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Generalizations on Rabinowitz’s Theorems
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Abstract We use the famous Benci-Rabinowitz’s Saddle Point Theorem ([3])with
Cerami-Palais-Smale condition to study the existence of new periodic solutions with
a fixed period for second order Hamiltonian systems under weaker conditions than
Rabinowitz’s original conditions in his pioneer paper([11]),the key point of our proof
is proving Cerami-Palais-Smale condition,which is difficult since no symmetry for the
potential. We use Rabinowitz’s Saddle Point Theorem to study periodic solution for
sub-quadratic second order Hamiltonian systems.
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1. Introduction

In 1978, Rabinowitz firstly used variational methods in large to study the periodic
solutions for second order Hamiltonian systems with super-quadratic potential.

G+ V(g =0 (1.1)

He proved that

Theorem 1.0([11]) Suppose V satisfies

(V1) V e CY(R", R)

(V) There exist constants > 2,79 > 0 such that

0<pV(z) <V(x)-z, V| =70,

(Vs) V(z) >0, VzeR"

(Vi) V(x) = o(|z[*), as [z] — 0.

Then for any 7" > 0, (1.1) has a non-constant 7T-periodic solution.

In the last 30 years, there were many works for (1.1), we can refer ([3]-[9],[12,13]),
and the references there. In this paper, we try to generalize the result of Rabinowitz,we
get the following Theorem:

Theorem 1.1 Suppose V satisfies

(V1) V e CY(R",R)
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(V2) There exist constants p1 > 2, 1o € R such that
Vi(x) x> wmV(x)+ p2, Vae€R",
(V3) There are a; > 0,ay € R such that
V(z) > ar|z|" + ap, VYa e R",

V'(z)-x —2V(z) — 400, x| — +0

(V4)
V(z) < Azl 2] — 0.

Then for any T < (2)"/?m, (1.1) has a non-constant T-periodic solution.

Remark Comparing Rabinowitz’s Theorem1.0,the biggest difference is that we
didn’t assume the potential V' is nonnegative,our conditions V'(2) — V(4) are weaker.

For sub-quadratic second order Hamiltonian system,we can get

Theorem 1.2 Suppose V satisfies

(V1) V e CYR™, R).

(V2') There exist constants p; < 2, us € R such that

V() o < wmV(x)+p, VreR"

(V3)
V'(z) -z —2V(zx) — —o0, |x| — +00.
(V4)
V(z) < Alz* + a.
(V5)

V(z) — +oo, |z| — +o0.

Then for any T < (2)"/?m, (1.1) has a T-periodic solution.

2. Some Lemmas

In order to prove Theorem 1.1, we define functional

fla) =5 [ lia— [ Vg voerm 2.)

where

H'=W"(R/TZ,R"). (2.2)
Lemma 2.1([11,12]) Let ¢ € H' be such that f'(q) =0
Then ¢(t) is a T-periodic solution for (1.1).
Lemma2.2(Sobolev-Rellich-Kondrachov, Compact Imbedding Theorem, [5],[6],[8],[13])
WY4(R/TZ,R") c C(R/TZ,R")
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and the imbedding is compact.
Lemma 2.3(Eberlein-Shmulyan [14]) A Banach space X is reflexive if and only if

any bounded sequence in X has a weakly convergent subsequence.
Lemma 2.4([1],[8],[15]) Let ¢ € W'*(R/TZ, R") and ¢(0) = q(T) =0
We have Friedrics-Poincare’s inequality:

[Hiwraz (5) [ awpa

Let ¢ € WH3(R/TZ, R™) and fOT q(t)dt = 0, then
(i) We have Poincare-Wirtinger’s inequality

[Ciawra= (22) [ o

(ii) We have Sobolev’s inequality

max [q(t)] = llalle < /= ( / ' 1q’<t>|2dt) "

0<t<T 12

We define the equivalent norm in H! = WY(R/TZ, R™)

T 1/2
gl ( / |4|2dt> T la0)]

Definition2.1([4]) Let X is a Banach space,{q,} C X satisfy
flan) = € (L + llgnll) f(gn) — O (2:3)

Then we call {g,} satisfy Cerami-Palais-Smale condition.

Lemma 2.5(Benci-Rabinowitz [3],[5], Generalized Mountain-Pass Lemma) Let X
be a Banach space, f € C(X,R). Let X = X; @ X, dimX; < +00,X5 is closed in X.
Let

B, = {r € X|||z| < a},
S =0B,N Xy, p>0,
Q = {z+se|(x,8) € X3 x R, s >0, |z1]|? + 5% < Rz},

0Q = (BrN X,) U (0Br N (X1 P RYe)), R > p,
where e € X, |le]| = 1,

O0BrN (X1 P RTe) = {x1+sel(z1,s) € Xy x BT, ||a1|* + s* = R*}

If
f|SZa)
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and
f‘aQ S ﬁ < q,
Then C' = énlﬁ sup f(¢(x)) > a if f(q) satisfies (CPS)c on [B,a],then C' is a critical
€l zeQ
value for f.

Lemma 2.6(Rabinowitz’s Saddle Point Theorem [12], Mawhin-Willem [8]) Let X
be a Banach space and let f € C'(X, R), let X = X; @ X, with

dlle < 400
and
sup f < inf f|
SL X2

where S}, = {u € Xi|Ju| = R}.
Let Bl = {u € X, lul < R}, M = {g € C(Bh, X)lg(s) = 5, 5 € S})

C = inf
nf grelgg;(g(s»

Then C' > i)I(lf f, if f satisfies (PS)¢ condition, C' is a critical value of f.

3. The Proof of Theorems 1.1 and 1.2

Lemma 3.1 If (V1) — (V3) in Theoreml.1 hold, then f(q) satisfies the (Cerami —
Palais — Smale) condition on H'.
Proof Let {q,} C H' satisfy

flan) = €, (L + llgnll) f(gn) — O (3.1)

Then we claim {g¢,} is bounded. In fact,by f(g,) — C, we have

1 T
hinle = [ Via)ie—c (32
By (V2) we have
T
< @), an> = |dul3e —/ (< V'(qn), g >)dt
0
T
< lnle — / o+ iV (gt (3.3)

0

By (3.2) and (3.3) we have
<)y an > < alldalliz +Cr+6,n — oo (3-4)

Where Cy = Cpy — Ty +96,0 > 0,a=1- 5 <0.
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By f'(¢n) — 0, there exist Cy > 0 and C5 > 0 such that
| < f'(gn), @n > | < Co + Csllgnll = C2 + Cs([lgnl| 2 + |gn(0)]) (3:5)
By (3.4) and (3.5) we have

~(Co+ Callanl) < (1= 51) Ndallzz + €1 + 5, (3.6)

If ||dn||z2 is unbounded, then since p; > 2,|¢,(0)| must be unbounded and there
exists subsequence, still denoted by {¢,}, and b > 0, s.t.

|32 (0)] > bllgnllZ, (3.7)

By Newton-Leibniz formula and Cauchy-Schwarz inequality,we have

|Qn(t)| Z |Qn(0)| - ||Qn||2
> bllgall3 = lgnll2 = +o0,  asn — 400 (3.8)
Jnin |¢n(t)| — +00, asn — +oo (3.9)

We notice that
T T

f'(an)an :/ !andt—/ <V'(qn), @n > dt (3.10)

0 0

T
—2f(g) + / 2V (g)— < V'(qn), qu >]dt (3.11)
0

By (V3)and (3.1),this is a contradiction,so ||¢,||zz < M;. Then we claim |g,(0)| is also
bounded. Otherwise, there a subsequence, still denoted by g, s.t. |¢,(0)] — +o0,since
g || < M then

min |g,(t)] = ¢n(0)] = [lgnlla = 400,88 0 — +00 (3.12)
0<t<1
Similar to the above proof,(3.11) is a contradiction.
So ||un|l = ||@n||z2 + |u,(0)] is bounded.
By the embedding theorem, {¢,} has a weakly convergent subsequence which uni-
formly converges to ¢ € H2.
Hence by V € C! we have

Vign) = V(a), < V(@) ¢a >—<V'(q), q >, (3.13)

Furthermore, it’s standard step for the rest proof , the weakly convergent subse-
quence is also strongly convergent to ¢ € H%2.
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Now we prove Theorem 1.1. In Benci-Rabinowitz’s Saddle Point Theorem, we
take

T
X, =R" Xy ={uec WY(R/TZ, R”),/ udt = 0}
0

T 1/2
S = {UGX2’ (/ ‘U2’2dt) 29}7
0

8@ = {Ul S R”||u1| S R}U
{u=us+se,u1 € R" e € Xs, |lel| = 1,5 > 0, [|ul| = (Jus (0)]* + s*)"/* = R > p} .

When ¢ € Xs,by Sobolev’s inequality,f0T|Q|2dt — 0 implies maz|q(t)] — 0.So
WhenfOT |¢|?dt — 0, (V4) implies

V(g) < Alg|?

When ¢ € X5,we have Poincare-Wirtinger inequality, so when

T 1
p= [/ |g*dt]z — 0
0

1 T ' T
fla)z g [ laPde-a [ o
0 0

1
> [5 — A(2m) 71?0,
On the other hand, if ¢ € X;,then we have

We have

flg) = —/OT V(g)dt — —o0,|g| = R — +00,
if
g€ {g=u+seu € R"e€ X, lle] =1,5>0,|ull = (ui(0)* + s> =R > p},
then by (V3) and Jensen’s inequality,we have

1 T
flq) = 532 —/ V(uy + se)dt
0
1, (7
<58 - (aluy + sel"* + b)dt
0
1 o [T n
< g [aT12(/ s -+ sel2dt)% + bT]
0
L, 1-£L 2 2 ’ 2 3Bl
=38 —aT" "2 [T|u|* + s / le(t)|*dt] = — bT
0

— —00,5 — +00(R — +00).

The rest of the proof for Theorem 1.1 is obvious.
Using Rabinowitz’s Saddle Point Theorem and similar methods to The-
orem 1.1,we can prove Theorm1l.2,here we omit it
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