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Abstract We use the famous Benci-Rabinowitz’s Saddle Point Theorem ([3])with
Cerami-Palais-Smale condition to study the existence of new periodic solutions with
a fixed period for second order Hamiltonian systems under weaker conditions than
Rabinowitz’s original conditions in his pioneer paper([11]),the key point of our proof
is proving Cerami-Palais-Smale condition,which is difficult since no symmetry for the
potential. We use Rabinowitz’s Saddle Point Theorem to study periodic solution for
sub-quadratic second order Hamiltonian systems.
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1. Introduction

In 1978, Rabinowitz firstly used variational methods in large to study the periodic
solutions for second order Hamiltonian systems with super-quadratic potential.

q̈ + V ′(q) = 0 (1.1)

He proved that
Theorem 1.0([11]) Suppose V satisfies
(V1) V ∈ C1(Rn, R)
(V2) There exist constants µ > 2, r0 > 0 such that

0 < µV (x) ≤ V ′(x) · x, ∀|x| ≥ r0,

(V3) V (x) ≥ 0, ∀x ∈ Rn,
(V4) V (x) = o(|x|2), as |x| → 0.
Then for any T > 0, (1.1) has a non-constant T -periodic solution.
In the last 30 years, there were many works for (1.1), we can refer ([3]-[9],[12,13]),

and the references there. In this paper, we try to generalize the result of Rabinowitz,we
get the following Theorem:

Theorem 1.1 Suppose V satisfies
(V 1) V ∈ C1(Rn, R)
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(V 2) There exist constants µ1 > 2, µ2 ∈ R such that

V ′(x) · x ≥ µ1V (x) + µ2, ∀x ∈ Rn,

(V 3) There are a1 > 0, a2 ∈ R such that

V (x) ≥ a1|x|µ1 + a2, ∀x ∈ Rn,

V ′(x) · x− 2V (x) → +∞, |x| → +∞

(V 4)
V (x) ≤ A|x|2, |x| → 0.

Then for any T < ( 2
A
)1/2π, (1.1) has a non-constant T -periodic solution.

Remark Comparing Rabinowitz’s Theorem1.0,the biggest difference is that we
didn’t assume the potential V is nonnegative,our conditions V (2)− V (4) are weaker.

For sub-quadratic second order Hamiltonian system,we can get
Theorem 1.2 Suppose V satisfies
(V 1) V ∈ C1(Rn, R).
(V 2′) There exist constants µ1 < 2, µ2 ∈ R such that

V ′(x) · x ≤ µ1V (x) + µ2, ∀x ∈ Rn.

(V 3′)
V ′(x) · x− 2V (x) → −∞, |x| → +∞.

(V 4′)
V (x) ≤ A|x|2 + a.

(V 5)
V (x) → +∞, |x| → +∞.

Then for any T < ( 2
A
)1/2π, (1.1) has a T -periodic solution.

2. Some Lemmas

In order to prove Theorem 1.1, we define functional

f(q) =
1

2

∫ T

0

|q̇|2dt−
∫ T

0

V (q)dt, ∀q ∈ H1 (2.1)

where
H1 = W 1,2(R/TZ,Rn). (2.2)

Lemma 2.1([11,12]) Let q̃ ∈ H1 be such that f ′(q̃) = 0
Then q̃(t) is a T -periodic solution for (1.1).
Lemma2.2(Sobolev-Rellich-Kondrachov, Compact Imbedding Theorem,[5],[6],[8],[13])

W 1,2(R/TZ,Rn) ⊂ C(R/TZ,Rn)
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and the imbedding is compact.
Lemma 2.3(Eberlein-Shmulyan [14]) A Banach space X is reflexive if and only if

any bounded sequence in X has a weakly convergent subsequence.
Lemma 2.4([1],[8],[15]) Let q ∈ W 1,2(R/TZ,Rn) and q(0) = q(T ) = 0
We have Friedrics-Poincare’s inequality:∫ T

0

|q̇(t)|2dt ≥
(π

T

)2
∫ T

0

|q(t)|2dt

Let q ∈ W 1,2(R/TZ,Rn) and
∫ T

0
q(t)dt = 0, then

(i) We have Poincare-Wirtinger’s inequality∫ T

0

|q̇(t)|2dt ≥
(

2π

T

)2 ∫ T

0

|q(t)|2dt

(ii) We have Sobolev’s inequality

max
0≤t≤T

|q(t)| = ‖q‖∞ ≤
√

T

12

(∫ T

0

|q̇(t)|2dt

)1/2

We define the equivalent norm in H1 = W 1,2(R/TZ,Rn)

‖q‖H1 =

(∫ T

0

|q̇|2dt

)1/2

+ |q(0)|

Definition2.1([4]) Let X is a Banach space,{qn} ⊂ X satisfy

f(qn) → C, (1 + ‖qn‖)f ′(qn) → 0. (2.3)

Then we call {qn} satisfy Cerami-Palais-Smale condition.
Lemma 2.5(Benci-Rabinowitz [3],[5], Generalized Mountain-Pass Lemma) Let X

be a Banach space, f ∈ C(X, R). Let X = X1

⊕
X2, dimX1 < +∞,X2 is closed in X.

Let

Ba = {x ∈ X|‖x‖ ≤ a},
S = ∂Bρ ∩X2, ρ > 0,

Q = {x1 + se|(x1, s) ∈ X1 ×R1, s ≥ 0, ‖x1‖2 + s2 ≤ R2},
∂Q = (BR ∩X1) ∪ (∂BR ∩ (X1

⊕
R+e)), R > ρ,

where e ∈ X2, ‖e‖ = 1,

∂BR ∩ (X1

⊕
R+e) = {x1 + se|(x1, s) ∈ X1 ×R+, ‖x1‖2 + s2 = R2}

If
f |S ≥ α,
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and
f |∂Q ≤ β < α,

Then C = inf
φ∈Γ

sup
x∈Q

f(φ(x)) ≥ α ,if f(q) satisfies (CPS)C on [β, α],then C is a critical

value for f .
Lemma 2.6(Rabinowitz’s Saddle Point Theorem [12], Mawhin-Willem [8]) Let X

be a Banach space and let f ∈ C1(X,R), let X = X1

⊕
X2 with

dimX1 < +∞

and
sup
S1

R

f < inf
X2

f,

where S1
R = {u ∈ X1||u| = R}.

Let B1
R = {u ∈ X1, |u| ≤ R}, M = {g ∈ C(B1

R, X)|g(s) = s, s ∈ S1
R}

C = inf
g∈M

max
s∈B1

R

(g(s))

Then C ≥ inf
X2

f , if f satisfies (PS)C condition, C is a critical value of f .

3. The Proof of Theorems 1.1 and 1.2

Lemma 3.1 If (V 1) − (V 3) in Theorem1.1 hold, then f(q) satisfies the (Cerami −
Palais− Smale) condition on H1.

Proof Let {qn} ⊂ H1 satisfy

f(qn) → C, (1 + ‖qn‖)f ′(qn) → 0. (3.1)

Then we claim {qn} is bounded. In fact,by f(qn) → C, we have

1

2
‖q̇n‖2

L2 −
∫ T

0

V (qn)dt → C (3.2)

By (V 2) we have

< f ′(qn), qn > = ‖q̇n‖2
L2 −

∫ T

0

(< V ′(qn), qn >)dt

≤ ‖q̇n‖2
L2 −

∫ T

0

[µ2 + µ1V (qn)]dt (3.3)

By (3.2) and (3.3) we have

< f ′(qn), qn > ≤ a‖q̇n‖2
L2 + C1 + δ, n → +∞ (3.4)

Where C1 = Cµ1 − Tµ2 + δ, δ > 0, a = 1− µ1

2
< 0.
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By f ′(qn) → 0, there exist C2 > 0 and C3 > 0 such that

| < f ′(qn), qn > | ≤ C2 + C3‖qn‖ = C2 + C3(‖q̇n‖L2 + |qn(0)|) (3.5)

By (3.4) and (3.5) we have

−(C2 + C3‖qn‖) ≤
(
1− µ1

2

)
‖q̇n‖2

L2 + C1 + δ, (3.6)

If ‖q̇n‖L2 is unbounded, then since µ1 > 2, |qn(0)| must be unbounded and there
exists subsequence, still denoted by {qn}, and b > 0, s.t.

|qn(0)| ≥ b‖q̇n‖2
L2 , (3.7)

By Newton-Leibniz formula and Cauchy-Schwarz inequality,we have

|qn(t)| ≥ |qn(0)| − ‖q̇n‖2

≥ b‖q̇n‖2
2 − ‖q̇n‖2 → +∞, as n → +∞ (3.8)

min
0≤t≤1

|qn(t)| → +∞, as n → +∞ (3.9)

We notice that

f ′(qn)qn =

∫ T

0

|q̇n|2dt−
∫ T

0

< V ′(qn), qn > dt (3.10)

= 2f(qn) +

∫ T

0

[2V (qn)− < V ′(qn), qn >]dt (3.11)

By (V3)and (3.1),this is a contradiction,so ‖q̇n‖L2 ≤ M1. Then we claim |qn(0)| is also
bounded. Otherwise, there a subsequence, still denoted by qn, s.t. |qn(0)| → +∞,since
‖q̇n‖ ≤ M1,then

min
0≤t≤1

|qn(t)| ≥ |qn(0)| − ‖q̇n‖2 → +∞, as n → +∞ (3.12)

Similar to the above proof,(3.11) is a contradiction.
So ‖un‖ = ‖u̇n‖L2 + |un(0)| is bounded.
By the embedding theorem, {qn} has a weakly convergent subsequence which uni-

formly converges to q ∈ H1,2.
Hence by V ∈ C1 we have

V (qn) → V (q), < V ′(qn), qn >→< V ′(q), q >, (3.13)

Furthermore, it’s standard step for the rest proof , the weakly convergent subse-
quence is also strongly convergent to q ∈ H1,2.
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Now we prove Theorem 1.1. In Benci-Rabinowitz’s Saddle Point Theorem, we
take

X1 = Rn, X2 = {u ∈ W 1,2(R/TZ,Rn),

∫ T

0

udt = 0}

S =

{
u ∈ X2|

(∫ T

0

|u̇2|2dt

)1/2

= ρ

}
,

∂Q = {u1 ∈ Rn||u1| ≤ R}∪{
u = u1 + se, u1 ∈ Rn, e ∈ X2, ‖e‖ = 1, s > 0, ‖u‖ = (|u1(0)|2 + s2)1/2 = R > ρ

}
.

When q ∈ X2,by Sobolev’s inequality,
∫ T

0
|q̇|2dt → 0 implies max|q(t)| → 0.So

when
∫ T

0
|q̇|2dt → 0 , (V 4) implies

V (q) ≤ A|q|2

When q ∈ X2,we have Poincare-Wirtinger inequality, so when

ρ = [

∫ T

0

|q̇|2dt]
1
2 → 0

We have

f(q) ≥ 1

2

∫ T

0

|q̇|2dt− A

∫ T

0

|q|2dt

≥ [
1

2
− A(2π)−2T 2]ρ2,

On the other hand, if q ∈ X1,then we have

f(q) = −
∫ T

0

V (q)dt → −∞, |q| = R → +∞,

if

q ∈
{
q = u1 + se, u1 ∈ Rn, e ∈ X2, ‖e‖ = 1, s > 0, ‖u‖ = (|u1(0)|2 + s2)1/2 = R > ρ

}
,

then by (V 3) and Jensen’s inequality,we have

f(q) =
1

2
s2 −

∫ T

0

V (u1 + se)dt

≤ 1

2
s2 −

∫ T

0

(a|u1 + se|µ1 + b)dt

≤ 1

2
s2 − [aT 1−µ1

2 (

∫ T

0

|u1 + se|2dt)
µ1
2 + bT ]

=
1

2
s2 − aT 1−µ1

2 [T |u1|2 + s2

∫ T

0

|e(t)|2dt]
µ1
2 − bT

→ −∞, s → +∞(R → +∞).

The rest of the proof for Theorem 1.1 is obvious.
Using Rabinowitz’s Saddle Point Theorem and similar methods to The-

orem 1.1,we can prove Theorm1.2,here we omit it
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