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Abstract:
In this paper, we consider in R™ the Cauchy problem for nonlinear Schrodinger equation with
initial data in Sobolev space W*P? for p < 2. It is well known that this problem is ill posed.
However, We show that after a linear transformation by the linear semigroup the problem
becomes locally well posed in W*? for 2% < p < 2 and s > n(1 — %) Moreover, we show that

n+1
in one space dimension, the problem is locally well posed in L? for any 1 < p < 2.

Key words: Applied mathematics; Cauchy problem, nonlinear Schrédinger equation, local

well-posedness, scaling limit

0 Introduction

Consider the Cauchy problem for the linear Schrédinger equation
iug(t, x) — Au(t,x) =0, (0.1)
u(0, ) = up(x), (0.2)
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where A is the Laplace operator in R™ for n > 1. It is well known that this problem is well
posed for initial data uy € LP(R™) if and only if p = 2. For this reason, it is believed that the
initial value problem for the nonlinear Schrodinger equation is not well-posed for initial data
in the Sobolev space W*P for p # 2. However, this is not quite right.

Notice that the solution of the Cauchy problem for (0.1),(0.2) can be written as

u(t) = S(t)ug = E(t) * ug, (0.3)
where
Blta) = — i (0.4)
T (—4mit) s ’

is the fundamental solution and S(t) defines a semigroup. Thus
S(=t)u(t) = o, (0.5)

and for any norm X we have
[S(=t)u®)llx = [luollx- (0.6)

There are some examples in the literature in which the nonlinear Schrodinger equation is studied
by using the norm
lully = [[S(=t)u(t)l|x (0.7)

where X is the usual Sobolev or weighted Sobolev norm. Of course, we have the trivial example
that when X = H?®, we have X =Y. The first nontrivial example is to take X to be the weighted

L? norm. Thus, we take

[wllx = Z |z%w|| L2 (rn) (0.8)

loe|<s

where « is a multi-index. Then

lu(@)lly = > le*S(=t)u@®)2mmy = Y 1Sz S(—t)ult)l|2(am)- (0.9)
|al<s la|<s
Noting that
S(t)IkS(—t) =T — 27,IJ,895;v £ Lk, (010)

we obtain

[u(®)|ly = Z | Lu(t)|| L2 (Rrm)- (0.11)

la|<s
This norm was first used by McKean and Shatah [9] and it was proved that one has the following
global Sobolev inequality

lu(@)[e < CAU+8)F () IL Oz + w®)msrm)s s > g (0.12)

loaf<s
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This inequalty is similar to the global Sobolev inequality for the wave equation obtained earlier
by Klainerman (see [7]) and is very important in studying the nonlinear problem in their paper.
Another more recent example is to take X = H?H?, then Y is the so called Bourgain space
(see [2]). This space plays a very important role in the recent study of low regularity solution
of nonlinear Schrodinger equations.
Therefore, why not take X = L? (or W*?)? It is our aim to investigate this problem in
this paper.

Consider the Cauchy problem for the nonlinear Schrédinger equation
iug(t, r) — Au(t,z) = £lu(t, z)|*u(t, x), (0.13)

u(0, ) = up(x). (0.14)

This problem can be reformulated as

t
u(t) = S(t)ug £ / S(t —7)(|u(T)|Pu(r))dr. (0.15)
0
Motivated by our above discussions, we make a linear transformation
v(t) = S(—t)u(t), (0.16)

then
u(t) = S(t)v(t). (0.17)

Therefore, we get .
v(t) = ug :I:‘/O S(—1)[S(=7m)o(7)(S(T)v(7))*]dr, (0.18)

where we use the fact that S(7) = S(—7).
Our main result in this paper is that (0.18) is locally well posed in Sobolev space W*? for

certain p < 2. More precisely, we have the following:
Theorem 0.1. Consider the nonlinear integral equation (0.18), suppose that
ug € W5P(R") (0.19)

for s >n(l— %) and 2% < p < 2, where W5P(R") is understood as B ,(R") and B} ,(R") is

the Besov space. Then there exists a time T which only depends on ||ug|\wsr»(gn) such that the

integral equation has a unique solution v € C([0,T], W*P(R"™)) satisfying
[o@®)llwer(rny < 2luollwsrrn), V€ [0,T]. (0.20)
Moreover, suppose that vy, vs are two solutions with initial data ugy, uge, then there holds

H'Ul(t) — Ug(t)HWs,p(Rn) S 2”1601 - UOQHWs,p(Rn), YVt € [O,T] (021)
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Remark 0.2. Our proof relays on a subtle cancellation in the nonlinearity and thus our result is
not valid for the general nonlinearity F(u,u). However, for nonlinear term of the form +|u|?*u,

where m is an integer, it is not difficulty to generalize our result to this case.

Remark 0.3. By the well known LP — L?" estimate, We obtain that for the original solution
u(t) = S(t)v(t)

[u(®)|[yyewr < CE 73 0 (t) |wowr, (0.22)
where
Loy (0.23)
p 7
therefore
) lyyewr < Ct"E75 ugllwer VO<t<T (0.24)

Remark 0.4. Similar results are expected for other nonlinear dispersive equations and non-

linear wave equations. However, no such result is presently known.

We point out that Theorem 1.1 is only to show that one can solve the Cauchy problem
in W#P for p < 2, the regularity assumption in Theorem 1.1 need not be optimal and can be
improved. As an example, we will show that the problem is locally well posed in L for any
1 < p < 2 in one space dimension. It is proved by Y.Tsutsumi [10] that the problem is locally
well-posed in L?.Then It is proved by Griinrock [6] that the problem is locally well posed in
L7, for any 1 < p < 0o (se also Cazenave et al [3] and Vargas and Vega [11].) Here

1 zo = 1AMl (0.25)

where f is the Fourier transform of f and p’ is defined by(0.23). Noting that
Ifllzw < Clifller, 1<p<2 (0.26)

L space is slightly larger than L? space. However,L? is more commonly used space. More
recently, there are even some local existence result in H* for some s < 0, see Christ et al [5] as
well as Koch and Tataru [8].

Our main result in one space dimension is as follows:

Theorem 0.5. Consider the nonlinear integral equation (0.18) in one space dimension, suppose
that
ug € LP(R) (0.27)

for 1 < p < 2. Then there exists a time T which only depends on ||uo||Lr(r) such that the
integral equation has a unique solution v € C([0,T], LP(R)) satisfying

lo(®)locay < Colluollomy, Vi € 0,7, (0.28)



mEﬂZ§ itXEﬁ http://www.paper.edu.cn

and )
T 7
{/ +0p ||aTv(7-)||’£p(R)dT} < Cilluol| o (ry- (0.29)
0
where ) . )
-+—==1, 0=--1 (0.30)
p D b

Moreover, suppose that vy, vy are two solutions with initial data ug1, ug2, then there holds
[v1(t) = v2() || ze(r) < Colluor — woz|lLe(r), Yt €[0,T7]. (0.31)
Here Cy and C; are positive constants independent of the initial data.

Remark 0.6. Let u(t, z) be a solution to the nonlinear Schrédinger equation (0.13) with initial
data (0.14), then uy (¢, z) = Au(A\%t, Az) is also a solution with initial data ugy = Aug(Ax). If

lwoxllze(rny = lluollLe(rn), (0.32)

then p is called a scaling limit. It is easy to see that p is a scaling limit in one space dimension

if and only if p = 1. Thus, as p close to 1, we can go arbitrary close to the scaling limit.

Remark 0.7. By the well known LP — L?" estimate, We obtain that for the original solution
u(t) = S(t)v(t)

(@)l < CECT o)1, (0.33)

wnere p’ is defined by (0.23). Therefore

lu(t)]| o < Ot 273

lupllr» YO<t<T

Both Theorem 1.1 and Theorem1.5 are proved by some trilinear L? estimates. This kind
of estimates are obtained by interpolation between various well known L? estimates and our
new trilinear L' estimate (see Lemma 2.1).

In the following, C will denote a positive constant independent of the initial data and its
meaning may change from line to line.

Finally, we refer to [1] for the definition of Besov spaces.

1 A Key Lemma

A key Lemma leading to our local well posedness is the following:

Lemma 1.1. We consider the trilinear form
vo(7) = T(v1(7),v2(7), v3(7)) = S(=7)[S(=7)v1(7)S(T)v2(7) S (T)v3(7)]. (1.1)
Then, there holds

[vo(T)z2(rmy < CT7" |01 (T) | L2 (rey l02(T) | L2 (R |03 (T) | L2 (R - (1.2)

_5_
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Proof. By scaling invariance, it suffices to prove (1.2) for a fixed value of 7. Say 7 = %.Then,
let M (z) = €!l"I/2 M(z) = e~#1#1°/2 and the trilinear form

T(f,g,h) =M% (M f-Mxg-Mxh), (1.3)

where * denotes the convolution product and - denotes the pointwise multiplication. We only

need to prove
IT(f, 9, W)l < ClFllellgllee IRl (1.4)
To see (1.4) is true, we make use of the identities
Mxf=M-FM-f), Mxf=M-FM-f), (1.5)

where F and F denote the Fourier and anti-Fourier transforms
AN© = [ iwte =@, OO = [ =f-0. 19
Then, the trilinear form becomes
T(f,g,h)=M-F(M-M-F(M-f)-M-F(M-g)-M-F(M -h)). (1.7)

Now, the key step is to notice that M - M - M - M = 1. Hence

T(f.9.0) = |F(F - G- H), (1.8)

where
F(z) = M(z)- f(~z), G(z)=M() g(z), H(z)= M()-h(z). (1.9)

The Fourier transform maps pointwise multiplication of functions into convolution products of

their Fourier transforms and in particular we have
F(F-G-H)=C,F«GxH. (1.10)
We use now the L' inequality for convolutions and we obtain

IT(f,g,h)||Lr = C||F * G H|| 11 (1.11)
S CNF| |Gl [[H | e = Cll fllze gl za |2l 21 -

We also have the following trivial L? estimate:

Lemma 1.2. Let v;,l = 0,1,2,3 satisfy (1.1), suppose that 2772 < |£] < 29%2 4n the support of
Do (T,€) and 2%=2 < |€| < 282 in the support of U3(T, &), where ¥, U3 denote the space Fourier

transform of vy,v3. Then there holds

lvo ()2 < €250 [lun ()| allva (1) 2 o3 (7) [ 22- (1.12)

-6-
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Proof. Let u;(7) = S(r)vy(7),1 = 0,2,3 and uy (1) = S(—7)v1 (1), then dig(r, &) = e~ 5y (7, €)
etc. We have
uo(T) = uy (T)ug(T)us(7). (1.13)

Therefore

[vo(T)llz2(m) = lluo(7) 2 (m) (1.14)

< Nua ()l 2 am lluz (Tl poe my 1 (7) || oo ()

< Cllua ()22 am 2 (7) |1 ey 123 () 22 (2m)

0a(7) |1 (am)

= CHUl(T)HL?(R") ﬁg(T)HLl(Rn).

Noting the support property of 02(7) and 03(7), the desired conclusion follows from Schwartz

inequality. O

We point out that the result of Lemma 2.2 does not depend on the special structure of the
trilinear form, it applies to any product of three functions.
By the interpolation theorem on the multi-linear functionals (see [1] page 96 Theorem

4.4.1), we can interpolate the inequality in Lemma 2.1 and Lemma 2.2 to get the following:

Lemma 1.3. Let v;,l = 0,1,2,3 satisfy (1.1). Suppose that 2772 < |£| < 2772 in the support of
Do (1, &) and 252 < |€] < 28F2 in the support of 13(7,€), where o, O3 denote the space Fourier

transform of vy,v3. Then there holds

[vo(T) || £r < CTG02MA=RD G g (7)o l[va (7)o l0a ()| 2oy, 1<p <20 (1.15)

2 Proof of the Theorem 1.1

In this section, we prove Theorem 1.1 by a contraction mapping principle. We point out

that we can also slightly improve our result by using Besov spaces.

Theorem 2.1. Consider the nonlinear integral equation (0.18), suppose that

ug € B (R") (2.1)

fors=n(1- %) and f—fl < p <2, where B;l(R") is the homogenous Besov space. Then there

exists a time T which only depends on ||ug|
solution v € C([0,T7, B;’I(R”)) satisfying

Bs | (R") such that the integral equation has a unique

H’U(t)HB;J(R") < QHUOHB;J(R")? vt € 10,77 (2.2)
Moreover, suppose that vy, vy are two solutions with initial data ug1, ug2, then there holds

[[01(2) — v2(t)]

B;S),l(Rn) S 2||U01 — U02| B;’l(R")’ \V/t S [O,T] (23)

-7
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In the following, we will only prove Theorem 3.1 since the proof of Theorem 1.1 is similar.

Let us define the space
X={we C([O,T]’Bé,l(R”))loiltlgTIIw( Wis  my < 2lluollss  rny}s (2.4)

where s =n(1 — 5) and 2% < p < 2. For any w € X, define a map M by

(Mw)(t) = g i/o S(—1)[S(—m)w(r)(S(T)w(r))?]dr. (2.5)

We want to show that M maps X into itself and is a contraction provided that T is sufficiently
small.

Firstly let us recall the definition of homogenous Besov spaces. Let ¢ € C5°(R™) such that

suppy C {¢][¢] < 1} (2.6)
and
YO =1 l6<y. (27)
Let
$(&) = (271€) — () (2.8)
then

Z p(277¢) = 1, (2.9)

j=—00

and we have the following dyadic decomposition

w = i wj, (2.10)
j=—o00
where
w;(§) = (277w (S). (2.11)
The Besov norm B;ﬁl(R”) is defined by
+oo
ol mmy = D 2°lwslleecan- (2.12)
j=—00

Let w € X, to show M maps X into itself, we need to estimate the nonlinear term

F(r) = S(=1)[S(~=1)@(r)(S(r)w(r))?] (2.13)
Zs<—r> [S(—7)w; (1) (T)wi (1) S (T)wi(7)].

To estimate F', we only need to estimate

=D S 7)w; (7)S(T)we(7) S (r)wi(7)], (2.14)

j>k>1
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all the other terms in the summation can be estimated in a similar way.

By Lemma 2.3, we have

IE s e (2.15)

+oo J
< YD SEDSET @ (M) w(r) S wi(r)]l| g

j=—00 k,l=-o00

+o00 j+4

Z Z 27%|| (2" D){ Z S(=7)[S(=7)@;(7)S (7)wi(7)S(7)wi (7)]}| Lo (r
+o0 Jj+4

<D0 ) 2 Z S(=)S(=7)@;(7)S (T)wi () S (TYwi ()] | Lo ren)

j=—00 m=—00 k,l=—0o0

J

“+oo
<C Y P> S(=)S(=T)w;(r)S () wi(r) S () wi(7)]|| o ey

j=—00 k,l=—o0
< CY 2 S(=7)[S(=7)w; (T) S (7)wi (7) S (7 )wy (7)] | o (o
7.k,
OGN 20D (7| o ey e (7) | oy 0 (7) | o ey
gkl
= Cr "G w1, | oy,

where s = n(1 — ). Therefore
P
IE( 5, ey < CT7F (D)1, | oy (2.16)

( —1) < 1, it is easy to see

I(Mw)(T)ll 55,y < Nwoll g Rn>+/ IE) 52, () (2.17)

t
—n(2— :
S ||U’0||B;1(R“) + C/ T (p 1)||U}(T)||339 1(Rn)d7'
, 0 P,

_n(2_
< llwoll gy sy + CT 0 1><0sup o)l (o))’

< llwoll g5 gy + CT 5 2

B: (R

< 2”“0“3;,1(}%")

provided that T is sufficiently small.
Now we prove that M is a contraction.Let w™, w® € X, denote w* = w") — w® and

v = Mw® — Mw® | then
v = [ SEnISEnE SO E) - SIS () (218)

—i/o S(=n)S(=m)a* (r)(S(r)w(1))* + S(=7)@® (1)S(7) (w (1) + w® (7)) S (T)w" (7)) dT

9.
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By a similar argument as before, we can get

1" Ol (219
t

<c [ E (et
0

2 *
B;J(R") OzltlgT H'LU (t)|

By (Rm) T |w® ()] B;,I(R"))2Hw*(7—)| B3, (R™)

< CTl—n(%fl)Hud

35,1(Rn)

1 *
5 sup[lw (1)
0<t<T

By (R™)”

Therefore, we proved the existence and uniqueness of the solution. To prove the stability result,
let v(® and v® be two solutions with initial data uo; and ugs. With a little abuse of notation,

we still denote v* = v) — (. Then we have
v* = Up1 — Up2 (220)

i/o S(=7)[S(=m)o V(1) (S(r)v(7))* = S(=7)5? (7)(S(r)v? (7))?]d7

= Up1 — Uo2

& [ SrISEnT DS EOE + S DS O + oS (.
Thus,

o 0)

wc [ o ()

s (rmy < llwor — w2l g | (am) (2.21)

Bs ,(R™) + ||U(2)(T)| B;J(Rn))QHU*(Tﬂ Bs ,(R™)

(2 §
< luor = el g, (rmy + CT "5 ([luonll g (rmy + [luto2] Bg,l(Rn))QoingHv ®)ll s, crny
1 *
< |luor = w2l s | (rmy + 7,5 1" Ol s; , (rm-
Therefore
- 38 n < - s ny- .
OE?ET o)l By (B = 2||uor — oz B (R (2.22)

We completed the proof of Theorem 3.1.

3 Proof of the Theorem 1.5

In this section, we will prove theorem 1.5.

Lemma 3.1. Letn=1 and v;, | =0,1,2,3 be defined by Lemma 2.1, then there holds

0<r<

3 T
SUPT(THvo(T)\IL1<R>) < CT[HIoi(0) 2 ay +/ 10-vi(T)|[ L2 (mydT }- (3.1)
i=1 0

- 10 -
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Proof. (3.1) follows from Lemma 2.1 by

v;(t) = v;(0) —|—/O 0-v;(T)dT. (3.2)

Lemma 3.2. Letn=1 and v;, | =0,1,2,3 be defined by Lemma 2.1, then there holds

{/OTlvo(r)Iliz(de}l < CH{HvZ M2 (r /OT 10-0:(7) | 2 (myd T} (3.3)

Proof. Let
u(7) = S(1)v1(7), wa(r) = S(T)va(7), us(r) = S(r)vs(7), (3.4)

then it follows from Hélder’s inequality that

{/OT||U0(7')”L2(R }é f[{/ i (7)]|8 6 R)dT}é. (3.5)

iuye(t, ) — Auy (t,x) = S(t)0,01(t), (3.6)

u1(0) = 1(0) (3.7)

Noting that

as well as similar equations for us, us, the desired conclusion follows from Strichartz’ inequality.

O

By the interpolation theorem on the multi-linear functionals (see [1] page 96 Theorem

4.4.1), we can interpolate the inequality in Lemma 4.1 and Lemma 4.2 to get the following

Lemma 3.3. Let n=1 and v; | =0,1,2,3 be defined by Lemma 2.1, then there holds

T o T
{/ 7o ”’UO(T)HZ[),P(R)CZT} < CH{HUz M Ler) +/ [0-vi(T) || Le(rydr},  (3.8)
0 0

where 1 < p < 2 and p',0 satisfy (0.30).

Proof. We only need to prove that the norm on the left-hand side of (3.8) can be obtained by
interpolation of norms on the left-hand side of (3.1) and (3.3).
Let dp be the measure 772d7 on [0,7] then the norm on the left-hand side of (3.1) is

sup (7lvo(7)llLr(r)) = lTvollLoe (ausLr (r)) (3.9)
0<r<T

and the norm on the left-hand side of (3.3) is

1
T 2
{/ ||U0(T)||2Lz(3)d7'} = |l7vol| 2 (a2 (R)) (3.10)
0

- 11 -
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while the norm on the left-hand side of (3.8) is

1
T / o
{/ s ||UO(T)||ip(R)dT} = ||7—’U0||LP’(d/L;LP(R))7 (3.11)
0
for 1 < p < 2(since 6p’ = p' — 2). O]

We are now ready to prove Theorem 1.5.
Let us define the set

1
o7

T
X = {ww(0) = u, { [ ||afw<f>||’zm)df} < G o} (3.12)
0

where 0,p" are defined by (0.30) and C is a positive constant independent of the initial data
and will be determined later. For any w € X, define a map M by

(Mw)(t) = ug :I:/O S(—1)[S(—m)w(r)(S(T)w(r))?]dr. (3.13)

We want to show that M maps X into itself and is a contraction.

For simplicity, we denote v = Mw. Obviously,

v(0) = ug (3.14)
and
Or0(r) = £S(—)[S(=T)B(r)(S(7)uw(r))?). (3.15)
Applying Lemma 4.3, we get,
{ / TGP/||aTv<T>||i;<R>dT}p < Clluals + [ 1ol (316)

By Hélder’s inequality, we obtain

T T : T o
/ |0-w(T)|| Ledr < {/ 7——917} {/ 7—9pl||67w(7-)|’£p(R)d7'} (3.17)
0 0 0

T v
— OT op' v
=CT {/0 T |87w(7)||L,,(R)dT}
< COL T (uolli(m)-

It then follows that

T o )
{ / Tepww(r)nip(mdr} < Clluollirim + CT¥ uollom)  (3.18)
0

< Cilluol| oy

provided that C; is suitably large and T is sufficiently small. By a similar argument, we can

show that M is a contraction. Moreover, it is not difficulty to prove (0.28) and (0.31).

- 12 -
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