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Statistical Anisotropy and the
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Physics Department, Lancaster University, Lancaster LA1 4YB, UK

Abstract

The vector curvaton paradigm is reviewed. The mechanism allows a massive vec-
tor boson field to contribute to or even generate the curvature perturbation in the
Universe. Contribution of vector bosons is likely to generate statistical anisotropy
in the spectrum and bispectrum of the curvature perturbation, which will soon be
probed observationally. Two specific models for the generation of superhorizon spec-
tra for the components of an Abelian vector field are analysed. Emphasis is put on
the observational signatures of the models when the vector fields play the role of
vector curvatons.

1 Introduction

Cosmic inflation is arguably the most compelling way to overcome, or at least ameliorate,
the so-called horizon and flatness problems of the hot big bang cosmology. However, these
problems are successfully addressed by all models of inflation, provided that the inflationary
expansion lasts long enough. Therefore, discrimination between inflation models is based
on another important consequence of inflationary expansion, namely the generation of
the curvature perturbation ζ in the Universe, which is responsible for the formation of
structures such as galaxies and galactic clusters and which is reflected onto the Cosmic
Microwave Background (CMB) radiation through the Sachs-Wolfe effect.

The latest CMB observations appear to confirm the “vanilla” predictions of inflation
with respect to ζ : scale-invariance, Gaussianity and statistical homogeneity and isotropy.
However, a period of accelerated expansion of space (this is the definition of cosmic infla-
tion) is not enough to guarantee scale-invariance for the curvature perturbation. Indeed,
inflation is required to be of the quasi-de Sitter type, where the density of the Universe
remains roughly constant. Also, the CMB observations seem to suggest that exact scale-
invariance is not favoured (although it is not ruled out) with the spectral index of ζ ,
satisfying ns − 1 = −0.037± 0.014 (at 1σ) [1] when ΛCDM cosmology is assumed.2 Most
likely, this reveals some dynamics for inflation (the density is not exactly constant), which
is indeed expected by model-builders. Similarly, a high degree of Gaussianity in the curva-
ture perturbation is expected since this reflects the randomness of quantum fluctuations,
on which the particle production process is feeding, in order to generate the superhorizon
spectrum of the fields which eventually give rise to ζ . However, the Gaussianity of ζ cru-
cially depends on the linearity of the process which translates these field perturbations to ζ .

1k.dimopoulos1@lancaster.ac.uk
2Exact scale invariance corresponds to ns = 1.
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This is quantified through the so-called non-linearity parameter fNL. The latest CMB ob-
servations provide a hint of non-zero non-Gaussianity since, in the squeezed configuration,
fNL = 32± 21 (at 1σ) [1], which again appears to deviate from the “vanilla” prediction.3

In the same spirit, observations suggest that there may be deviations from statistical
homogeneity, since there seem to be a difference in the power of ζ as large as 10% between
hemispheres in the CMB [2]. Finally, statistical isotropy in ζ is also questioned by obser-
vations. Indeed, there is tantalising evidence of a preferred direction on the microwave sky.
This is the so-called “Axis of Evil” observation [3], which amounts to an alignment of the
quadrupole and octupole moments in the CMB, which is statistically extremely unlikely
[4] and has been shown to persist beyond foreground removal [5].

Thus, we see that the precision of the cosmological observations is such that begins
to enable us to explore beyond the “vanilla” predictions of inflation and use the observed
deviations from them to discriminate between classes of models and paradigms. There
is already a huge literature on deviations from exact scale-invariance and Gaussianity for
the curvature perturbation. In this paper we discuss possible deviations from statistical
isotropy and we present a compelling paradigm for their generation; namely the Vector
Curvaton Paradigm.

Throughout the paper we consider a metric with negative signature and use natu-
ral units where c = h̄ = kB = 1 and Newton’s gravitational constant is 8πG = m−2

P , with
mP = 2.4× 1018GeV being the reduced Planck mass.

2 Statistical anisotropy in the curvature perturbation

Statistical anisotropy amounts to direction dependent patterns in the CMB. It can be
quantified as follows. The spectrum Pζ of the curvature perturbation is defined through
the two-point correlator as

〈ζ(k)ζ(k′)〉 = (2π)3δ(k + k
′)
2π2

k3
Pζ(k), (1)

where k = |k| and
ζ(k) ≡

∫

ζ(x)e−ik · xd3x .

The reality condition ζ∗(k) = ζ(−k) demands that Pζ(k) = Pζ(−k). Now, the dependence
of the power spectrum on the direction of the momentum vector can be parametrised as

Pζ(k) = P iso
ζ (k)[1 + g(d̂ · k̂)2 + · · ·], (2)

where d̂ is the unit vector along the preferred direction, k̂ ≡ k/k and the ellipsis denotes
higher than quadratic order terms, which are negligible if g < 1. A similar parametrisation

3Note that ζ is indeed predominantly Gaussian because the bispectrum Bζ is related to the power
spectrum Pζ roughly as Bζ ∼ fNLP

2

ζ (see Eq. (15)), with the observations suggesting Pζ = 4.8× 10−5 for

the spectrum [1].
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can be assigned to higher order correlators, i.e. the bispectrum, trispectrum etc. (for the
bispectrum see Sec. 3.2).

What are observations saying about g? In Ref. [6] it was found that g = 0.29± 0.03 at
the level of 9σ!. However, the preferred direction was too close to the ecliptic plane so the
authors suspected some unknown systematic. Hence, this number can be considered only
as an upper bound g <∼ 0.3. The observations of the Planck satellite will strengthen this
bound by at least an order of magnitude and reduce it to g <∼ 0.02 if statistical anisotropy
in the spectrum of the curvature perturbation is indeed not observed [7].

3 Vector fields and the curvature perturbation

Statistical anisotropy in the curvature perturbation cannot be generated if one considers
the effects of scalar fields only, because the latter cannot introduce a preferred direction.
In this paper we will study how vector boson fields can directly influence the curvature
perturbation and generate statistical anisotropy.4 We will investigate the contribution of
vector fields to ζ through the so-called δN formalism [9].

According the δN formalism the curvature perturbation is the difference of the logarith-
mic expansion between uniform density and spatially flat slices of spacetime: ζ = δ(ln a) ≡ δN ,
where a is the scale factor of the Universe and N corresponds to the elapsing e-folds of
expansion. We will assume that N is influenced by both scalar and vector boson fields. For
simplicity, we consider one of each of such fields, i.e. N = N(φ,A). Then, the curvature
perturbation can be written as

ζ = Nφδφ+N i
AδAi +

1

2
Nφφ(δφ)

2 +
1

2
N i

φAδφδAi +
1

2
N ij

AAδAiδAj + · · · , (3)

where Nφ ≡ ∂N
∂φ

, N i
A ≡ ∂N

∂Ai
, Nφφ ≡ ∂2N

∂φ2 N i
φA ≡ ∂2N

∂φ∂Ai
and N ij

AA ≡ ∂2N
∂Ai∂Aj

, with i = 1, 2, 3

labelling spatial components and Einstein summation over repeated indexes is assumed.
Now, since the vector field has three degrees of freedom, at a flat slice of spacetime foliation,
we define

δA(k, t) =
∑

λ

êλ(k̂)δAλ(k, t) , (4)

where λ = L,R, ‖ denotes the three polarisations and the polarisation vectors can be de-
fined as

êL ≡ 1√
2
(1, i, 0), êR ≡ 1√

2
(1,−i, 0) and ê‖ ≡ (0, 0, 1) , (5)

where ‘L’, ‘R’ denote the left and right transverse polarisations respectively and ‘‖’ de-
notes the longitudinal polarisation (if physical). Then, assuming approximately isotropic

4Indirectly, statistical anisotropy in ζ can also be generated by considering a mild anisotropisation of
the inflationary expansion, due to the presence of a vector boson field condensate. In this case, it is the
perturbations of the inflaton scalar field which are rendered statistically anisotropic [8].
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expansion5, the power-spectrum for each polarisation of the vector field perturbations is

〈δAλ(k)δAλ(k
′)〉 = (2π)3δ(k + k

′)
2π2

k3
Pλ(k) . (6)

3.1 The spectrum

In Ref. [10], it was shown that the correlators of the perturbations of the vector field can
be written as

〈δAi(k)δAj(k
′)〉 = (2π)3δ(k + k

′)
2π2

k3

[

T+
ij (k̂)P+ + iT−

ij (k̂)P− + T
‖
ij(k̂)P‖

]

, (7)

where
T+
ij (k̂) ≡ δij − k̂ik̂j , T−

ij (k̂) ≡ εijkk̂k and T
‖
ij(k̂) ≡ k̂ik̂j (8)

with δij being the Kronecker’s delta, and we have defined for the transverse spectra

P± ≡ 1

2
(PR ±PL) , (9)

denoting the parity even and odd polarisations. For a parity conserving theory we have
P− = 0. Using the above, we obtain the power spectrum of the curvature perturbation as

Pζ(k) = N2
φPφ(k) +N i

AN
j
A

[

T+
ij (k̂)P+(k) + T

‖
ij(k̂)P‖(k)

]

=

= N2
φPφ +N2

A

[

P+ + (P‖ −P+)(N̂A · k̂)2
]

, (10)

where NA ≡ |NA| =
√

N i
AN

i
A, N̂A ≡ NA/NA.

From the above we see that the isotropic part of the spectrum is

P iso
ζ (k) = N2

φPφ(k) +N2
AP+(k) (11)

and the preferred direction is given by d̂ = N̂A (cf. Eq. (2)). The anisotropy parameter is

g =
N2

A(P‖ − P+)

N2
φPφ +N2

AP+

= β
P‖ − P+

Pφ + βP+

, (12)

where we have defined

β ≡ N2
A

N2
φ

, (13)

which quantifies the relative contribution of the vector over the scalar field to the modu-
lation of N . Notice that particle production becomes isotropic (g = 0) if P+ = P‖.

5This is in contrast to Ref. [8] where it is the anisotropy in the expansion which sources statistical
anisotropy in ζ.
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3.2 The bispectrum

Statistical anisotropy is also possible to manifest in higher order correlators of the curva-
ture perturbation. In this paper we discuss only the bispectrum (for the trispectrum see
Ref. [11]).

The bispectrum of the curvature perturbation is defined as

〈ζ(k)ζ(k′)ζ(k′′)〉 = (2π)3δ(k + k
′ + k

′′)Bζ(k,k
′,k′′) . (14)

The bispectrum Bζ is a measure of the non-Gaussianity of the curvature perturbation since,
for Gaussian ζ , Bζ is exactly zero.

The curvature perturbation is generated due to the quantum fluctuations of suitable
fields which are stretched to become classical perturbations during inflation. Since quantum
fluctuations are Gaussian (which reflects their randomness) sizable non-Gaussianity in ζ is
generated only if the process through which the perturbations of the relevant fields affect
the Universe expansion and imprint their contribution to the curvature perturbation. If
this process is significantly non-linear deviations from Gaussianity will be generated. This
is why, the bispectrum is quantified by the so-called non-linearity parameter fNL, which
can be defined as follows

Bζ(k1,k2,k3) = −6

5
fNL [Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)] , (15)

where 4πk3Pζ ≡ (2π)3Pζ . The value of fNL depends on the configuration of the three mo-
mentum vectors which are used to define the bispectrum. The most popular configurations
are the “equilateral”, for which k1 = k2 = k3, and the “squeezed”, for which k1 = k2 ≫ k3.

How does the contribution of a vector field affect the bispectrum of the curvature
perturbation? In Ref. [12] it was shown that

Bζ = Bφ +BφA +BA , (16)

where

Bφ = N2
φNφφ

[

4π4

k3
1k

3
2

Pφ(k1)Pφ(k2) +
4π4

k3
2k

3
3

Pφ(k2)Pφ(k3) +
4π4

k3
3k

3
1

Pφ(k3)Pφ(k1)

]

, (17)

BφA = −1

2
NφN

i
φA

[

4π4

k3
1k

3
2

Pφ(k1)Mi(k2) + 5 cyclic permutations

]

(18)

and

BA=
4π4

k3
1k

3
2

Mi(k1)N
ij
AAMi(k2)+

4π4

k3
2k

3
3

Mi(k2)N
ij
AAMi(k3)+

4π4

k3
3k

3
1

Mi(k3)N
ij
AAMi(k1), (19)

where
M(k) ≡ P+(k)NA

[

N̂A + p(k)k̂(k̂ · N̂A) + iq(k)k̂ × N̂A

]

(20)
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and we have defined

p ≡ P‖ − P+

P+
and q ≡ P−

P+
. (21)

Using the above, we obtain fNL in the equilateral and squeezed configurations respectively
as follows

6

5
f eql
NL =

Beql
ζ (k1,k2,k3)

3[P iso
ζ (k)]2

(22)

and
6

5
f sqz
NL =

Bsqz
ζ (k1,k2,k3)

2P iso
ζ (k1)P iso

ζ (k3)
, (23)

where Beql
ζ ≡ k3

2π2B
eql
ζ and Bsqz

ζ ≡ k31k
3
3

4π2 B
sqz
ζ , with k ≡ k1 = k2 = k3 in the equilateral config-

uration.

4 The Vector Curvaton Paradigm

For a vector field to directly affect the curvature perturbation in the Universe we need two
ingredients. First, we need a mechanism to break the conformal invariance of the vector
field and generate a superhorizon spectrum of vector field perturbations δAµ. Second,
we need a mechanism that will allow these perturbations to affect (or even generate) the
curvature perturbation ζ . This can be done only if the vector field and/or its perturbations,
in some way affect the Universe evolution.

In this section we focus on the second ingredient, i.e. on a mechanism for the gen-
eration of a contribution of the vector field perturbations to the curvature perturbation
of the Universe; namely the Vector Curvaton mechanism. Thus, we assume that some
other mechanism has produced the necessary surerhorizon spectrum of perturbations (as
is discussed in Sec. 5) during inflation, which for the moment we take for granted.

A single vector field cannot play the role of the inflaton. The reason is straightforward.
Inflation homogenises a vector field and a homogeneous vector field picks up a preferred
direction in space.6 Thus, if a homogeneous vector field dominated the Universe during
inflation it would lead to excessive anisotropic stress, which would produce too much of a
large-scale anisotropy and, therefore, will be in conflict with CMB observations. A huge
number N of vector fields, randomly oriented, could avoid this problem [14]. Indeed, if
this is the case then the statistical anisotropy produced is g ∝ 1/

√
N , which means that

hundreds of vector fields are needed to satisfy the observational bounds. This not only
implies the use of giant gauge groups but also requires the tuning of the initial conditions
so that they are the same for all the fields. Another option is to consider a “triad” of
orthogonally oriented vector fields (again with the same initial conditions) so that the
excessive anisotropic stress is eliminated [15]. For the above reasons we will not consider
vector fields as inflatons.

6Unless one tunes the spatial components of the vector field to zero by design [13].
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If the vector field is not the inflaton, it needs to affect the Universe expansion in some
other way, either at the end or after the end of inflation. There are a multitude of mech-
anisms which may allow a vector field to do that, mirroring the corresponding scalar field
models. Prominent examples include the curvaton [16], the inhomogeneous end of inflation
[17] and the modulated reheating [18] mechanisms. Historically, statistical anisotropy by
vector field perturbations was first studied in the context of the inhomogeneous end of
inflation mechanism [19],7 using a particular model of hybrid inflation.8 Here, however,
we concentrate on the curvaton mechanism, which has the considerable advantage that
it does not rely on an interaction of any kind between the vector field and the inflaton
sectors. As is the case of the scalar curvaton, the vector curvaton is not a particular model
but it can correspond to a multitude of realisations, hence we refer to the mechanism as
a paradigm rather than a model. The vector curvaton mechanism was first introduced in
the pioneering work in Ref. [22], which was the first article to consider the possibility that
a vector boson field can contribute to the curvature perturbation in the Universe.

The idea of the curvaton assumes the existence of a spectator field during inflation,
which has nothing to do with inflationary dynamics but it is light enough so that it manages
to obtain a superhorizon spectrum of perturbations. After the end of inflation (possibly
long afterwards), the curvaton becomes heavy and begins undergoing oscillations which
allow it to come to dominate (or nearly dominate) the Universe before its decay. Owing
to its perturbations, the density of the curvaton is perturbed throughout space so that its
(near) domination occurs at different times at different locations. Thus, its effect to the
evolution of the Universe is location depended, which is the reason why it can affect (or
even generate) the curvature perturbation in the Universe. Note that, for a vector field to
do this, it must avoid generating an excessive anisotropic stress at domination.

4.1 The setup

Consider a massive Abelian vector boson field, with Lagrangian density

L = −1

4
FµνF

µν +
1

2
m2WµW

µ, (24)

where Fµν = ∂µWν − ∂νWµ is the field strength tensor. Inflation homogenises the vector
field so that Wµ = Wµ(t). If m 6= 0 it is easy to show that the temporal component of the
homogeneous vector field is zero, i.e. Wt = 0. If m = 0 then the field is gauge invariant
and we can set Wt = 0 by virtue of a gauge choice. However, in this case the value of the
spatial vector field W is not well defined because gauge invariance allows us to change
it as W→W+C, where C is a constant vector of arbitrary magnitude. Thus, we will
concentrate on the case m 6= 0 from now on, where gauge invariance is broken and the
homogeneous “zero-mode” is well defined.

7For modulated reheating with vector fields see Ref. [21].
8For non-Gaussianity in this model see also [20].
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The energy-momentum tensor for the vector field is

Tµν =
1

4
gµνFρσF

ρσ − FµρF
ρ
ν +m2

(

WµWν −
1

2
gµνWρW

ρ
)

, (25)

where gµν is the metric tensor (negative signature is assumed). The above can be written
as [22]

T ν
µ = diag(ρA,−p⊥,−p⊥,+p⊥) , (26)

where
ρA ≡ ρkin + VA and p⊥ ≡ ρkin − VA (27)

with

ρkin ≡ −1

4
FµνF

µν and VA ≡ −1

2
m2WµW

µ. (28)

Notice that the energy-momentum tensor is similar to the one of a perfect fluid with the
crucial difference that the pressure along the longitudinal direction is of opposite sign to
the pressure along the transverse directions. This means that, if this pressure were not zero
and the vector field dominated the Universe, it would give rise to significant anisotropic
stress, which is the reason why a single vector field cannot play the role of the inflaton.

Using Eq. (24) one can obtain the equation of motion for the homogeneous vector field,
which reads

Ẅ +HẆ +m2
W = 0 , (29)

where the dot denotes derivative with respect to the cosmic time t and H ≡ ȧ/a is the
Hubble parameter, i.e. the rate of the Universe expansion. At this point we need to stress
thatW is the comoving and not the physical vector field. Indeed, the mass term in Eq. (24)
can be written as

δLm ≡ 1

2
m2WµW

µ =
1

2
m2(W 2

t − a−2WiWi) = −1

2
m2|W /a|2, (30)

where we used that Wt = 0 and a spatially flat FRW metric ds2 = dt2 − a2dxidxi. From
the above it can deduced that the physical vector field has spatial components

A ≡ W /a . (31)

In terms of the physical vector field, Eq. (29) is written as

Ä+ 3HȦ+ (Ḣ + 2H2 +m2)A = 0 , (32)

where A ≡ |A|. From Eqs. (28) and (31) one finds

ρkin =
1

2
(Ȧ +HA)2 and VA =

1

2
m2A2. (33)

The solution of Eq. (32) is of the form [23]

A = t
1
2
(w−1
w+1

) [c1Jd(mt) + c2J−d(mt)] , (34)
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where w is the barotropic parameter of the Universe, d ≡ 1+3w
6(1+w)

, c1, c2 are constants of
integration and Jd denotes Bessel function of the the first kind with order d.

When the physical vector field is light m ≪ H ⇔ mt ≪ 1 the above solution can be
approximated as [23]

A =
2

2w + 1

(

a

aend

)
1
2
(3w−1)

(

Aend +
Ȧend

Hend

)

, (35)

where the subscript ‘end’ denotes the end of inflation. From the above solution it can be
shown that [23]

VA

ρkin
≃ (mt)2 ≪ 1 . (36)

Thus, when the vector field is light its energy density is dominated by its kinetic density.
Therefore, [23]

ρA ≃ ρkin =
1

2

(

Ȧend +HendAend

)2
(

a

aend

)−4

⇒ ρA ∝ a−4, (37)

i.e. the light vector field scales as radiation with the Universe expansion.
When the physical vector field is heavy m ≫ H ⇔ mt ≫ 1 the solution in Eq. (34)

becomes [23]

A =

√

2

π
t−

1
1+w

[

c1 cos

(

mt− 1 + 2d

4
π

)

+ c2 cos

(

mt− 1− 2d

4
π

)]

, (38)

which shows that the vector field is undergoing rapid quasi-harmonic oscillations whose
envelope is decreasing as ‖A‖ ∝ a−3/2. This is easy to understand since, for a heavy vector
field, within a Hubble time one can ignore the friction term in Eq. (32) and write it as
Ä+m2A ≃ 0. From Eqs. (33) and (38) it is straightforward to find

ρA =
1

π
t−

2
1+w

[

c21 + c22 + 2c1c2 cos(dπ)
]

⇒ ρA ∝ a−3, (39)

where we used a ∝ t
2

3(1+w) in a spatially flat FRW Universe. Thus, we see that the density of
the heavy oscillating vector field scales as pressureless matter with the Universe expansion.

But is it pressureless indeed? From Eqs. (27), (33) and (38) we readily obtain [23]

p⊥ = −1

π
t−

2
1+w

[

c21 sin(2mt− dπ) + c22 sin(2mt + dπ) + 2c1c2 sin(2mt)
]

⇒ p⊥ = 0 , (40)

i.e. over a Hubble time (which corresponds to a large number of oscillations) the average
transverse pressure is zero. Since the longitudinal pressure is −p⊥ this is zero too. This
means that the energy-momentum of the rapidly oscillating homogeneous vector field is
that or pressureless isotropic matter (cf. Eq. (26)). Hence, the vector field can dominate
the Universe without introducing excessive anisotropic stress. One way of understanding
this is that, due to the harmonic oscillations which send A → −A, the direction of the
vector field is rapidly alternated, so that, over a Hubble time, there is no net direction and
the vector field behaves as an approximately isotropic fluid.
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Figure 1: Log-log plot depicting the evolution of the density of the vector curvaton ρA and the background
radiation due to inflationary reheating ργ , from the end of inflation and until the onset of the hot big bang.
During inflation, the vector field has a negligible contribution to the density of the Universe ρA ≪ ρinf .
At the end of inflation (denoted by ‘end’), the inflationary energy is given to a thermal bath of radiation
ρinf → ργ (prompt reheating is assumed for simplicity). After the end of inflation ργ ∝ a−4, which is
mimicked by the vector field density while the vector field remains light, i.e. ρA ∝ a−4. Thus, the vector
field density parameter ΩA = ρA/ρ remains constant with ΩA ≪ 1, where ρ = ργ + ρA is the density of the
Universe (ρ ≃ ργ during this period). At some later time (denoted ‘osc’) the vector field becomes heavy
and begins oscillating. From then on, it behaves as a pressureless isotropic fluid whose density scales as
ρA ∝ a−3. Thus, its density parameter grows as ΩA ∝ a. This allows the oscillating vector curvaton to
dominate the Universe at some later moment (denoted by ‘dom’), when ΩA ≃ 1. Afterwards, the vector
curvaton decays into the thermal bath of the hot big bang (its decay is denoted by ‘dec’). The slanted
dashed line corresponds to the possibility when the vector curvaton decays before domination, so that
Ωdec

A < 1. In this case the hot big bang begins at the original inflationary reheating.
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4.2 The vector curvaton scenario

We have seen that the density of a massive Abelian vector field homogenised by inflation
scales as radiation when the field is light and as matter when it becomes heavy. After the
end of inflation the energy density is eventually transferred into a newly formed thermal
bath of relativistic particles. The density of this thermal bath is dominated by radiation
ργ . The homogeneous vector field is initially light so its density also scales as radiation.
Therefore, the density parameter ΩA ≡ ρA/ρ of our vector field remains constant, where
ρ ≈ ργ is the density of the Universe. During radiation domination the Hubble parameter
reduces with time as H(t) = 1/2t so that eventually the vector field becomes heavy and
begins its coherent oscillations. From then on, its density scales like matter and its den-
sity parameter grows ΩA ∝ a. Thus, the vector fiend has a chance to dominate (or nearly
dominate) the Universe before its decay. When it does so it imposes its own curvature per-
turbation onto the Universe, according to the curvaton scenario [16], without introducing
any anisotropic stress [22]. A schematic representation of the vector curvaton scenario is
presented in Fig. 1.

The superhorizon perturbations of the vector field satisfy the same equation of mo-
tion as Eq. (32). The reason is that this equation is linear and that the gradient term
is heavily diluted for superhorizon perturbations.9 Hence, the perturbations follow the
same behaviour as the homogeneous zero-mode (with k = 0). Thus, when the vector field
becomes heavy they undergo quasi-harmonic oscillations too and their anisotropic stress is
also eliminated.

The existence of these perturbations of the vector field implies that the density ρA is
also perturbed and the field’s (near) domination of the Universe occurs at slightly different
times at different locations. This results in a difference (perturbation) in the timescale of
the Universe history, which, according to the δN philosophy, results in a contribution to
the curvature perturbation ζ . Since the density ρA is a scalar quantity, this is a scalar

contribution to ζ (and not a vector contribution).
Let us now quantify the above. The curvature perturbation in the Universe is, in

principle, the sum of the contribution of the vector field ζA and any preexisting curvature
perturbation, already present in the radiation fluid ζγ. Then we can write [16]

ζ = ζγ + ζA = (1− Ω̂A)ζ̂γ + Ω̂Aζ̂A , (41)

where Ω̂A ≡ 3ΩA

4−ΩA
≃ ΩA and we have assumed that the vector field has already become

heavy. In the above, ζ̂i corresponds to the curvature perturbation attributed to the i-th
component of the Universe content, which, on a spatially flat slice of spacetime, is given
by [16]

ζ̂i ≡ −H
δρi
ρ̇i

=
1

3

δρi
ρi + pi

, (42)

9In momentum space the gradient term is ∇2A → (k/a)2A where k/a is the physical momentum scale,
which is k/a ≪ H for superhorizon perturbations. Note that the mass of the vector field is much larger
than H , when it is oscillating and the same is true for its perturbations.
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where we used the continuity equation ρ̇i + 3H(ρi + pi) = 0 for independent fluids. The
above suggest that the contribution of the heavy vector field to ζ is

ζA =
1

3
Ω̂A

δρA
ρA

. (43)

At the onset of the oscillations ρkin ≈ VA so that ρA = 2VA = m2‖A‖2. Thus, to first order
we find10

ζA =
2

3
Ω̂A

‖Ai‖ ‖δAi‖
‖A‖2 =

2

3
Ω̂A

AiδAi

A2
. (44)

From Eq. (3) we see that the contribution of the vector field to ζ to first order is ζA = N i
AδAi.

Comparing with the above we get

N i
A =

2

3
Ω̂A

Ai

A2
⇒ N ij

A =
2

3
Ω̂A

δij
A2

. (45)

Thus, to second order, the contribution of the vector curvaton to the curvature perturbation
is [10]

ζA =
2

3
Ω̂A

AiδAi

A2
+

1

3
Ω̂A

δAiδAi

A2
. (46)

Note, however, that for δAλ/A ≪ 1, the one-loop correction (last term in the above) is
negligible.

Let us now turn our attention to non-Gaussianity. With the above values of N i
A and

N ij
A and Eqs. (22) and (23) it can be shown that [12]

6

5
f eql
NL = β2P2

+

3

2Ω̂A

(

1 + 1
2
q2
)

+
[

p+ 1
8
(p2 − 2q2)

]

Â2
⊥

(Pφ + βP+)2
(47)

and
6

5
f sqz
NL = β2P2

+

3

2Ω̂A

1 + pÂ2
⊥

(Pφ + βP+)2
, (48)

where p and q were defined in Eq. (21) and Â⊥ is the projection of the unit vector Â=A/A
onto the plane of the three momentum vectors k1, k2 and k3 which are used to define the
bispectrum (cf. Eq. (14)).

From Eqs. (47) and (48) is is evident that, in the vector curvaton scenario, one can
write

fNL = f iso
NL

(

1 + GÂ2
⊥

)

(49)

where G is the anisotropy parameter for non-Gaussianity. In analogy to g in Eq. (2), G
quantifies statistical anisotropy in the bispectrum of ζ . If G ≫ 1, then non-Gaussianity is
predominantly anisotropic, which means that fNL should have a clear angular modulation
on the sky. If non-Gaussianity is indeed observed and no such modulation is found then
models which predict G ≫ 1 will be ruled out.

It is important to note above that the directions of statistical anisotropy in the spectrum
and the bispectrum are correlated, since they are both determined by Â. This is a smoking
gun for the contribution of vector fields to ζ .

10The zero-mode and the perturbations begin oscillating simultaneously and in phase.
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5 Particle production of vector fields

The vector curvaton mechanism can affect (or even generate) the curvature perturbation
provided the vector field has, somehow, obtained a superhorizon spectrum of perturbations
during inflation. In order to do this we need to have a mechanism which breaks the
conformal invariance of the vector field.

A massless Abelian vector field is conformally invariant, which means that it is not
affected by the Universe expansion (it perceives it as a conformal transformation to which
it is insensitive). Hence, it does not undergo particle production during inflation. Con-
sequently, its quantum fluctuations do not give rise to classical perturbations of the field
as is done, for example, with minimally coupled massless scalar fields. Thus, one expects
a light vector field to be approximately conformally invariant and the production of its
perturbations to be suppressed. An explicit breakdown of the vector field conformality is,
therefore, required. This is model dependent, which suggests that observations might be
able to discern between models and provide insight on the underlying theory.

In this section we discuss two specific models which break the conformality of an Abelian
vector field and have attracted considerable attention to date. Before going into these
models however, let us discuss how we can use any such mechanism to obtain the spectra
of perturbations of the vector field components.

Assume, for the moment, that we are indeed operating under a suitable mechanism
that breaks the conformality of the vector field. The first step is to perturb the vector field
around the homogeneous value as Aµ → Aµ(t) + δAµ(x, t). Then we Fourier transform the
perturbations as

δA(k, t) ≡
∫

δA(x, t)e−ik · xd3x

and find the equations of motion of the Fourier components δA(k, t) for the given model.
The next step is to promote the vector field perturbations to quantum operators by

expanding in terms of creation and annihilation operators

δÂ(x, t) =
∫

d3k

(2π)3
∑

λ

[

ê
λâλ(k)δA(k, t)eik · x + ê

λ∗â†λ(k)δA∗(k, t)e−ik · x
]

. (50)

The mode functions δA(k, t) and the Fourier components of the perturbations of the vector
field satisfy the same equations of motion because the latter are linear. Thus, we need to
solve these equations and find the the mode functions. To do this we need to employ the
following boundary conditions, which are simply due to the fact that the perturbations
begin as quantum fluctuations well within the horizon (k/aH → ∞)

δAL,R
k/aH→∞

=
eik/aH√

2k
and δA‖

k/aH→∞

= γ
eik/aH√

2k
, (51)

where γ ≡ E
m

=
√

( k
am

)2 + 1 is the Lorentz boost factor which takes us from the frame with
k= 0 (where all components of the vector field perturbation are equivalent) to the one of
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momentum k. Apart from γ, we see that the vacuum boundary conditions are identical to
the Bunch-Davis vacuum also employed for the particle production of scalar fields.

Once we solve the equations of motion and find the mode functions we can obtain the
power spectra of the superhorizon (k/aH → 0) perturbations using

Pλ =
k3

2π2
|δAλ|2
k/aH→0

. (52)

The typical value of the vector field perturbation is δAλ ∼ √Pλ. Now, let us employ this
method on two concrete models for the generation of a perturbation spectrum for the
vector field during inflation.

5.1 Non-minimal coupling to gravity

This mechanism was first considered in Ref. [24] for the generation of a primordial magnetic
field of superhorizon coherence. It was employed as a vector curvaton in Ref. [25] and also
in Ref. [10].

Consider a massive Abelian vector field with a non-minimal coupling to gravity as
follows

L = −1

4
FµνF

µν +
1

2
(m2 + αR)WµW

µ, (53)

where R is the scalar curvature and α is a constant. The non-minimal coupling corresponds
to a contribution to the effective mass of the field such that

m2
eff ≡ m2 + αR . (54)

The equations of motion have been found and solved for the above theory during de
Sitter inflation, providing the following exact solutions for the mode functions δAλ of the
perturbations. For the transverse components the solution is [25]

δAL,R = a−3/2

√

π

H

ei
π
2
(ν− 1

2
)

1− ei2πν

[

Jν

(

k

aH

)

− eiπνJ−ν

(

k

aH

)]

, (55)

where

ν ≡
√

1

4
−
(

meff

H

)2

. (56)

The above solution produces a scale invariant spectrum if ν = 3/2. This can be achieved
if m ≪ H and α ≈ 1

6
, because during de Sitter inflation R = −12H2.11 With this choice

for m and α the solution for the longitudinal mode function is [10]

δA‖ =
1√
2

[(

k

aH

)

− 2
(

aH

k

)

+ 2i

]

eik/aH√
2k

. (57)

11This theory is in effect a modified gravity theory but it can be shown that the Friedman Equation is
not affected if α = 1

6
and also RW 2 is negligible compared to the Einstein-Hilbert action forWµW

µ ≪ m2

P .
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The transverse solutions are the same because the theory is parity invariant. However,
it is clear that there is striking difference between the transverse and the longitudinal
solutions. Using Eq. (52), we can now find the power spectra for the components of the
perturbation. We obtain

P+ =
(

H

2π

)2

, P− = 0 and P‖ = 2
(

H

2π

)2

, (58)

i.e. p = 1 and q = 0 as expected (cf. Eq. (21)). Thus we find that particle production is
anisotropic at a level of 100%. This means that the vector field contribution to ζ should
be subdominant, for otherwise it would violate the observational constrains which do not
allow statistical anisotropy above 30%. Hence, we have to assume that ζ is primarily due
to some other source, presumably a light scalar field, and the contribution of the vector
field is significant only at the level of generating significant statistical anisotropy.

From Eq. (12), we obtain for the anisotropy parameter

g =
β

1 + β
≈ β ≪ 1 (59)

where we considered that Pφ = (H/2π)2 and also that it is the scalar field which primarily
modulates N so that β ≪ 1 in Eq. (13).

Using that p = 1 and q = 0 in Eqs (47) and (48), we obtain

6

5
f eql
NL = 2

β2

ΩA

(

1 +
9

8
Â2

⊥

)

and
6

5
f sqz
NL = 2

β2

ΩA

(

1 + Â2
⊥

)

. (60)

Thus, we see that G ∼ 1. This is because, in this theory, there is only one mass-scale
involved, that is H . Dimensionless quantities, therefore, such as G or p are expected to be
of order unity. In Ref. [12] it was shown that, whenever it is so, there is a clear prediction
for the maximum non-Gaussianity, which provides a direct link with statistical anisotropy
in the spectrum:

fmax
NL ∼ 103

(

g

0.1

)3/2

. (61)

From the above, it is evident that, through the vector curvaton mechanism, significant
non-Gaussianity can be produced.

This theory was criticised in that it may suffer from instabilities such as ghosts [26].
However, it is not clear whether this is indeed so. In Ref. [26], it was shown that the modes
of the longitudinal perturbations are ghosts but only when subhorizon. Given that these
modes are subhorizon only for a limited time and also in view of the fact that the energy
density of inflation is much larger than ρA, one may wonder whether these ghosts manage
to destabilise the vacuum. A discussion on this issue can be found in Ref. [27].

5.2 Varying kinetic function and mass

Consider a massive Abelian vector boson field, with Lagrangian density

L = −1

4
fFµνF

µν +
1

2
m2WµW

µ, (62)
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where f = f(t) is the kinetic function, which is approaching unity by the end of inflation
so that, afterwards, the vector field is canonically normalised. The above theory does not
suffer from instabilities (ghost free) [28, 29], which motivates the use of the Maxwell-type
kinetic term even if the field is not a gauge boson. Note here that an Abelian massive
vector field is renormalisable even if it is not a gauge boson [30].

The spatial components of the physical canonically normalised vector field in this case
are [23]

A =
√

f W /a . (63)

The mass of the physical, canonically normalised vector field is

M ≡ m√
f
. (64)

The massless version of this theory has been extensively considered, firstly for infla-
tionary particle production for the generation of a primordial magnetic field [31] and more
recently for the mild anisotropisation of inflation, which gives rise to statistical anisotropy
in the curvature perturbation through anisotropic particle production of the inflaton [8].
Here we investigate if this vector field can play the role of the vector curvaton. This was
first studied in Ref. [21].

The equations of motion for the mode functions for this model were obtained in Ref. [21].
They read



∂2
t +

(

H +
ḟ

f

)

∂t +

(

k

a

)2

+
m2

f



 δWL,R = 0 (65)

and




∂2
t +

(

H +
ḟ

f

)

∂t +

(

2H + 2
ṁ

m
− ḟ

f

)

(

k
a

)2
∂t

(

k
a

)2
+ m2

f

+

(

k

a

)2

+
m2

f





 δW‖ = 0 , (66)

where δWλ = a δAλ/
√
f , cf. Eq. (63). Using the above, particle production has been

studied in Ref. [23]. It was found that, the transverse components obtain a scale invariant
superhorizon spectrum of perturbations when

f ∝ a−1±3 and M∗ ≪ H∗ (67)

where the subscript ‘*’ denotes the time of horizon exit. To obtain a scale-invariant
spectrum for the longitudinal component one needs an additional condition on the time-
dependence of m(t), which reads [23]

m ∝ a . (68)

If the vector field is a gauge boson then f is the gauge kinetic function which is related
with the gauge coupling as f ∼ 1/e2. This means that only the case when f ∝ a−4 is
possible since, only then does the gauge field remain weakly coupled during inflation. The
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gauge kinetic function is one of the three fundamental functions which define a supergravity
theory.12 In supergravity, the gauge kinetic function is a holomorphic function of the scalar
fields of the theory. Now, during inflation, supergravity corrections are expected to give
masses ∼ H to the scalar fields [32]. This means that, during inflation, these scalar
fields are fast-rolling down the slopes of the scalar potential, which would cause significant
variation to the gauge kinetic function. Indeed, it is easy to show that ḟ /f ∼ H is natural
to expect. Here we should note that, if f is modulated by the inflaton field then, under
fairly general conditions, f ∝ a−4 is an attractor solution during inflation, which arises due
to the backreaction of the vector field onto the roll of the inflaton down the inflationary
scalar potential [33]. Thus, even though, originally, the inflaton may be also fast-rolling,
the backreaction slows down its roll and allows slow-roll inflation to occur even with a
relatively steep scalar potential. Indeed, it was shown in Ref. [33] that this is a neat way
to overcome the infamous η-problem of inflation, while simultaneously obtaining f ∝ a−4

as an attractor solution.
Now let us discuss the behaviour of the mode functions δAλ in more detail. Firstly, we

define

x ≡ k

aH
and z ≡ M

3H
. (69)

From the above and Eq. (64) it is evident that, if f ∝ a2 then z =constant, while if f ∝ a−4

then z ∝ a3. Note that x ∝ a−1 always, while Eq. (67) requires that z∗ ≪ 1.
It turns out that there are three possible stages for the mode evolution [23]. When

x > 1 ≫ z, then the mode is still subhorizon and it is oscillating so that it can be matched
to the boundary conditions in Eq. (51). As time passes x decreases and the mode becomes
superhorizon. When x, z ≪ 1 then the mode is found to undergo power-law evolution. The
third possible stage has to do with the case f ∝ a−4 only, when z is growing in time. In
this case we could finally reach the time when z >∼ 1 ≫ x, when the superhorizon mode
begins oscillating again. Since we are interested in superhorizon scales (they are the ones
which can affect the curvature perturbation as observed in the CMB) we will consider the
modes which are caught by the end of inflation either when x, z ≪ 1, or when z >∼ 1 ≫ x,
which is possible only with f ∝ a−4.

5.2.1 Power-law regime

This is the case when M < 3H ⇔ z < 1 when inflation ends. The mode functions for the
superhorizon modes are found to be [23]

δAL,R =
i√
2k

(

H

k

)

and δA‖ = − 1√
2k

(

H

k

)

1

z
. (70)

Using this, the power spectra for the superhorizon perturbations of the vector field are

P+ = PL,R =
(

H

2π

)2

and P‖ =
(

H

2π

)2 ( H

3M

)2

, (71)

12The other two are the Kähler potential and the superpotential.
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where we used that the theory is parity invariant. Because M < 3H in this regime we find
that P+ ≪ P‖, which means that particle production is strongly anisotropic. Therefore,
if inflation ends in this power-law regime then the contribution of the vector curvaton to
the curvature perturbation has to be subdominant (otherwise it would generate excessive
statistical anisotropy), so that β ≪ 1, which means that N is primarily modulated by a
scalar field and not by our vector curvaton. In this case, therefore, the vector curvaton can
only generate some statistical anisotropy in ζ . For the spectrum, the anisotropy parameter
is (cf. Eq. (12))

g = β
P‖

P+

= β/z2, (72)

where Pφ = P+. Similarly, for the non-linearity parameter we obtain

6

5
fNL = β2 3

2Ω̂A

[

1 +
(

p +
1

8
κp2

)

Â2
⊥

]

, (73)

where κ = 1 {κ = 0} for the equilateral {squeezed} configurations and we used Eqs. (47)
and (48) and also that β ≪ 1, q = 0 and p = 1/z2 (cf. Eq. (21)). Since the vector curvaton
must have a subdominant contribution to ζ we have ΩA ≪ 1, which gives Ω̂A → 3

4
ΩA.

Using this and the above, we find that the isotropic part of non-Gaussianity has

f iso
NL =

5

3

β2

ΩA
=

5

3

g2z4

ΩA
, (74)

while the anisotropy parameter for non-Gaussianity is

G = p+
1

8
κp2 ≫ 1 , (75)

i.e. non-Gaussianity is predominantly anisotropic. Thus, if non-Gaussianity is indeed
observed and it does not feature a strong angular modulation this regime of this model
will be ruled out.13

If f ∝ a2 then M =constant and, because of Eq. (67), M = M∗ ≪ H. Thus, in this
case P+,P‖ =constant and the above are the only possibility. If, however, f ∝ a−4 then
M ∝ a3 and P‖ is decreasing in time. Yet, scale invariance is maintained because the
amplitude of the modes when they exit the horizon is reduced in time in accordance to
the reduction of the value of the spectrum. As a result, the piling of modes does not spoil
the flatness of the superhorizon spectrum [23]. This case offers the possibility that M will
reach and surpass H before the end of inflation. If this happens, then we are no more in
the power-law regime.

5.2.2 Oscillatory regime

This regime corresponds to the possibility that M ≫ H ⇔ z ≫ 1 when inflation ends.
Because of Eq. (67), when the cosmological scales exit the horizon we have M∗ ≪ H. Thus,

13Note here that G ≫ 1 because we have two scales into the model, H and M , in contrast to the
non-minimally coupled model of the previous section, where we only had one scale H so that G ∼ 1.
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this regime can be realised only if M is growing during inflation, which is possible only if
f ∝ a−4. Note that, when M >∼ H, particle production stops and the perturbation of the
field on scales that leave the horizon becomes essentially zero (exponentially suppressed).
However, the superhorizon scales which left the horizon when the vector field was still light,
retain their perturbations, which evolve as follows.

In this case, the mode functions are given by [23]

2

√

H

π

(

k

H

)3/2

δAL,R =
i√
z
J1/2(z) +

1

3
x3
√
zJ−1/2(z) (76)

2

√

H

π

(

k

H

)3/2

δA‖ =
1

3
x3
√
zJ1/2(z)−

1√
z
J−1/2(z) . (77)

Considering superhorizon modes (i.e. x → 0) and also that z ≫ 1 in this regime, the above
simplify to

δAL,R =
i√
2H

(

H

k

)3/2 sin z

z
and δA‖ = − 1√

2H

(

H

k

)3/2 cos z

z
. (78)

Thus, we see that the mode functions are undergoing rapid coherent oscillations since
z ≫ 1. Using these, we find that the average of the power spectra is

P+ = P‖ =
1

2

(

H

2π

)2 ( H

3M

)2

. (79)

Thus, we see that we have isotropic particle production, which implies p = q = 0 (cf.
Eq. (21)). In this case we do not need the input of a scalar field to generate the cur-
vature perturbation as ζ can indeed be fully produced by the vector field alone. To our
knowledge this is the only model that manages to produce ζ without the direct involvement
of a fundamental scalar field. Because we need no scalar field, β ≫ 1. Then Eqs. (47) and
(48) both reduce to

fNL =
5

4Ω̂A

, (80)

which is identical to the case of a scalar curvaton [16].

5.2.3 Borderline regime

It is interesting to briefly consider the so-called “borderline” regime, whenM ∼ 3H ⇔ z ∼ 1
at the end of inflation. Again, this is realisable only if M is growing during inflation, i.e.
when f ∝ a−4.

In this case one has

g = p =
P‖

P+
− 1 ≡ δP

P+
, (81)
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where δP ≡ P‖ − P+. Thus, we see that, to satisfy observational bounds P‖ ≈ P+ at least
within 30%. If this is the case then it can be shown that [23]

fNL =
5

4Ω̂A

(

1 + gÂ2
⊥

)

. (82)

Therefore, statistical anisotropy in the spectrum and the non-Gaussianity have the same
magnitude, i.e. G = g. This is an interesting characteristic signature for this scenario.

5.2.4 The evolution of the zero mode

When f ∝ a−1±3, it is straightforward to show that the equation of motion for the homo-
geneous physical vector field is

Ä+ 3HȦ+M2
A = 0 , (83)

which looks identical to the Klein-Gordon equation for a minimally coupled massive scalar
field.

If f ∝ a2 then M =constant≪ 1 and we have A≃ constant. This means that

ρA ≃ VA ∼ M2
0A

2
0 = constant , (84)

where M0 is the initial value of M (M = M0, since M is constant) and A0 is the initial
value of A = |A|.

Now, if f ∝ a−4 then M ∝ a3 and the solution to Eq. (83) is [23]

A = A0

(

a

a0

)−3√
2 cos

(

z ± π

4

)

, (85)

which means that the typical value of the vector field is A ∝ a−3. Using this, Eq. (33) gives

ρkin =
[

A0M0 sin
(

z ± π

4

)]2

and VA =
[

A0M0 cos
(

z ± π

4

)]2

, (86)

which results in
ρA = ρkin + VA = M2

0A
2
0 = constant . (87)

Thus, we see that if f ∝ a−1±3 then ρA =constant during inflation.

5.2.5 Curvaton physics

Let us briefly look into how the model parameters are constrained by the requirement
that the vector field performs as a successful curvaton. As shown in Refs. [23, 28] such
considerations impose the following constraint on the model parameters

H∗

mP

∼ ζ̂A
√

Ωdec
A

(

max{ΓA;Hdom}
min{mA;H∗}

)1/4

, (88)
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where ‘dec’ denotes the moment of the vector curvaton decay, ‘dom’ denotes the moment
when the vector curvaton dominates the Universe (if it does not decay earlier than that),
ΓA is the decay rate of the vector curvaton and mA is the final value of its mass at the end
of inflation.

If the vector field is still light at the end of inflation, i.e. if mA ≪ H∗, we are in the
anisotropic regime. Then we obtain [23]

ζ ∼ Ωdec
A ζ̂A√
g

. (89)

Using this and also the requirement that the curvaton decays before Big Bang Nucleosyn-
thesis (BBN) (i.e. ΓA > T 2

BBN/mP where TBBN ∼ 1MeV is the temperature at BBN) the
constraint in Eq. (88) gives

H∗ >
√
g × 107GeV and 10Tev <∼ mA ≪ H∗ . (90)

If the vector field becomes heavy by the end of inflation, i.e. if mA >∼ H∗, then we are
in the (almost) isotropic regime. In this case the vector curvaton alone can be responsible
for ζ as we have discussed. Thus, we have [23]

ζ = ζA ∼ Ωdec
A ζ̂A ⇒ Ωdec

A H∗ >∼ ζ2mP . (91)

This results in the following bound

H∗ >∼ 109GeV . (92)

The above corresponds to a relatively high scale of inflation which, in supergravity models,
may result in gravitino overproduction. However, the latter can be avoided through the
entropy release by the vector curvaton decay which can dilute the gravitinos.

Taking into account that the vector curvaton can decay at least through gravitational
couplings, we find ΓA ≥ m3

A/m
2
P . Using this it can be shown that the oscillations of the

massive vector field cannot commence earlier than Nmax
osc ≃ 4.4 e-folds of inflation. As a

result, the range of mA for which this regime can be realised is found to be [23]

1 <
mA

H∗
< 106. (93)

From Eqs. (90) and (93) we see that there is ample parameter space for both the possibilities
(light or heavy vector curvaton) to be realised.

6 Conclusions

The high precision cosmological observations enable cosmologists to investigate beyond
the “vanilla” predictions of inflation and thereby discriminate between inflation models.
A new such observable is statistical anisotropy, which amounts to direction dependent
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patterns in the CMB (and possibly large scale structure too). Statistical anisotropy is
within the reach of the forthcoming observations of the Planck satellite mission, which is
expected to release its first cosmological data by the end of 2012. Currently, the latest
CMB observations allow statistical anisotropy in the spectrum as much as 30% (g <∼ 0.3).
Planck will reduce this bound down to 2% if statistical anisotropy is not observed. It should
be noted here that, even if the spectrum is weakly statistically anisotropic, the bispectrum
can be predominantly anisotropic with G ≫ 1. This means that, if non-Gaussianity is
indeed observed without a strong angular modulation of fNL on the microwave sky, then
all models which predict G ≫ 1 will be ruled out.

Vector boson fields are natural candidates for the generation of statistical anisotropy
in the curvature perturbation, because they are expected to pick a preferred direction
when homogenised by inflation. The vector curvaton paradigm offers a simple, generic
and effective mechanism for the direct contribution of vector boson fields to the curvature
perturbation. The mechanism assumes a Proca vector field, whose zero-mode begins oscil-
lating when the field becomes heavy, after the end of inflation. As shown, the oscillating
zero-mode behaves as a pressureless isotropic fluid and can (nearly) dominate the Universe
without generating an excessive anisotropic stress. When doing so it imposes its own con-
tribution to the curvature perturbation, in accordance to the curvaton mechanism. We
should point out here that this perturbation is scalar in nature, because it is due to the
perturbed value of the density of the vector field, which is a scalar quantity. A considerable
advantage of the vector curvaton mechanism is that it does not rely on an interaction of
any kind between the vector field and the inflaton sectors. This allows the vector field to
correspond to physics at a much lower energy scale (e.g. TeV physics) than the scale of
inflation, which may connect with observations in collider experiments such as the LHC.

The particle production process, through which the vector curvaton obtains a super-
horizon spectrum of perturbations, is in general anisotropic. This is because the vector
boson field has more than one degrees of freedom (three if massive), for which the effi-
ciency of the particle production is in general different. Thus, the curvature perturbation
contributed by a vector curvaton is, in general, statistically anisotropic. If particle pro-
duction is indeed isotropic (at least at the level allowed by the observations) the vector
curvaton mechanism can generate the curvature perturbation in the Universe from vector
fields alone without directly involving any fundamental scalar fields. If, however, statisti-
cal anisotropy is indeed observed, then we have to go beyond scalar fields to explain the
observations. This means that, the observation of statistical anisotropy in the CMB, may
probe the gauge field content of theories beyond the standard model.

There are some related issues which we did not go into in this paper. For example,
studies of the trispectrum in vector field scenarios [11], or of one-loop contributions [34].
Note also, the possibility that the vector curvaton is non-Abelian is investigated in Ref. [35],
while the contribution to the curvature perturbation by P-forms can be found in Ref. [36].

The interest now is in finding realistic candidates in theories beyond the standard model,
which can play the role of the vector curvaton. Examples can include the supermassive
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gauge bosons of grand unified theories [37]14 or the vector fluxes on probe branes in the
context of DBI-inflation [39]. Another promising idea is investigating the possibility that
the vector bosons associated with gauged axions can play the role of the vector curvaton.
In this case, the generation of parity-violating statistical anisotropy is possible [40].
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