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Abstract: Black-Scholes equation of Dual currency option pricing is a typical multi-asset option 
pricing model, and it is important to research it's numerical value. This paper uses the accelerated 
additive operator splitting (AOS) algorithm to transform the two-dimensional Black-Scholes equation 
into two equivalent one-dimensional equations, and then construct the 'explicit-implicit' and the 10 
'implicit-explicit' scheme. These schemes proved to be stable and convergent unconditionally and they 
have second-order accuracy.The total computation of these schemes is only a quarter of the traditional 
AOS scheme. Finally, the numerical example shows the effectiveness of the accelerated AOS 
difference schemes. 
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0 Introduction 
In the financial market, the option is a kind of important financial derivatives. Along with the 

development of the financial market, it is difficult to meet the needs of financial traders by only 20 
using European, American and other single asset options. Therefore, the financial institution 
designs more complex multi-asset options. 

The dual currency option is a typical multi-asset option, and it is an option contract of 
investing in foreign securities. Generally speaking, the dual-currency option pricing depends not 
only on changes of foreign securities price, but also on changes of foreign currency exchange rate, 25 
therefore the pricing of which is more complex. This paper mainly discusses the Black-Scholes 

equation of dual currency option pricing [ ]21， : 
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Here, V is the price of the dual currency option, 1S is foreign risk asset, 2S is the exchange 30 

rate of foreign currency against domestic one, 1r is the domestic interest rate without risk, 2r is 

the foreign rate without risk, 1σ is the volatility of 1S , 2σ is the volatility of 2S , ρ is the 

correlation coefficient and q is the interest rate. The equation (1) has the analytical solution
[ ][ ]21

: 
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Although the Black-Scholes equation of dual currency option pricing has the analytical 
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solution (2), it cannot meet the effective requirement in option pricing. In practice, the numerical 
method has been widely used, such as the Monte Carlo method and the Binary Tree method, the 
two methods have less accuracy than the finite difference method; Xiaozhong Yang, Yangguo Liu 40 

(2007) proposed the general difference scheme for solving the Black-Scholes equation
[ ]4

, but it 
has lower accuracy; Lifei Wu, Xiaozhong Yang (2010) put forward the 'explicit-implicit' and 

'implicit-explicit' difference schemes for the Black-Scholes equation of options payment
[ ]5

, 
however it did not consider the multi-asset options; Weichert (1998) firstly used the additional 

operator splitting (AOS) method to solve the multi-dimensional partial differential equations
]6[
; 45 

Yi Zhang(2010) proposed the accelerated AOS schemes for nonlinear diffusion filtering
]7[
, this 

method reduce the computation time and storage space, but it used the Hopscotch method to deal 
with the one dimensional equation, which is only conditionally compatible. This paper uses the 
accelerated AOS method to split the two dimensional Black-Scholes equation into two one 
dimensional equations, then constructs the 'explicit-implicit' and 'implicit-explicit' schemes for the 50 
every one dimensional equation. Meanwhile this paper analyzes the compatibility, stability, 
convergence and accuracy of the scheme. Finally, some numerical examples verify the 
effectiveness of this scheme. 

1 Accelerated AOS difference scheme 

1.1  Initial-boundary value problem 55 

Assume that the underlying assets meet geometric Brown motion, and the market is arbitrage 
free. It does not consider the tax. By the hedging−Δ principle, we can get a portfolioΠ : 

.22121 SSSV Δ−Δ−=Π  

Select the proper 21 ΔΔ， to make Π  no risk, namely: 

,2 dtrd Π=Π  60 

( ) dtrSqdtSSdSSSddVd 22212122211 Δ−Δ−Δ−Δ−=Π  

Then through the oIt ˆ formula: 
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We can get the Black-Scholes equation of dual currency pricing: 
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     .ˆ,ˆ 2221211 rqqrrq =++−= ρσσ                       (3) 

In theory, the solving area of this equation is: 

( ) [ ]{ }TtSStSS ,0,0,0,, 2121 ∈∞<<∞<<  

But in the actual transaction, the price of the underlying asset will not always appear to be 

zero or infinity. Therefore, the financial institution provides a small enough value ( )0minmin >SS  70 

as the lower bound and a large enough value ( )∞<maxmax SS  as the upper bound for it. Then 
the pricing problem can be solved in a bounded area: 

( ) [ ]{ }TtSSSSSStSS ,0,,,, max22min2max11min121 ∈<<<<=Ω
 

Assume that the foreign option is the call option, then construct the initial and boundary 



 http://www.paper.edu.cn 

- 3 - 

中国科技论文在线

conditions for equation (3). For the reason that the option pricing is a backward problem, the 75 
initial condition is: 

( ) ( )0,max,, 1221 KSStSSV −=  
the boundary condition is: 

( ) ( ) .0,,,0,, 2max12min1 == tSSVtSSV  
( ) ( ) .0,,,0,, max21min21 == tSSVtSSV  80 

In order to solve the equation (3), we can substitute its variable as follows: 

.,ln,ln 21 tTSySx −=== τ  
Then this pricing model will be transformed into the initial-boundary value problem of partial 

differential equation with constant coefficients: 
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Initial condition: 

( ) ( ),0,max0,, KeeyxV xy −=  
Boundary condition: 90 
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1.2  Construction of accelerated AOS difference scheme 
Firstly, transform the equation (4) into equivalent equation set along with the x axis and 

the y axis: 
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Then make a mesh partition on the areaΩ , let 21 , hh as the space step and k as the time 
step: 
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conditions will be transformed into: 

( )0,max 120
, KeeV ihjh
ji −=                             (7) 

and the boundary conditions will be transformed into: 
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In the x axis direction, the space derivative can be replaced by the central difference: 105 
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the mixed partial derivative can be replaced by : 
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We still use ( )n
jixyV

,
denote the equation (9) for convenience. 110 

If the time derivative can be replaced by the one-order forward difference: 
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If the time derivative can be replaced by the one-order backward difference: 
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the equation (5) will be transformed into : 
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(11) 120 

Then we construct the 'explicit-implicit' scheme ]10[ . We adopt the explicit scheme (10) at the 
odd number floor, and implicit scheme (11) at the even number floor. 
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Similarly, in the y axis direction we can get: 125 
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If the computation is done in the x axis direction, the result jiV , of equation (12) is denoted 
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as ( )
xjiV , .In the y axis direction the result is denoted as ( )

yjiV , . Then the arithmetic mean value 

of ( )
xjiV , and ( )

yjiV , is the final value: 130 
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Similarly, if we adopt the implicit scheme (11) at the odd number floor, and explicit scheme 
(10) at the even number floor, we can construct the 'implicit-explicit' scheme as follow: 

In the x axis direction: 
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In the y axis direction: 
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When the traditional AOS scheme is adopted to calculate, it needs to solve an equation set 
that contains a triple diagonal matrix every step. Generally, we use the thomas method to solve it, 

and the computation is ( )NMMO ×× 21 . However, if we use the accelerated AOS algorithm to 140 
construct the 'explicit-implicit' and 'implicit-explicit' scheme, it only needs to solve the triple 
diagonal matrix every two step in the x and y axis direction. Therefore, the total computation of 
the accelerated AOS scheme is a quarter of the traditional one. 

2 Analysis of the compatibility and accuracy 
Firstly, we consider the 'explicit-implicit' scheme. Add up the two equations of (12), we can 145 
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The above equation is the well known Crank-Nicloson scheme. Suppose ( )tyxV ,,
 is the 

analytical solution of (12), and substitute 
( )nji zyxV ,,

by 
n
jiV 2

,
in the above equation. Then 

make difference between the two side of the equation, and we will get the truncation error: 150 
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as the Taylor Series at the point 
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, and simplify it to get:
[ ][ ]85

 

( ) ( )22
1

2
, khOR

x
n
ji +=

 
Similarly, in the y axis direction, we will get: 
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Finally, take the arithmetic mean value of ( )
x

n
jiR 2

, and ( )
y

n
jiR 2

, : 

( ) ( )[ ] ( )22
2

2
1

2
,

2
,

2
, 2

1 khhORRR
y

n
jix

n
ji

n
ji ++=+=                 (16) 

Therefore we will get the following theorem: 
Theorem 1: The 'explicit-implicit' scheme of accelerated AOS difference scheme of dual 

currency option pricing has two order accuracy, and it is compatible with the equation set (5),(6) 160 
unconditionally. 

If we apply the same method on the 'implicit-explicit' scheme, we will get similar theorem. 
Theorem 2: The 'implicit-explicit' scheme of accelerated AOS difference scheme of dual 

currency option pricing has two order accuracy, and it is compatible with the equation set (5),(6) 
unconditionally. 165 

3 Analysis of the stability and convergence 
Firstly, the stability of the scheme will be considered. As to the 'explicit-implicit' scheme, 

take the Fourier transformation on the two sides of the equation (15), and simplify it to get: [ ][ ]95  
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Therefore, the growth factor is: 170 

( )
( )

( )iqr
h
k

h
krk

iqr
h
k

h
krk

G
ξ

σξσ

ξ
σξσ

ξ
sin

2
ˆ2

2
sin41

sin
2

ˆ2
2

sin41

2
1

1
1

2
2

1

2
1

2
1

1
1

2
2

1

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−⎟

⎠
⎞

⎜
⎝
⎛−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟

⎠
⎞

⎜
⎝
⎛+−

=          (17) 

Denote that: 
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Then the equation (17) can be transformed into: 175 

( )
QiP
QiPG

−+
+−

=
1
1ξ  

and we can get that: 

( ) ( )
( )

.1
1
1

22

22
2

≤
++
+−

=
QP
QPG ξ  

In practice, we can get that 0≥P . Therefore ( ) 1≤ξG is always true. 

By the Von Neumann Theorem, we can get that the AOS difference scheme in the x axis 180 
direction is stable unconditionally. Similarly, we can get that the scheme in the y axis direction is 

also unconditionally stable. Therefore we can get the following theorems: 
Theorem 3: The 'explicit-implicit' scheme of accelerated AOS difference scheme of dual 

currency option pricing is unconditionally stable. 

In addition, due to the Lax Theorem [ ]9 , we can get: 185 
Corollary1: The 'explicit-implicit' scheme of accelerated AOS difference scheme of dual 

currency option pricing is convergent. 
If we apply the same method on the 'implicit-explicit' scheme, we will get the similar 

theorem. 
Theorem 4: The 'implicit-explicit' scheme of accelerated AOS difference scheme of dual 190 

currency option pricing is unconditionally stable and convergent. 

4 Numerical example 
Here, we consider an American investor buy the Nikkei index call option. Assuming the 

current price of the Nikkei is 20,000 yen, the dividend rate of the Nikkei is 0.03, the volatility is 
0.2, the Japanese yen against the dollar as 0.01, the volatility of exchange rate is 0.1, the 195 
correlation coefficient between the Nikkei and the yen is 0.2, the risk-free interest rate of 
American is 0.08, the risk-free interest rate of Japan is 0.04, the Strike price of option is 19,000 
yen. Consider the deadline of the option is 3,6,9 and 12 months, and the final exchange rate is the 

spot exchange rate ]2[ . 
The numerical experiment is done in Matlab 7.6 environment. The comparison among 200 

analytical solution and numerical solution, such as the result of the accelerated AOS difference 
scheme and the Crank-Nicloson scheme is shown as follows: 

 
Tab.1 The compasion of analytical and numerical solution table 

Time/(month) 3      6       9 12          relative error 
Analytical solution 21.6886 23.7346 26.5386 27.5893         0 

AOS scheme 
Crank-Nicloson 

21.6386 
21.7279 

23.5391 
24.5015 

25.1436 
27.7231 

26.4882        0.0198 
31.2501        0.0668 
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 205 
Fig 1:The compasion of analytical and numerical solution 

 
From table 1 and figure 1, we can see that the accelerated AOS difference scheme has higher 

calculation accuracy than the Crank-Nicloson scheme. With a longer deadline of the option, the 
advantage of the scheme is more obvious. The numerical result demonstrates the theoretic analysis 210 
that the accelerated AOS difference scheme is effective. 

5 Conclusion 
In this paper we construct the accelerated AOS scheme. The main idea of the scheme is to 

split the two-dimensional Black-Scholes equation into two equivalent one-dimensional equations, 
and then construct the 'explicit-implicit' and the 'implicit-explicit' scheme. This scheme is 215 
second-order accuracy, stable and convergent unconditionally, and the total computation of these 
schemes is only a quarter of the traditional AOS scheme. 

The main advantages of accelerated AOS difference scheme are as follows. Firstly, the AOS 
algorithm splits the high dimensional equation into low ones. This method can avoid the 
complexity of using difference method directly on high dimensional equation. AOS difference 220 
scheme is very applicable to deal with the high dimensional equations. Secondly, the 
'explicit-implicit' and 'implicit-explicit ' scheme also has prominent advantage. Classical implicit 
scheme hides the potential stability, which is no use in the calculation, but when it is applied in the 
alternate scheme, this potential stability just cover the stability shortage of explicit scheme. Finally, 
the implicit scheme calculates the approximate value of the analytical solution from above, and the 225 
explicit scheme calculates it from below. Every two steps produce errors with the opposite symbol, 
which can counteract with each other, and then obtain the more accurate result. 
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双币种期权定价模型的一种快速 AOS 差分解法 
周杲昕，杨晓忠 

（华北电力大学数理学院信息与计算研究所，北京 102206） 

摘要：双币种期权定价的 Black-Scholes 方程是典型的多资产期权定价模型，研究其数值解255 
法在金融衍生品定价中有十分重要的意义。本文使快速加性算子分裂算法(AOS)将二维

Black-Scholes 方程转化为等价的一维方程组,再分别对两个一维方程构造‘显-隐’，‘隐

-显’格式。从理伦上分析了对该格式的相容性、稳定性和收敛性，并证明了其具有二阶精

度。最后通过数值算例证明了该格式的有效性，进一步说明通过本文快速 AOS 降维的方法能

有效地避免高维方程的计算复杂性，还能较大幅度地提高计算速度，此方法能较好的适用于260 
实时性要求较高的多资产期权定价。  
关键词：双币种期权定价模型；快速 AOS 算法；‘显-隐’格式；‘隐-显’格式；二阶精度 
中图分类号：O241.8 

 


