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ABSTRACT

Empirically determining the averaged variations of the orbital parameters of
the stars orbiting the Supermassive Black Hole (SBH) hosted by the Galactic
Centre (GC) in Sgr A∗ is, in principle, a valuable tool to put on the test the
General Theory of Relativity (GTR), in regimes far stronger than those tested so
far, and certain key predictions of it like the no-hair theorems. We analytically
work out the long-term variations of all the six osculating Keplerian orbital ele-
ments of a test particle orbiting a non-spherical, rotating body with quadrupole
moment Q2 and angular momentum S for a generic spatial orientation of its spin
axis k̂. This choice is motivated by the fact that, basically, we do not know the
position in the sky of the spin axis of the SBH in Sgr A∗ with sufficient accuracy.
We apply our results to S2, which is the closest star discovered so far having an
orbital period Pb = 15.98 yr, and to a hypothetical closer star X with Pb = 0.5
yr. Our calculations are quite general, not being related to any specific parame-
terization of k̂, and can be applied also to astrophysical binary systems, stellar
planetary systems, and planetary satellite geodesy in which different reference
frames, generally not aligned with the primary’s rotational axis, are routinely
used.

Subject headings: Classical general relativity; Experimental tests of gravitational

theories; Black holes; Physics of black holes; Satellite orbits; Harmonics of the gravity

potential field
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1. Introduction

There is nowadays wide consensus (Genzel et al. 1996; Schödel et al. 2002; Ghez et al.
2008) that the Galactic Center (GC) hosts a Supermassive Black Hole (SBH) (Wollman et al.
1977; Falcke et al. 1993) whose position coincides with that of the radio-source Sagittarius
A∗ (Sgr A∗) (Balick & Brown 1974; Reid et al. 2007) at d = 8.28 ± 0.44 kpc from us
(Gillessen et al. 2009a); for a popular overview of such an object, see, e.g., Melia (2007).
The Galactic SBH is surrounded by a number of recently detected1 main-sequence stars
of spectral class B (Paumard et al. 2006; Gillessen et al. 2009a). Their relatively fast
orbital motions, characterized by orbital periods Pb & 16 yr, high eccentricities e & 0.2,
random orientations i of their orbits in the sky and average distances from the SBH2

r & 2 × 104rg, allowed to dynamically infer a mass of about M ≈ 4 × 106M⊙ (Ghez et al.
2008; Gillessen et al. 2009a,b) for it.

The direct access to such S/S0 stars, and of other closer objects which may hopefully be
discovered in the future, has induced several researchers to investigate various predictions3

that the General Theory of Relativity (GTR) directly makes for their orbital motions
along with other competing effects from standard Newtonian gravity which may mask
the relativistic ones (Jaroszyński 1998; Fragile & Mathews 2000; Rubilar & Eckart 2001;
Weinberg et al. 2005; Kraniotis 2007; Nucita et al. 2007; Will 2008; Preto & Saha 2009;
Kannan & Saha 2009; Merritt et al. 2010; Iorio 2011a; Sadeghian & Will 2011). In fact,
although the currently known stars, in a strict sense, cannot probe the strong field regime
of GTR because of their relatively large distance from the SBH, on the other hand they
yield a unique opportunity to put on the test GTR in the strongest field regime ever probed
so far. Indeed, even in the double binary pulsar PSR J0737-3039A/B (Burgay et al. 2003;
Lyne et al. 2004) rg/r is one order of magnitude smaller than for S2, which is the closest
SBH star discovered so far (Gillessen et al. 2009a).

In this paper we analytically work out the averaged variations of all the six standard
osculating Keplerian parameters of a test particle caused by the rotation of the central
objected endowed with angular momentum S = Sk̂ and quadrupole moment Q2. Note that

1They have been revealed and tracked in the near infrared since 1992 at the 8.2-m Very
Large Telescope (VLT) on Cerro Paranal, Chile and the 3.58-m New Technology Telescope
(NTT) on La Silla, Chile (Eckart & Genzel 1996), and since 1995 at the Keck 10-m telescope
on Mauna Kea, Hawaii (Ghez et al. 1998). They are dubbed SN, or S0-N in the Keck
nomenclature, where N is a progressive order number.

2Here rg denotes the Schwarzschild radius.

3Concerning several effects related to propagating electromagnetic waves in connection
with the stellar orbital motions like, e.g., relativistic reshifts, see Zucker et al. (2006);
Angelil & Prasenjit (2010); Angelil et al. (2010); Angelil & Prasenjit (2011).
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the stars orbiting the SBH can safely be considered test particles: their masses are about
m . 10−5M , and relativistic corrections to their internal structures are assumed to be too
small to yield noticeable effects on their orbital motions. No assumptions about any specific
spatial orientation for k̂ are made. Thus, our calculations are not restricted to a particular
reference frame, and are valid also for different scenarios like, e.g., stellar planetary systems
and planetary satellite geodesy in which natural and/or artificial test bodies are employed
for testing GTR. Moreover, in order to keep our calculations as general as possible, we will
not adopt any particular representation for k̂ in terms of specific angular variables in the
sense that we will refer it to the global reference frame adopted; for a different approach,
see Will (2008) in which k̂ is referred to the orbital plane of each star. Concerning the SBH
in Sgr A∗, the orientation of its spin axis is substantially unknown, despite the attempts
by different groups (Meyer et al. 2007; Broderick et al. 2009, 2011) to constrain it using
different parameterizations which yielded quite loose bounds. A strategy to partially
overcome such an obstacle have been recently put forward by Hioki & Maeda (2009); it is
based on the possible observation the apparent shape of the shadow cast by the BH on
the plane of the sky, and would allow to measure S and the angle i

′

between k̂ and the
line-of-sight.

The GTR prediction for the standard 1PN periastron precession, which is the analogous
of the well known Mercury’s perihelion precession of 42.98 arscec cty−1 and is independent
of k̂, amounts to about4

ω̇
(1PN)
S2 = 45± 10 arcsec yr−1 (1)

for S2. The result of eq. (1), computed in a frame with the SBH at its origin, corresponds
to a precession of ξ̇S2 = 27 ± 6 microarcseconds per year (µas yr−1 in the following) as
seen from the Earth. At present, it is still undetectable from the currently available direct
astrometric measurements in terms of right ascension α and declination δ which barely
cover just one full orbital period of S2. Indeed, according to Table 1 of Gillessen et al.
(2009a), the present-day error in the periastron is σω = 0.81 deg = 2916 arcsec over
about 16 yr, from which an uncertainty of about σω̇ ≃ 182 arcsec yr−1 in the periastron
precession may naively be inferred: it corresponds to a limiting accuracy of σξ̇ = 110
µas yr−1 in monitoring angular rates as seen from the Earth. As we will see, the sizes
of the other precessions of S2 due to S and Q2 may be smaller by about 2 and 4 − 5
orders of magnitude, respectively for a moderate rotation of the SBH. Concerning future
perspectives, according to Eisenhauer et al. (2009) future astrometric measurements of S2
may bring its 1PN periastron rate into the measurability domain; indeed, the periastron
advance would indirectly be inferred from the corresponding apparent position shift in the
recorded orbit. Moreover, the ASTrometric and phase-Referenced Astronomy (ASTRA)
project (Eisner et al. 2010), to be applied to the Keck interferometer, should be able to

4The quoted uncertainty comes from the errors in the parameters of both the SBH and
S2 entering the GTR formula: they are displayed in Table 1.
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monitor stellar orbits with an accuracy of (Pott et al. 2008) σ∆ξ ≈ 30 µas as seen from
the Earth. The GRAVITY instrument (Gillessen et al. 2010), devoted to enhance the
capabilities of the VLT interferometer (VLTI), aims to reach an accuracy of σ∆ξ ≈ 10 µas
(Gillessen et al. 2010) in measuring astrometric shifts ∆ξ as seen from the Earth, which,
among other things, would allow to explore the innermost stable circular orbits around the
SBH (Vincent et al. 2011).

About testing GTR in the SBH scenario, we make the following general considerations.
In order to meaningfully compare theoretical predictions for a given effect to its empirically
determined counterpart, we need to know some of the key ambient parameters entering
the predictions independently from the effects themselves we are just looking for. In the
specific case, the mass M , the spin S and the quadrupole Q2 of the SBH should be known,
if possible, independently of the precessions we are going to consider. Concerning the SBH
mass M , the values which we presently have for it can be thought as inferred from the
third Kepler law used in conjunction with the directly measured orbital period Pb, and the
semi-major axis a empirically determined by modeling the recorded stellar orbit in the plane
of the sky with an ellipse (see Fig. 2 of Gillessen et al. (2009a)). Such a determination of M
would be, in principle, “imprinted” by GTR itself since it implies a correction to the third
Kepler law, but it is far too small with respect to the present-day accuracy in determining
Pb. Indeed, it is σPb

≃ 10−1 yr (Ghez et al. 2008; Gillessen et al. 2009b), while the 1PN
GTR correction to the Keplerian orbital period is (Damour & Deruelle 1986; Soffel 1989)

∆P
(1PN)
b ∝ (3π/c2)

√
GMa ≃ 10−3 yr for S2. The same holds also if M is straightforwardly

inferred, in a perhaps less transparent manner, as a solve-for quantity from multi-parameter
global fits of all the stars’ data: modeling5 or not GTR at 1PN level has not yet statistically
significant influence in its estimated values, as shown by Table 2 of Gillessen et al. (2009a).
The quadrupole moment Q2 of the SBH in Sgr A∗ may be measured, e.g., by means of
imaging observations with Very Long Baseline Interferometry (VLBI) in the strong field
regime; see Johannsen (2011); Bambi (2011) for recent reviews and other proposals. In
regard to the spin S of Sgr A∗, one tries to gain independent information about S from the
interpretation of some measured Quasi-Periodic Oscillations (QPOs) in the X-ray spectrum
of the electromagnetic radiation emitted by the gas orbiting in the accretion disk close to
its inner edge (Kato et al. 2010; Genzel et al. 2003). More recent observations conducted
with the Millimeter Very Long Baseline Interferometry (mm-VLBI), probing the immediate
vicinity of the horizon, have been able to get information on S (Broderick et al. 2009, 2011).
In interpreting such measurements, the validity of the Kerr (1963) metric as predicted by
GTR is assumed, thus inferring S from, say, the radius of the inner edge extracted from
the X-ray diagnostics. It is worth pointing out that the mere fact of obtaining a good

5When such an approach is followed to test GTR, it is intended that different dynam-
ical models, with and without GTR, are fitted to the same data sets to see if statistically
significant differences occur in the solve-for estimated parameters.
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fit of the Kerr (1963) metric to a certain empirically determined quantity like, e.g., the
X-ray spectrum, getting a reasonable value for S as a least-square adjustable parameter,
cannot be considered in itself as a test of the rotation-related predictions of GTR, also
because other competing mechanisms to explain, say, the QPOs, whose physics is still
rather disputed, exist. Independent empirical determinations of different effects connected
with S are required, and the stellar orbital precessions would be just what we need. The
greater the number of precessions empirically determined, the greater the number of GTR
tests which can be performed. In principle, more than five6 precessions are required since
M,S,Q2 and two components of k̂ must be determined; thus, the need for more than one
star is apparent. Such a number of necessary orbital rates may be reduced if some of the
aforementioned parameters are somehow reliably obtained from other sources. Of course,
also the accuracy with which the precessions can be determined plays a role, in the sense
that the previous reasoning holds in the ideal case in which all the three dynamical effects
considered are detectable. Basically, it is the same logic behind the usual tests in the binary
systems hosting at least one active radio-pulsar (Damour 2009). Indeed, in that case the
interpretation of just two empirically determined post-Keplerian effects7 in terms of their
1PN-GTR predictions is not sufficient since it only allows to obtain the masses m1 and m2

of the system, which are a priori unknown. Genuine tests of GTR are made when more
than two post-Keplerian parameters are empirically determined, and the additional ones are
interpreted with GTR by using in their analytical predictions just the previously obtained
values for m1 and m2 (Damour 2009).

The plan of the paper is as follows. In Section 2 we review basic facts of standard
perturbation theory which will be applied in Section 3 to Q2 (Section 3.1) and S (Section
3.2). In Section 3.4 it is briefly remarked that also gravitational waves with ultra-low
frequency traveling from the outside could be constrained by the orbital precessions of the
stars in Sgr A⋆. In Section 3.3 we compare our results to those obtained by Will (2008).
Numerical evaluations of the effects worked out in Section 3 are presented in Section 4.
Section 5 is devoted to summarizing our findings and to the conclusions.

2. Overview of the method adopted

Here we deal with a generic perturbing acceleration A induced by a given dynamical
effect which can be considered as small with respect to the main Newtonian monopole
ANewton = GM/r2, where G is the Newtonian constant of gravitation and r is the relative
particle-body distance.

6See also Will (2008).

7In the binary pulsar systems the effects which can, actually, be inferred from the data
are not limited just to the post-Keplerian periastron precession.
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First, A has to be projected onto the radial, transverse and normal orthogonal unit
vectors R̂, T̂ , N̂ of the co-moving frame of the test particle orbiting the central object.
Their components, in cartesian coordinates of a reference frame centered in the primary,
are (Montenbruck & Gill 2000)

R̂ =





cosΩ cosu − cos i sinΩ sin u
sinΩ cosu+ cos i cosΩ sin u

sin i sin u



 (2)

T̂ =





− sin u cosΩ − cos i sinΩ cosu
− sinΩ sin u+ cos i cosΩ cosu

sin i cosu



 (3)

N̂ =





sin i sinΩ
− sin i cosΩ

cos i



 . (4)

In eq. (2)-eq. (4), Ω , ω, i are the longitude of the ascending node8, the argument of
pericenter, reckoned from the line of the nodes, and the inclination of the orbital plane to the
reference {xy} plane, respectively. In this specific case, we will choose the unit vector ρ̂ of
the line-of-sight, pointing from the object to the observer, to be directed along the positive
z axis, so that the {xy} plane coincides with the usual plane of the sky which is tangential
to the celestial sphere at the position of the BH. With such a choice, corresponding to the
frame actually used in data reduction (Eisenhauer et al. 2005; Ghez et al. 2008), i is the
inclination of the orbital plane to the plane of the sky (i = 90 deg corresponds to edge-on
orbits, while i = 0 deg implies face-on orbits), and Ω is an angle in it counted from the
reference x direction; it is such a node which is actually determined from the observations
(Ghez et al. 2008; Gillessen et al. 2009a,b), and, in general, it is not referred to the SBH’s
equator. Moreover, u

.
= f + ω is the argument of latitude. Subsequently, the projected

components of A have to be evaluated onto the Keplerian ellipse

r =
p

1 + e cos f
, p

.
= a(1− e2), (5)

where p is the semilatus rectum and a, e are the semi-major axis and the eccentricity, respec-
tively. The cartesian coordinates of the Keplerian motion in space are (Montenbruck & Gill
2000)

x = r (cosΩ cosu − cos i sinΩ sin u) ,

y = r (sinΩ cosu+ cos i cosΩ sin u) ,

z = r sin i sin u.

(6)

8It is an angle in the reference {xy} plane from the reference x direction to the line of
the nodes which is the intersection of the orbital plane with the reference plane {xy}.



– 8 –

The cartesian components of the velocity can be obtained as

vx = ∂x
∂f

df
dt
,

vy = ∂y
∂f

df
dt
,

vz = ∂z
∂f

df
dt
,

(7)

in which df/dt is given by (Roy 2005)

dt =
(1− e2)3/2

n(1 + e cos f)2
df, (8)

where n
.
=

√

GM/a3 is the Keplerian mean motion related to the orbital period by
n = 2π/Pb. Thus, they are

vx = −an[cosΩ(sinu+e sinω)+cos i sinΩ(cosu+e cos ω)]√
1−e2

,

vy = an[− sinΩ(sinu+e sinω)+cos i cosΩ(cosu+e cosω)]√
1−e2

,

vz = an sin i(cosu+e cos ω)√
1−e2

.

(9)

Then, AR, AT , AN are to be plunged into the right-hand-sides of the Gauss equations
for the variations of the osculating Keplerian orbital elements. They are (Roy 2005; Soffel
1989)

da
dt

= 2
n
√
1−e2

[

ARe sin f + AT

(

p
r

)]

,

de
dt

=
√
1−e2

na

{

AR sin f + AT

[

cos f + 1
e

(

1− r
a

)]}

,

di
dt

= 1
na

√
1−e2

AN

(

r
a

)

cosu,

dΩ
dt

= 1
na

√
1−e2 sin i

AN

(

r
a

)

sin u,

dω
dt

= − cos idΩ
dt

+
√
1−e2

nae

[

−AR cos f + AT

(

1 + r
p

)

sin f
]

,

d̟
dt

= 2 sin2
(

i
2

)

dΩ
dt

+
√
1−e2

nae

[

−AR cos f + AT

(

1 + r
p

)

sin f
]

,

dM
dt

= n− 2
na
AR

(

r
a

)

− (1−e2)
nae

[

−AR cos f + AT

(

1 + r
p

)

sin f
]

,

(10)
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where9 ̟
.
= ω + Ω is the longitude of pericenter, and M is the mean anomaly.

The right-hand-sides of eq. (13), computed for the perturbing accelerations of the
dynamical effect considered, have to be inserted into the analytic expression of the time
variation dΨ/dt of the osculating Keplerian orbital element Ψ of interest which, then, must
be averaged over one orbital revolution by means of eq. (8).

3. Calculation of the long-term orbital effects

3.1. The long-term precessions caused by the quadrupole mass moment of the

central body for an arbitrary orientation of its spin axis

The acceleration experienced by a test particle orbiting an oblate central mass rotating
about a generic direction k̂ is

A(Q2) = −3Q2

2r4

{[

1− 5
(

r̂ · k̂
)2
]

r̂ + 2
(

r̂ · k̂
)

k̂

}

, (11)

where Q2 is the quadrupole moment of the body, with [Q2] = L5T−2. A dimensionless
quadrupole parameter J2 can be introduced by posing Q2 → GMR2

eJ2, where Re is
the equatorial radius of the rotating body. According to the “no-hair” or uniqueness
theorems of GTR (Chrusciel 1994; Heusler 1998), an electrically neutral BH is completely
characterized by its mass M and angular momentum S only. As a consequence, all the
multipole moments of its external spacetime are functions of M and S (Geroch 1970;
Hansen 1974). In particular, the quadrupole moment of the BH is

Q2 = −S2G

c2M
. (12)

The spatial orientation of the BH’s spin axis can be considered as unknown. Thus, looking
for a more direct connection with actually measurable quantities, we will retain a generic
orientation for k̂ in the ongoing calculation, i.e. we will not align it to any of axes of the
reference frame used. After having computed the R − T − N components of eq. (11) by
means of eq. (2)-eq. (4) as

A
(Q2)
R = A(Q2) · R̂,

A
(Q2)
T = A(Q2) · T̂ ,

A
(Q2)
N = A(Q2) · N̂ ,

(13)

9It is a “dogleg” angle.
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to be evaluated onto the unperturbed Keplerian ellipse, it is possible to obtain

da

dt
=

de

dt
= 0, (14)

for the semi-major axis and the eccentricity, as in the standard calculations in which k̂ is
usually aligned with the z axis.

Instead, the inclination i undergoes a long-term variation given by

di

dt
= − 3Q2

2
√
GMa7 (1− e2)2

I

(

Ω , i; k̂
)

, (15)

with

I

(

Ω , i; k̂
)

.
=

(

k̂x cosΩ + k̂y sinΩ
) [

k̂z cos i+ sin i
(

k̂x sinΩ − k̂y cosΩ
)]

. (16)

If k̂x = k̂y = 0, as in the usual calculation (Roy 2005), i stays constant.

Concerning the node Ω , its long-term variation is

dΩ

dt
=

3Q2

4
√
GMa7 (1− e2)2

O

(

Ω , i; k̂
)

, (17)

with

O

(

Ω , i; k̂
)

.
= 2k̂z cos 2i csc i

(

k̂x sinΩ − k̂y cosΩ
)

+

+ cos i
[

k̂2
x + k̂2

y − 2k̂2
z +

(

k̂2
y − k̂2

x

)

cos 2Ω − 2k̂xk̂y sin 2Ω
]

.

(18)

Notice that k̂x = k̂y = 0 in eq. (18) yields the standard secular precession (Roy 2005) with

O (i) = −2 cos i. (19)

The long-term change of the argument of pericenter ω is a little more cumbersome. It
is

dω

dt
=

3Q2

16
√
GMa7 (1− e2)2

o

(

Ω , i; k̂
)

, (20)

with

o

(

Ω , i; k̂
)

.
= 8− 11k̂2

x − 11k̂2
y − 2k̂2

z +
(

k̂2
y − k̂2

x

)

cos 2Ω−

− 2k̂z (cot i− 5 cos 3i csc i)
(

k̂y cosΩ − k̂x sinΩ
)

− 2k̂xk̂y sin 2Ω+

+ 5 cos 2i
[

2k̂2
z − k̂2

x − k̂2
y +

(

k̂2
x − k̂2

y

)

cos 2Ω + 2k̂xk̂y sin 2Ω
]

.

(21)
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In the case k̂x = k̂y = 0 eq. (21) reduces to

o (i) = 2 (3 + 5 cos 2i) = 4
(

4− 5 sin2 i
)

, (22)

which yields the standard expression for the secular precession of the pericenter (Roy 2005).

The longitude of the pericentre ̟ experiences a long-term variation given by

d̟

dt
=

3Q2

16
√
GMa7 (1− e2)2

V

(

Ω , i; k̂
)

, (23)

with

V

(

Ω , i; k̂
)

.
= 8− 11k̂2

x − 11k̂2
y − 2k̂2

z +
(

k̂2
x + k̂2

y − 2k̂2
z

)

(4 cos i− 5 cos 2i)−

− 4
(

k̂2
x − k̂2

y

)

(3 + 5 cos i) sin2
(

i
2

)

cos 2Ω−

− 2k̂yk̂z sec
(

i
2

) [

sin
(

3i
2

)

+ 5 sin
(

5i
2

)]

cosΩ+

+ 2k̂xk̂z sec
(

i
2

) [

sin
(

3i
2

)

+ 5 sin
(

5i
2

)]

sinΩ−

− 8k̂xk̂y sin
2
(

i
2

)

(3 + 5 cos i) sin 2Ω .

(24)

For k̂x = k̂y = 0 eq. (24) reduces to

V (i) = 2 [3− (4 cos i− 5 cos 2i)] = 4(4− 5 sin2 i− 2 cos i), (25)

which yields the usual expression for the secular rate of ̟ (Roy 2005).

Finally, the long-term change of the mean anomaly M is

dM
dt

= − 3Q2

16
√

GMa7 (1− e2)3
M

(

Ω , i; k̂
)

, (26)

with

M

(

Ω , i; k̂
)

.
= −8 + 9k̂2

x + 9k̂2
y + 6k̂2

z + 3
(

k̂2
x + k̂2

y − 2k̂2
z

)

cos 2i+

+ 6
(

k̂2
x − k̂2

y

)

sin2 i cos 2Ω+

+ 12
[

k̂z sin 2i
(

k̂y cosΩ − k̂x sinΩ
)

+ k̂xk̂y sin
2 i sin 2Ω

]

.

(27)
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Also in this case, for k̂x = k̂y = 0 the standard secular precession (Roy 2005) is recovered
since eq. (27) reduces to

M (i) = −2 (1 + 3 cos 2i) = −4
(

2− 3 sin2 i
)

. (28)

Incidentally, we remark that the field of applicability of eq. (14)-eq. (27) is not limited
just to the BH arena, being them generally valid also for astrophysical binary systems,
stellar planetary systems, and planetary satellite geodesy. In particular, they could be
useful when satellite-based tests of GTR are performed or designed.

3.2. The Lense-Thirring long-term precessions for a generic orientation of the

spin axis of the central body

According to GTR, the gravitomagnetic Lense-Thirring acceleration felt by a test
particle moving with velocity v around a rotating body with angular momentum S = Sk̂
at large distance from it is

A(LT) = −2
(v

c

)

×Bg. (29)

In eq. (29) the gravitomagnetic field Bg, far from the central object where the Kerr (1963)
metric reduces to the Lense-Thirring one, is

Bg = −GS

cr3

[

k̂ − 3
(

k̂ · r̂
)

r̂
]

. (30)

Concerning S, the existence of the horizon in the Kerr (1963) metric implies a maximum
value for the angular momentum of a spinning BH (Bardeen et al. 1972; Melia et al. 2001),
so that S = χgSmax, with

Smax =
M2G

c
. (31)

If χg > 1, the Kerr (1963) metric would have a naked singularity without a horizon. Thus,
closed timelike curves could be considered, implying a causality violation (Chandrasekhar
1983). Although not yet proven, the cosmic censorship conjecture (Penrose 1969) asserts
that naked singularities cannot be formed via the gravitational collapse of a body. If the
limit of eq. (31) is actually reached or not by astrophysical BHs depends on their accretion
history (Bardeen 1970). In the case of Sgr A∗, it may be χg ≈ 0.44 − 0.52 (Genzel et al.
2003; Kato et al. 2010) or even less (Broderick et al. 2009, 2011). Contrary to BHs, no
theoretical constraints on the value of χg exist for stars. For main-sequence stars, χg

depends sensitively on the stellar mass, and can be much larger than unity (Kraft 1968,
1970; Dicke 1970; Gray 1982). The case of compact stars was recently treated by Lo & Lin
(2011), showing that for neutron stars with M & 1M⊙ it should be χg . 0.7, independently
of the Equation Of State (EOS) governing the stellar matter. Hypotethical quark stars may
have χg > 1, strongly depending on the EOS and the stellar mass (Lo & Lin 2011).
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In the standard derivations of the Lense-Thirring effect (Lense & Thirring 1918)
existing in literature the reference {x, y} plane was usually chosen coincident with the
equatorial plane of the rotating mass. In principle, the Lense-Thirring orbital precessions
for a generic orientation of S could be worked out with the Gauss equations in the same
way as done for Q2. Anyway, they were recently worked out (Iorio 2010), in a different
framework, with the less cumbersome Lagrange planetary equations (Roy 2005). For the
sake of convenience, we display here the final result

da
dt

= 0,

de
dt

= 0,

di
dt

=
2GS(k̂x cosΩ+k̂y sinΩ)

c2a3(1−e2)3/2
,

dΩ
dt

=
2GS[k̂z+cot i(k̂y cosΩ−k̂x sinΩ)]

c2a3(1−e2)3/2
,

dω
dt

= −GS[6k̂z cos i+(3 cos 2i−1) csc i(k̂y cosΩ−k̂x sinΩ)]
c2a3(1−e2)3/2

,

d̟
dt

= −GS{4[k̂z cos i+sin i(k̂x sinΩ−k̂y cosΩ)]−2[k̂z sin i+cos i(k̂y cosΩ−k̂x sinΩ)] tan(i/2)}
c2a3(1−e2)3/2

,

dM
dt

= 0;

(32)

Notice that eq. (32) yields10 just the usual Lense-Thirring secular rates (Lense & Thirring
1918; Soffel 1989) for k̂x = k̂y = 0. Contrary to such a scenario, the inclination i experiences
a long-term gravitomagnetic change for an arbitrary orientation of S: it is independent of
the inclination i itself.

3.3. A comparison with a different approach

Will (2008) refers k̂ to the orbital plane of a generic star by choosing as orthonormal
vectors ep, eq,h: ep is directed along the line of the nodes, eq lies in the orbital plane
perpendicularly to ep, and h is directed along the orbital angular momentum. They are

ep =





cosΩ
sinΩ
0



 (33)

10Concerning̟, by posing i/2
.
= ζ it can be shown that−2 cos i+sin i tan(i/2) = 1−3 cos i.
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eq =





− cos i sinΩ
cos i cosΩ

sin i



 (34)

h =





sin i sinΩ
− sin i cosΩ

cos i



 . (35)

Note that eq. (33) and eq. (34) can be obtained from eq. (2) and eq. (3), respectively, by
posing u → 0, while eq. (35) coincides with eq. (4). Thus, one has

k̂x = k̂p cosΩ +
(

k̂h sin i− k̂q cos i
)

sinΩ ,

k̂y = k̂p sinΩ −
(

k̂h sin i− k̂q cos i
)

cosΩ ,

k̂z = k̂h cos i+ k̂q sin i,

(36)

with
k̂p = sinα cos β,

k̂q = sinα sin β,

k̂h = cosα,

(37)

having introduced the polar angles α and β in the orbital frame.

Inserting eq. (36) and eq. (37) into the equations of Section 3.1 and Section 3.2 allows
to obtain eq. (2a), eq. (2b), eq. (2c) of Will (2008) after some algebra.

3.4. Stellar orbital perturbations caused by ultra-low frequency gravitational

waves

The stars orbiting the SBH in Sgr A∗ could also be used, in principle, as probes for
detecting or constraining plane gravitational waves of ultra-low frequency (ν ≈ 10−8− 10−10

Hz or less) impinging on the system from the outside. Indeed, the passage of such waves
through the orbits of the closest stars would cause long-term variations of all their Keplerian
orbital elements, apart from the semi-major axis a. They have recently been worked out by
Iorio (2011b) for general orbital configurations, i.e. without making a-priori assumptions on
their inclinations and eccentricities of the perturbed test particle, and arbitrary directions
of incidence for the wave. Conversely, gravitational waves can be generated within the
stellar system of Sgr A∗, as discussed by Freitag (2003).
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4. Numerical evaluations

In Table 1 we quote the relevant physical and orbital parameters for the SBH-S2
system. The orbital period of S2 is Pb = 15.98 yr, so that the astrometric measurements
currently available cover a full revolution of it.

Table 1: Relevant physical and orbital parameters of the SBH-S2 system in Sgr A∗ (first row),
and their uncertainties (second row). The Keplerian orbital elements of S2 were retrieved
from Table 1 of (Gillessen et al. 2009a). The figure for χg comes from Genzel et al. (2003),
while the one for the gravitational parameter µ

.
= GM is from a multi-star fit yielding

µ = (4.30 ± 0.50) × 106µ⊙ (Gillessen et al. 2009a). The quoted value in m for the semi-
major axis of S2 was obtained by multiplying its angular value a = 0.1246 ± 0.0019 arcsec
(Gillessen et al. 2009a) by the distance of the SBH d = 8.28 ± 0.44 kpc (Gillessen et al.
2009a). For the angular momentum and the quadrupole moment of the SBH we used S =
χg(M

2G)/c and Q2 = −(S2G)/(c2M) = −χ2
g(G

3M3)/c4. The orbital period of S2 is Pb =
15.98 yr = 5.04 × 108 s. The figures for S and Q2, obtained in the hypothesis that GTR
is correct, strongly depends on χg, which is, at present, highly uncertain: for example,
Kato et al. (2010) yield χg = 0.44± 0.08, while for Broderick et al. (2009, 2011) it could be
even smaller. We will use them to indicatively give order-of-magnitude evaluations of the
additional orbital precessions which would occur because of S and Q2 according to GTR.

µ (m3 s−2) S (kg m2 s−1) Q2 (m5 s−2) χg a (m) e i (deg) Ω (deg)

5.70× 1026 8.46× 1054 −6.22× 1045 0.52 1.54× 1014 0.8831 134.87 226.53
6.6× 1025 4.66× 1054 6.58× 1045 0.26 8× 1012 0.0034 0.78 0.72

The quadrupole-induced precessions of eq. (15)-eq. (27) are all linear combinations of
the products of the components of k̂ plus, sometimes, a term independent of k̂: they can
be cast into the form

dΨ

dt
= D0 (Q2, a, e, i,Ω) +

1

2

∑

s,l

Dsl (Q2, a, e, i,Ω) k̂sk̂l, s, l = x, y, z, Ψ = i,Ω, ω,M. (38)

The numerical values of the coefficients D0 and Dsl = Dls for S2, in µas yr−1, are quoted in
Table 2. The largest effects occur for ω and M because of D0, which is of the order of ≈ 1
milliarcsec yr−1 (mas yr−1). The other terms are damped by the square of the components
of k̂. Moreover, partial mutual cancelation may occur depending on the orientation of the
SBH spin axis.

The Lense-Thirring precessions of eq. (32) are all linear combinations of the components
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Table 2: Coefficients of the quadrupole precessions of S2, in µas yr−1, according to Table 1.
GTR was assumed for Q2, with χg = 0.52.

D0 Dx2 Dy2 Dz2 Dxy Dxz Dyz

i 0 406 −406 0 43 558 588
Ω 0 427 384 −810 −809 −5 5
ω −1149 1568 1584 294 293 −1254 1189
M −539 595 616 406 405 −587 556

of k̂: they can be cast into the form

dΨ

dt
=

∑

j

Cj (S, a, e, i,Ω) k̂j , j = x, y, z, Ψ = i,Ω, ω. (39)

The numerical values of the coefficients Cj for S2, in arcsec yr−1, are listed in Table 3.
They are of the order of about 10−1 arcsec yr−1, i.e. orders of magnitude larger than the

Table 3: Coefficients of the Lense-Thirring precessions of S2, in arcsec yr−1, according to
Table 1. In particular, χg = 0.52 was used for the spin of the SBH.

Cx Cy Cz

i −0.14 −0.15 0
Ω −0.15 0.14 0.21
ω 0.11 −0.10 0.45

quadrupole precessions of Table 2: also in this case, partial mutual cancelations may occur
depending on k̂, thus impacting the detectability of the gravitomagnetic rates.

The figures of Table 2 and Table 3 can be compared with the present-day accuracies
in empirically determining the orbital precessions of S2 listed in Table 4. They are of the
order of 102 − 103 arcsec yr−1. The Lense-Thirring precessions of S2 (Table 3) are about
3 orders of magnitude smaller than the current accuracy, while the quadrupole effects of
Table 2 are negligibly small.

By considering a fictitious star X with, say, the same orbital parameters of S2 apart
from the semi-major axis a, assumed to be one order of magnitude smaller so that its orbital
period would just be Pb = 0.5 yr, it turns out that its 1PN GTR periastron precession
would be as large as 4 deg yr−1, while its Lense-Thirring and quadrupole precessions would
be of the order of about ≈ 102 arcsec yr−1 and ≈ 1 arcsec yr−1, respectively.
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Table 4: Naive evaluations of the uncertainties in the secular variations of the S2 osculating
Keplerian orbital elements, in arcsec yr−1, obtained by dividing the errors in the elements
from Table 1 of Gillessen et al. (2009a) by a time interval ∆T ≈ Pb. Concerning the mean
anomaly, its uncertainty was evaluated from that of the time of periastron passage tp, released
by Gillessen et al. (2009a), according to the expression for the mean anomaly at the epoch
of periastron passage M0 = −ntp; also the errors coming from a and µ through n were taken
into account.

σi̇ (arcsec yr−1) σΩ̇ (arcsec yr−1) σω̇ (arcsec yr−1) σṀ (arcsec yr−1)

176 163 182 1203

If, as expected, angular shifts of ∆ξ ≈ 10 µas, as seen from the Earth, will really
become measurable in future thanks to GRAVITY and ASTRA, this would imply an
accuracy of the order of ∆Ψ ≈ (d/a)∆ξ = 16 arcsec for S2, and 160 arsec for a star one
order of magnitude closer to the SBH. If such targets will be discovered, their Lense-Thirring
shifts should become detectable after some years, while the Q2−induced perturbations
would still remain hard to be measured, eve for e ≈ 0.9.

5. Summary and conclusions

We analytically worked out the long-term, i.e. averaged over one full revolution,
variations of all the six osculating Keplerian orbital elements of a test particle orbiting a
non-spherical, spinning body endowed with angular momentum S and quadrupole moment
Q2 for a generic spatial orientation of its spin axis k̂. We did not restrict ourselves to any
specific orbital configuration. Concerning k̂, we referred it to the reference frame actually
used in order to make easier and more direct a comparison with the effectively determined
quantities. Our results can be extended also to other scenarios like astrophysical binaries,
stellar planetary systems and planetary satellite geodesy. Here we applied our results to
the stars orbiting the SBH in Sgr A∗: those identified so far are moving along highly
elliptical trajectories with periods Pb ≥ 16 yr. The current level of accuracy in empirically
determining the precessions of the angular orbital elements of S2, having Pb = 16 yr, can
be evaluated to be of the order of ≈ 102 − 103 arcsec yr−1. The predicted 1PN GTR
periastron precession of S2, which is independent of the orientation of the spin axis of the
SBH, is 40± 10 arcsec yr−1. The predicted GTR spin and quadrupole-induced precessions
of S2 are of the order of ≈ 10−1 arcsec yr−1 and ≈ 102 − 103µas yr−1, respectively: they
depend on k̂, and partial cancelations among their components may occur, thus reducing
their magnitude. Concerning hypothetical stars with orbital periods of less than 1 yr, not
yet discovered, the 1PN GTR periastron precessions would be as large as some deg yr−1,
while the S and Q2 effects would be of the order of ≈ 102 arcsec yr−1 and ≈ 1 arcsec yr−1,
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respectively. Planned improvements of the infrared telescopes used so far aim to reach
an accuracy level of ≈ 10 µas at best in measuring angular shifts as seen from the Earth
corresponding to stellar orbital shifts of about 1.6× 101 − 102 arcsec for S2 and stars closer
than it by one order of magnitude, respectively.
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Jaroszyński M., 1998, Acta Astronomica, 48, 653

Johannsen T., 2011, Adv. Astron., at press, arXiv:1105.5645

Kannan R., Saha P., 2009, ApJ, 90, 1553

Kato Y., Miyoshi M., Takahashi R., Negoro H., Matsumoto R., 2010, MNRAS, 403, L74

Kerr R.P., 1963, Phys. Rev. Lett., 11, 237

Kraft R. P., 1968, in Chiu H.-Y-, Warasila R. L., Remo J. L., eds., Stellar Astronomy.
Gordon & Breach, New York, p. 317

Kraft R. P., 1970, in Herbig G. H., ed., Spectroscopic Astrophysics. University California
Press, Berkeley, p. 385

Kraniotis G.V., 2007, Class. Quantum Grav., 24, 1775

Lense J., Thirring H., 1918, Phys. Z., 19, 156

Lo K.-W., Lin L.-M., 2011, ApJ, 728, 12

Lyne A.G., Burgay M., Kramer M., Possenti A., Manchester R.N., Camilo F., McLaughlin
M.A., Lorimer D.R., D’Amico N., Joshi B.C., Reynolds J., Freire P.C.C., 2004,
Science, 303, 1153

Melia F., Bromley C., Liu S., Walker C.K., 2001, ApJ, 554, L37

Melia F., 2007, The Galactic Supermassive Black Hole (Princeton: Princeton University
Press)

http://arxiv.org/abs/1012.5622
http://arxiv.org/abs/1104.4853
http://arxiv.org/abs/1105.5645


– 22 –

Merritt D., Alexander T., Mikkola S., Will C. M., 2010, PRD, 81, 062002
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