = 4.23
A e T =g (4.23)
Lemma 4.6 9
i —(t t) =y (9 4.24
Jim T+ 0) = 07 (9(6)) (424)
is continuous with respect to £ € R. Moreover
d .
S G) (1.25)
€
Remark 4.4 By the same method, we obtain that da‘il (t,€ + t) have the similar conclusion.
Moreover,
dy; .
) — v () (1.26)

The proof of Theorem 1.2 The conclusion of Theorem 1.2 follows from Lemmas and Remarks

above.

4 Initial-boundary value problem with Dirichlet

boundary condition in the first quadrant

Since the inhomogenous Dirichlet boundary conditions play an important role in the string
theory and particle physics (see [2]), in this section we consider the mixed initial-boundary value
problem with Dirichlet boundary condition of system (1.5) with the initial data (1.6) and the
boundary data (1.8). Then system (1.5), (1.6), (1.8) can be rewritten as

U — v, =0

2(u-v) 1—v? w. = 0
Uz =

1+u2 °% 1+u
t=0: u=f'(x),v=g(z)
xr=0: v=H'(t)

UV —

- 12 -
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Similarly, we suppose Uy, H' are C' functions with bounded C' norm and the initial data
satisfies  sup,cpr A_(2) < —a < 0 < b < infyep+ Ay(z). Without loss of generality, we
assume a < b. If the first order derivative of Dirichlet boundary data is sufficiently small, for
example

\H'(t)] <b—a (5.1)

and the conditions of C? compatibility are satisfied, i.e.

f(0) = H(0), g(0)=H'(0) (5.2)
and

We have the similar global existence result:

Theorem 5.1 Suppose that the above assumptions (1.24) and (5.1)-(5.3) are satisfied, then
the initial-boundary value problem (1.5), (1.6) and (1.8) admits a unique global C? solution
¢ =¢(t,r) on R x RT.

Similarly, under the assumptions (1.26), (1.27) and

—+o0
sup |H" (1) = M < +oc, / ' (1)|dt = M, < +oc (5.4)
teRt 0

+oo
/ \H(t)|dt = My < +00 (5.5)
0

Using the same method as Theorem 1.2, we can prove the following result:
Theorem 5.2 Under the assumptions of Theorem 1.2 and above, there exists a unique C*!
vector-valued function ¥(z) = (¥4 (z),..., ¥,(x)) such that

((@i)as (9i)e) — (Vilz — 1), =Wi(z — 1)) i=1,..,n (5.6)
uniformly as t tends to infinity.
Remark 5.1 Obviously u = ¥(z —t),v = —¥(z — t) is also a solution of system (1.12).
Remark 5.2 The similar conclusion can be obtained for the initial-boundary value problem
with Neumann boundary condition or Dirichlet boundary condition for the motion of rela-
tivistic closed strings in the Minkowski space R**" (for the definition of the relativistic closed

strings see Kong et al. [27]).
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