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摘要：本文研究了在 Rn 中非线性薛定谔方程当初值在索伯列夫空间W s,p, p < 2 中的柯西问

题，众所周知这个问题是不适定的。但是我们证明了当用线性半群做一个线性变换以后，这个

问题变得在W s,p, 2n/(n + 1) < p < 2 且 s > n(1− 1/p) 中是局部适定的。此外，我们证明了在

一维空间中，这个问题在 Lp, 1 < p < 2 中是局部适定的.
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Abstract:

In this paper, we consider in Rn the Cauchy problem for nonlinear Schrödinger equation with

initial data in Sobolev space W s,p for p < 2. It is well known that this problem is ill posed.

However, We show that after a linear transformation by the linear semigroup the problem

becomes locally well posed in W s,p for 2n
n+1

< p < 2 and s > n(1− 1
p
). Moreover, we show that

in one space dimension, the problem is locally well posed in Lp for any 1 < p < 2.

Key words: Applied mathematics; Cauchy problem, nonlinear Schrödinger equation, local

well-posedness, scaling limit

0 Introduction

Consider the Cauchy problem for the linear Schrödinger equation

iut(t, x)−4u(t, x) = 0, (0.1)

u(0, x) = u0(x), (0.2)
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where 4 is the Laplace operator in Rn for n ≥ 1. It is well known that this problem is well

posed for initial data u0 ∈ Lp(Rn) if and only if p = 2. For this reason, it is believed that the

initial value problem for the nonlinear Schrödinger equation is not well-posed for initial data

in the Sobolev space W s,p for p 6= 2. However, this is not quite right.

Notice that the solution of the Cauchy problem for (0.1),(0.2) can be written as

u(t) = S(t)u0 = E(t) ∗ u0, (0.3)

where

E(t, x) =
1

(−4πit)n
2
e−i

|x|2
4t (0.4)

is the fundamental solution and S(t) defines a semigroup. Thus

S(−t)u(t) ≡ u0, (0.5)

and for any norm X we have

‖S(−t)u(t)‖X = ‖u0‖X . (0.6)

There are some examples in the literature in which the nonlinear Schrödinger equation is studied

by using the norm

‖u‖Y , ‖S(−t)u(t)‖X (0.7)

where X is the usual Sobolev or weighted Sobolev norm. Of course, we have the trivial example

that when X = Hs, we have X = Y . The first nontrivial example is to take X to be the weighted

L2 norm. Thus, we take

‖w‖X =
∑

|α|≤s

‖xαw‖L2(Rn) (0.8)

where α is a multi-index. Then

‖u(t)‖Y =
∑

|α|≤s

‖xαS(−t)u(t)‖L2(Rn) =
∑

|α|≤s

‖S(t)xαS(−t)u(t)‖L2(Rn). (0.9)

Noting that

S(t)xkS(−t) = xk − 2it∂xk
, Lk, (0.10)

we obtain

‖u(t)‖Y =
∑

|α|≤s

‖Lαu(t)‖L2(Rn). (0.11)

This norm was first used by McKean and Shatah [9] and it was proved that one has the following

global Sobolev inequality

‖u(t)‖L∞ ≤ C(1 + t)−
n
2 (

∑

|α|≤s

‖Lαu(t)‖L2(Rn) + ‖u(t)‖Hs(Rn)), s >
n

2
. (0.12)
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This inequalty is similar to the global Sobolev inequality for the wave equation obtained earlier

by Klainerman (see [7]) and is very important in studying the nonlinear problem in their paper.

Another more recent example is to take X = Hb
t H

s
x, then Y is the so called Bourgain space

(see [2]). This space plays a very important role in the recent study of low regularity solution

of nonlinear Schrödinger equations.

Therefore, why not take X = Lp (or W s,p)? It is our aim to investigate this problem in

this paper.

Consider the Cauchy problem for the nonlinear Schrödinger equation

iut(t, x)−4u(t, x) = ±|u(t, x)|2u(t, x), (0.13)

u(0, x) = u0(x). (0.14)

This problem can be reformulated as

u(t) = S(t)u0 ±
∫ t

0

S(t− τ)(|u(τ)|2u(τ))dτ. (0.15)

Motivated by our above discussions, we make a linear transformation

v(t) = S(−t)u(t), (0.16)

then

u(t) = S(t)v(t). (0.17)

Therefore, we get

v(t) = u0 ±
∫ t

0

S(−τ)[S(−τ)v̄(τ)(S(τ)v(τ))2]dτ, (0.18)

where we use the fact that S̄(τ) = S(−τ).

Our main result in this paper is that (0.18) is locally well posed in Sobolev space W s,p for

certain p < 2. More precisely, we have the following:

Theorem 0.1. Consider the nonlinear integral equation (0.18), suppose that

u0 ∈ W s,p(Rn) (0.19)

for s > n(1− 1
p
) and 2n

n+1
< p < 2, where W s,p(Rn) is understood as Bs

p,p(R
n) and Bs

p,q(R
n) is

the Besov space. Then there exists a time T which only depends on ‖u0‖W s,p(Rn) such that the

integral equation has a unique solution v ∈ C([0, T ],W s,p(Rn)) satisfying

‖v(t)‖W s,p(Rn) ≤ 2‖u0‖W s,p(Rn), ∀t ∈ [0, T ]. (0.20)

Moreover, suppose that v1, v2 are two solutions with initial data u01, u02, then there holds

‖v1(t)− v2(t)‖W s,p(Rn) ≤ 2‖u01 − u02‖W s,p(Rn), ∀t ∈ [0, T ]. (0.21)
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Remark 0.2. Our proof relays on a subtle cancellation in the nonlinearity and thus our result is

not valid for the general nonlinearity F (u, ū). However, for nonlinear term of the form ±|u|2mu,

where m is an integer, it is not difficulty to generalize our result to this case.

Remark 0.3. By the well known Lp − Lp′ estimate, We obtain that for the original solution

u(t) = S(t)v(t)

‖u(t)‖W s,p′ ≤ Ct−n( 1
2− 1

p′ )‖v(t)‖W s,p , (0.22)

where
1
p

+
1
p′

= 1. (0.23)

therefore

‖u(t)‖W s,p′ ≤ Ct−n( 1
2− 1

p′ )‖u0‖W s,p ∀0 < t < T (0.24)

Remark 0.4. Similar results are expected for other nonlinear dispersive equations and non-

linear wave equations. However, no such result is presently known.

We point out that Theorem 1.1 is only to show that one can solve the Cauchy problem

in W s,p for p < 2, the regularity assumption in Theorem 1.1 need not be optimal and can be

improved. As an example, we will show that the problem is locally well posed in Lp for any

1 < p < 2 in one space dimension. It is proved by Y.Tsutsumi [10] that the problem is locally

well-posed in L2.Then It is proved by Grünrock [6] that the problem is locally well posed in

L̂p, for any 1 < p < ∞ (se also Cazenave et al [3] and Vargas and Vega [11].) Here

‖f‖L̂p = ‖f̂‖Lp′ , (0.25)

where f̂ is the Fourier transform of f and p′ is defined by(0.23). Noting that

‖f̂‖Lp′ ≤ C‖f‖Lp , 1 ≤ p ≤ 2, (0.26)

L̂p space is slightly larger than Lp space. However,Lp is more commonly used space. More

recently, there are even some local existence result in Hs for some s < 0, see Christ et al [5] as

well as Koch and Tataru [8].

Our main result in one space dimension is as follows:

Theorem 0.5. Consider the nonlinear integral equation (0.18) in one space dimension, suppose

that

u0 ∈ Lp(R) (0.27)

for 1 < p < 2. Then there exists a time T which only depends on ‖u0‖Lp(R) such that the

integral equation has a unique solution v ∈ C([0, T ], Lp(R)) satisfying

‖v(t)‖Lp(R) ≤ C0‖u0‖Lp(R), ∀t ∈ [0, T ], (0.28)
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and {∫ T

0

τ θp′‖∂τv(τ)‖p′

Lp(R)dτ

} 1
p′

≤ C1‖u0‖3
Lp(R). (0.29)

where
1
p

+
1
p′

= 1, θ =
2
p
− 1. (0.30)

Moreover, suppose that v1, v2 are two solutions with initial data u01, u02, then there holds

‖v1(t)− v2(t)‖Lp(R) ≤ C0‖u01 − u02‖Lp(R), ∀t ∈ [0, T ]. (0.31)

Here C0 and C1 are positive constants independent of the initial data.

Remark 0.6. Let u(t, x) be a solution to the nonlinear Schrödinger equation (0.13) with initial

data (0.14), then uλ(t, x) = λu(λ2t, λx) is also a solution with initial data u0λ = λu0(λx). If

‖u0λ‖Lp(Rn) ≡ ‖u0‖Lp(Rn), (0.32)

then p is called a scaling limit. It is easy to see that p is a scaling limit in one space dimension

if and only if p = 1. Thus, as p close to 1, we can go arbitrary close to the scaling limit.

Remark 0.7. By the well known Lp − Lp′ estimate, We obtain that for the original solution

u(t) = S(t)v(t)

‖u(t)‖Lp′ ≤ Ct−( 1
2− 1

p′ )‖v(t)‖Lp , (0.33)

wnere p′ is defined by (0.23). Therefore

‖u(t)‖Lp′ ≤ Ct−( 1
2− 1

p′ )‖u0‖Lp ∀0 < t < T

Both Theorem 1.1 and Theorem1.5 are proved by some trilinear Lp estimates. This kind

of estimates are obtained by interpolation between various well known L2 estimates and our

new trilinear L1 estimate (see Lemma 2.1).

In the following, C will denote a positive constant independent of the initial data and its

meaning may change from line to line.

Finally, we refer to [1] for the definition of Besov spaces.

1 A Key Lemma

A key Lemma leading to our local well posedness is the following:

Lemma 1.1. We consider the trilinear form

v0(τ) = T (v1(τ), v2(τ), v3(τ)) = S(−τ)[S(−τ)v1(τ)S(τ)v2(τ)S(τ)v3(τ)]. (1.1)

Then, there holds

‖v0(τ)‖L1(Rn) ≤ Cτ−n‖v1(τ)‖L1(Rn)‖v2(τ)‖L1(Rn)‖v3(τ)‖L1(Rn). (1.2)
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Proof. By scaling invariance, it suffices to prove (1.2) for a fixed value of τ . Say τ = 1
2
.Then,

let M(x) = ei|x|2/2,M(x) = e−i|x|2/2 and the trilinear form

T (f, g, h) = M ∗ (M ∗ f ·M ∗ g ·M ∗ h), (1.3)

where ∗ denotes the convolution product and · denotes the pointwise multiplication. We only

need to prove

‖T (f, g, h)‖L1 ≤ C‖f‖L1‖g‖L1‖h‖L1 . (1.4)

To see (1.4) is true, we make use of the identities

M ∗ f = M · F(M · f), M ∗ f = M · F(M · f), (1.5)

where F and F denote the Fourier and anti-Fourier transforms

F(f)(ξ) =
∫

e−ixξf(x)dx = f̂(ξ), F(f)(ξ) =
∫

eixξf(x)dx = f̂(−ξ). (1.6)

Then, the trilinear form becomes

T (f, g, h) = M · F(M ·M · F(M · f) ·M · F(M · g) ·M · F(M · h)). (1.7)

Now, the key step is to notice that M ·M ·M ·M ≡ 1. Hence

|T (f, g, h)| = |F(F̂ · Ĝ · Ĥ)|, (1.8)

where

F (x) = M(x) · f(−x), G(x) = M(x) · g(x), H(x) = M(x) · h(x). (1.9)

The Fourier transform maps pointwise multiplication of functions into convolution products of

their Fourier transforms and in particular we have

F(F̂ · Ĝ · Ĥ) = CnF ∗G ∗H. (1.10)

We use now the L1 inequality for convolutions and we obtain

‖T (f, g, h)‖L1 = C‖F ∗G ∗H‖L1 (1.11)

≤ C‖F‖L1‖G‖L1‖H‖L1 = C‖f‖L1‖g‖L1‖h‖L1 .

We also have the following trivial L2 estimate:

Lemma 1.2. Let vl, l = 0, 1, 2, 3 satisfy (1.1), suppose that 2j−2 ≤ |ξ| ≤ 2j+2 in the support of

v̂2(τ, ξ) and 2k−2 ≤ |ξ| ≤ 2k+2 in the support of v̂3(τ, ξ), where v̂2, v̂3 denote the space Fourier

transform of v2,v3. Then there holds

‖v0(τ)‖L2 ≤ C2
n
2 (j+k)‖v1(τ)‖L2‖v2(τ)‖L2‖v3(τ)‖L2 . (1.12)
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Proof. Let ul(τ) = S(τ)vl(τ), l = 0, 2, 3 and u1(τ) = S(−τ)v1(τ), then û0(τ, ξ) = e−i|ξ|2τ v̂0(τ, ξ)

etc. We have

u0(τ) = u1(τ)u2(τ)u3(τ). (1.13)

Therefore

‖v0(τ)‖L2(Rn) = ‖u0(τ)‖L2(Rn) (1.14)

≤ ‖u1(τ)‖L2(Rn)‖u2(τ)‖L∞(Rn)‖u3(τ)‖L∞(Rn)

≤ C‖u1(τ)‖L2(Rn)‖û2(τ)‖L1(Rn)‖û3(τ)‖L1(Rn)

= C‖v1(τ)‖L2(Rn)‖v̂2(τ)‖L1(Rn)‖v̂3(τ)‖L1(Rn).

Noting the support property of v̂2(τ) and v̂3(τ), the desired conclusion follows from Schwartz

inequality.

We point out that the result of Lemma 2.2 does not depend on the special structure of the

trilinear form, it applies to any product of three functions.

By the interpolation theorem on the multi-linear functionals (see [1] page 96 Theorem

4.4.1), we can interpolate the inequality in Lemma 2.1 and Lemma 2.2 to get the following:

Lemma 1.3. Let vl, l = 0, 1, 2, 3 satisfy (1.1). Suppose that 2j−2 ≤ |ξ| ≤ 2j+2 in the support of

v̂2(τ, ξ) and 2k−2 ≤ |ξ| ≤ 2k+2 in the support of v̂3(τ, ξ), where v̂2, v̂3 denote the space Fourier

transform of v2,v3. Then there holds

‖v0(τ)‖Lp ≤ Cτ−n( 2
p−1)2n(1− 1

p )(j+k)‖v1(τ)‖Lp‖v2(τ)‖Lp‖v3(τ)‖Lp , 1 ≤ p ≤ 2. (1.15)

2 Proof of the Theorem 1.1

In this section, we prove Theorem 1.1 by a contraction mapping principle. We point out

that we can also slightly improve our result by using Besov spaces.

Theorem 2.1. Consider the nonlinear integral equation (0.18), suppose that

u0 ∈ Ḃs
p,1(R

n) (2.1)

for s = n(1− 1
p
) and 2n

n+1
< p < 2, where Ḃs

p,1(R
n) is the homogenous Besov space. Then there

exists a time T which only depends on ‖u0‖Ḃs
p,1(R

n) such that the integral equation has a unique

solution v ∈ C([0, T ], Ḃs
p,1(R

n)) satisfying

‖v(t)‖Ḃs
p,1(R

n) ≤ 2‖u0‖Ḃs
p,1(R

n), ∀t ∈ [0, T ]. (2.2)

Moreover, suppose that v1, v2 are two solutions with initial data u01, u02, then there holds

‖v1(t)− v2(t)‖Ḃs
p,1(R

n) ≤ 2‖u01 − u02‖Ḃs
p,1(R

n), ∀t ∈ [0, T ]. (2.3)
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In the following, we will only prove Theorem 3.1 since the proof of Theorem 1.1 is similar.

Let us define the space

X = {w ∈ C([0, T ], Ḃs
p,1(R

n))| sup
0≤t≤T

‖w(t)‖Ḃs
p,1(R

n) ≤ 2‖u0‖Ḃs
p,1(R

n)}, (2.4)

where s = n(1− 1
p
) and 2n

n+1
< p < 2. For any w ∈ X, define a map M by

(Mw)(t) , u0 ±
∫ t

0

S(−τ)[S(−τ)w̄(τ)(S(τ)w(τ))2]dτ. (2.5)

We want to show that M maps X into itself and is a contraction provided that T is sufficiently

small.

Firstly let us recall the definition of homogenous Besov spaces. Let ψ ∈ C∞
0 (Rn) such that

suppψ ⊂ {ξ||ξ| ≤ 1} (2.6)

and

ψ(ξ) ≡ 1 |ξ| ≤ 1
2
. (2.7)

Let

φ(ξ) = ψ(2−1ξ)− ψ(ξ) (2.8)

then
+∞∑

j=−∞
φ(2−jξ) ≡ 1, (2.9)

and we have the following dyadic decomposition

w =
+∞∑

j=−∞
wj , (2.10)

where

ŵj(ξ) = φ(2−jξ)ŵ(ξ). (2.11)

The Besov norm Ḃs
p,1(R

n) is defined by

‖w‖Ḃs
p,1(R

n) =
+∞∑

j=−∞
2js‖wj‖Lp(Rn). (2.12)

Let w ∈ X, to show M maps X into itself, we need to estimate the nonlinear term

F (τ) = S(−τ)[S(−τ)w̄(τ)(S(τ)w(τ))2] (2.13)

=
∑
j,k,l

S(−τ)[S(−τ)w̄j(τ)S(τ)wk(τ)S(τ)wl(τ)].

To estimate F, we only need to estimate

F1(τ) =
∑

j≥k≥l

S(−τ)[S(−τ)w̄j(τ)S(τ)wk(τ)S(τ)wl(τ)], (2.14)
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all the other terms in the summation can be estimated in a similar way.

By Lemma 2.3, we have

‖F1(τ)‖Ḃs
p,1(R

n) (2.15)

≤
+∞∑

j=−∞
‖

j∑
k,l=−∞

S(−τ)[S(−τ)w̄j(τ)S(τ)wk(τ)S(τ)wl(τ)]‖Ḃs
p,1(R

n)

≤
+∞∑

j=−∞

j+4∑
m=−∞

2ms‖φ(2−mD){
j∑

k,l=−∞
S(−τ)[S(−τ)w̄j(τ)S(τ)wk(τ)S(τ)wl(τ)]}‖Lp(Rn)

≤
+∞∑

j=−∞

j+4∑
m=−∞

2ms‖
j∑

k,l=−∞
S(−τ)[S(−τ)w̄j(τ)S(τ)wk(τ)S(τ)wl(τ)]‖Lp(Rn)

≤ C

+∞∑
j=−∞

2js‖
j∑

k,l=−∞
S(−τ)[S(−τ)w̄j(τ)S(τ)wk(τ)S(τ)wl(τ)]‖Lp(Rn)

≤ C
∑
j,k,l

2js‖S(−τ)[S(−τ)w̄j(τ)S(τ)wk(τ)S(τ)wl(τ)]‖Lp(Rn)

≤ Cτ−n( 2
p−1)

∑
j,k,l

2(j+k+l)s‖wj(τ)‖Lp(Rn)‖wk(τ)‖Lp(Rn)‖wl(τ)‖Lp(Rn)

= Cτ−n( 2
p−1)‖w(τ)‖3

Ḃs
p,1(R

n)
,

where s = n(1− 1
p
). Therefore

‖F (τ)‖Ḃs
p,1(R

n) ≤ Cτ−n( 2
p−1)‖w(τ)‖3

Ḃs
p,1(R

n)
. (2.16)

Noting that when 2n
n+1

< p < 2, we have 0 < n( 2
p
− 1) < 1, it is easy to see

‖(Mw)(τ)‖Ḃs
p,1(R

n) ≤ ‖u0‖Ḃs
p,1(R

n) +
∫ t

0

‖F (τ)‖Ḃs
p,1(R

n) (2.17)

≤ ‖u0‖Ḃs
p,1(R

n) + C

∫ t

0

τ−n( 2
p−1)‖w(τ)‖3

Ḃs
p,1(R

n)
dτ

≤ ‖u0‖Ḃs
p,1(R

n) + CT 1−n( 2
p−1)( sup

0≤t≤T
‖w(t)‖Ḃs

p,1(R
n))

3

≤ ‖u0‖Ḃs
p,1(R

n) + CT 1−n( 2
p−1)‖u0‖3

Ḃs
p,1(R

n)

≤ 2‖u0‖Ḃs
p,1(R

n)

provided that T is sufficiently small.

Now we prove that M is a contraction.Let w(1), w(2) ∈ X, denote w∗ = w(1) − w(2) and

v∗ = Mw(1) −Mw(2), then

v∗ = ±
∫ t

0

S(−τ)[S(−τ)w̄(1)(τ)(S(τ)w(1)(τ))2 − S(−τ)w̄(2)(τ)(S(τ)w(2)(τ))2]dτ (2.18)

= ±
∫ t

0

S(−τ)[S(−τ)w̄∗(τ)(S(τ)w(1)(τ))2 + S(−τ)w̄(2)(τ)S(τ)(w(1)(τ) + w(2)(τ))S(τ)w∗(τ)]dτ
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By a similar argument as before, we can get

‖v∗(t)‖Ḃs
p,1(R

n) (2.19)

≤ C

∫ t

0

τ−n( 2
p−1)(‖w(1)(τ)‖Ḃs

p,1(R
n) + ‖w(2)(τ)‖Ḃs

p,1(R
n))

2‖w∗(τ)‖Ḃs
p,1(R

n)

≤ CT 1−n( 2
p−1)‖u0‖2

Ḃs
p,1(R

n)
sup

0≤t≤T
‖w∗(t)‖Ḃs

p,1(R
n)

≤ 1
2

sup
0≤t≤T

‖w∗(t)‖Ḃs
p,1(R

n).

Therefore, we proved the existence and uniqueness of the solution. To prove the stability result,

let v(1) and v(2) be two solutions with initial data u01 and u02. With a little abuse of notation,

we still denote v∗ = v(1) − v(2). Then we have

v∗ = u01 − u02 (2.20)

±
∫ t

0

S(−τ)[S(−τ)v̄(1)(τ)(S(τ)v(1)(τ))2 − S(−τ)v̄(2)(τ)(S(τ)v(2)(τ))2]dτ

= u01 − u02

±
∫ t

0

S(−τ)[S(−τ)v̄∗(τ)(S(τ)v(1)(τ))2 + S(−τ)v̄(2)(τ)S(τ)(v(1)(τ) + v(2)(τ))S(τ)v∗(τ)]dτ.

Thus,

‖v∗(t)‖Ḃs
p,1(R

n) ≤ ‖u01 − u02‖Ḃs
p,1(R

n) (2.21)

+C

∫ t

0

τ−n( 2
p−1)(‖v(1)(τ)‖Ḃs

p,1(R
n) + ‖v(2)(τ)‖Ḃs

p,1(R
n))

2‖v∗(τ)‖Ḃs
p,1(R

n)

≤ ‖u01 − u02‖Ḃs
p,1(R

n) + CT 1−n( 2
p−1)(‖u01‖Ḃs

p,1(R
n) + ‖u02‖Ḃs

p,1(R
n))

2 sup
0≤t≤T

‖v∗(t)‖Ḃs
p,1(R

n)

≤ ‖u01 − u02‖Ḃs
p,1(R

n) +
1
2

sup
0≤t≤T

‖v∗(t)‖Ḃs
p,1(R

n).

Therefore

sup
0≤t≤T

‖v∗(t)‖Ḃs
p,1(R

n) ≤ 2‖u01 − u02‖Ḃs
p,1(R

n). (2.22)

We completed the proof of Theorem 3.1.

3 Proof of the Theorem 1.5

In this section, we will prove theorem 1.5.

Lemma 3.1. Let n = 1 and vl, l = 0, 1, 2, 3 be defined by Lemma 2.1, then there holds

sup
0≤τ≤T

(τ‖v0(τ)‖L1(R)) ≤ C

3∏
i=1

{‖vi(0)‖L1(R) +
∫ T

0

‖∂τvi(τ)‖L1(R)dτ}. (3.1)
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Proof. (3.1) follows from Lemma 2.1 by

vi(t) = vi(0) +
∫ t

0

∂τvi(τ)dτ. (3.2)

Lemma 3.2. Let n = 1 and vl, l = 0, 1, 2, 3 be defined by Lemma 2.1, then there holds

{∫ T

0

‖v0(τ)‖2
L2(R)dτ

} 1
2

≤ C

3∏
i=1

{‖vi(0)‖L2(R) +
∫ T

0

‖∂τvi(τ)‖L2(R)dτ}. (3.3)

Proof. Let

u1(τ) = S(τ)v̄1(τ), u2(τ) = S(τ)v2(τ), u3(τ) = S(τ)v3(τ), (3.4)

then it follows from Hölder’s inequality that

{∫ T

0

‖v0(τ)‖2
L2(R)dτ

} 1
2

≤ C

3∏
i=1

{∫ T

0

‖ui(τ)‖6
L6(R)dτ

} 1
6

. (3.5)

Noting that

iu1t(t, x)−4u1(t, x) = S(t)∂tv̄1(t), (3.6)

u1(0) = v̄1(0) (3.7)

as well as similar equations for u2, u3, the desired conclusion follows from Strichartz’ inequality.

By the interpolation theorem on the multi-linear functionals (see [1] page 96 Theorem

4.4.1), we can interpolate the inequality in Lemma 4.1 and Lemma 4.2 to get the following

Lemma 3.3. Let n=1 and vl l = 0, 1, 2, 3 be defined by Lemma 2.1, then there holds

{∫ T

0

τ θp′‖v0(τ)‖p′

Lp(R)dτ

} 1
p′

≤ C

3∏
i=1

{‖vi(0)‖Lp(R) +
∫ T

0

‖∂τvi(τ)‖Lp(R)dτ}, (3.8)

where 1 < p < 2 and p′,θ satisfy (0.30).

Proof. We only need to prove that the norm on the left-hand side of (3.8) can be obtained by

interpolation of norms on the left-hand side of (3.1) and (3.3).

Let dµ be the measure τ−2dτ on [0, T ] then the norm on the left-hand side of (3.1) is

sup
0≤τ≤T

(τ‖v0(τ)‖L1(R)) = ‖τv0‖L∞(dµ;L1(R)), (3.9)

and the norm on the left-hand side of (3.3) is

{∫ T

0

‖v0(τ)‖2
L2(R)dτ

} 1
2

= ‖τv0‖L2(dµ;L2(R)), (3.10)
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while the norm on the left-hand side of (3.8) is

{∫ T

0

τ θp′‖v0(τ)‖p′

Lp(R)dτ

} 1
p′

= ‖τv0‖Lp′ (dµ;Lp(R)), (3.11)

for 1 < p < 2(since θp′ = p′ − 2).

We are now ready to prove Theorem 1.5.

Let us define the set

X = {w|w(0) = u0,

{∫ T

0

τ θp′‖∂τw(τ)‖p′

Lp(R)dτ

} 1
p′

≤ C1‖u0‖3
Lp(R)} (3.12)

where θ,p′ are defined by (0.30) and C1 is a positive constant independent of the initial data

and will be determined later. For any w ∈ X, define a map M by

(Mw)(t) = u0 ±
∫ t

0

S(−τ)[S(−τ)w̄(τ)(S(τ)w(τ))2]dτ. (3.13)

We want to show that M maps X into itself and is a contraction.

For simplicity, we denote v = Mw. Obviously,

v(0) = u0 (3.14)

and

∂τv(τ) = ±S(−τ)[S(−τ)w̄(τ)(S(τ)w(τ))2]. (3.15)

Applying Lemma 4.3, we get,

{∫ T

0

τ θp′‖∂τv(τ)‖p′

Lp(R)dτ

} 1
p′

≤ C(‖u0‖Lp +
∫ T

0

‖∂τw(τ)‖Lp(R)dτ)3. (3.16)

By Hölder’s inequality, we obtain

∫ T

0

‖∂τw(τ)‖Lpdτ ≤
{∫ T

0

τ−θp

} 1
p
{∫ T

0

τ θp′‖∂τw(τ)‖p′

Lp(R)dτ

} 1
p′

(3.17)

= CT
1
p′

{∫ T

0

τ θp′‖∂τw(τ)‖p′

Lp(R)dτ

} 1
p′

≤ CC1T
1
p′ ‖u0‖3

Lp(R).

It then follows that
{∫ T

0

τ θp′‖∂τv(τ)‖p′

Lp(R)dτ

} 1
p′

≤ C(‖u0‖Lp(R) + C1T
1
p′ ‖u0‖3

Lp(R))
3 (3.18)

≤ C1‖u0‖3
Lp(R)

provided that C1 is suitably large and T is sufficiently small. By a similar argument, we can

show that M is a contraction. Moreover, it is not difficulty to prove (0.28) and (0.31).
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