Generalizations on Rabinowitz's Theorems

ZHANG SHIQING

Mathematical Department, Sichuan University, Chengdu 610064, China

Abstract We use the famous Benci-Rabinowitz's Saddle Point Theorem ([3]) with Cerami-Palais-Smale condition to study the existence of new periodic solutions with a fixed period for second order Hamiltonian systems under weaker conditions than Rabinowitz's original conditions in his pioneer paper([11]), the key point of our proof is proving Cerami-Palais-Smale condition, which is difficult since no symmetry for the potential. We use Rabinowitz's Saddle Point Theorem to study periodic solution for sub-quadratic second order Hamiltonian systems.

Key Words: Second order Hamiltonian systems, Periodic solutions, Saddle Point Theorems.

2000 Mathematical Subject Classification: 34C15, 34C25, 58F.

1. Introduction

In 1978, Rabinowitz firstly used variational methods in large to study the periodic solutions for second order Hamiltonian systems with super-quadratic potential.

$$\ddot{q} + V'(q) = 0$$
 (1.1)

He proved that

Theorem 1.0([11]) Suppose V satisfies (V₁) $V \in C^1(\mathbb{R}^n, \mathbb{R})$

 (V_2) There exist constants $\mu > 2, r_0 > 0$ such that

$$0 < \mu V(x) \le V'(x) \cdot x, \quad \forall |x| \ge r_0,$$

 $(V_3) V(x) \ge 0, \quad \forall x \in \mathbb{R}^n,$ $(V_4) V(x) = o(|x|^2), \text{ as } |x| \to 0.$

Then for any T > 0, (1.1) has a non-constant T-periodic solution.

In the last 30 years, there were many works for (1.1), we can refer ([3]-[9],[12,13]), and the references there. In this paper, we try to generalize the result of Rabinowitz, we get the following Theorem:

Theorem 1.1 Suppose V satisfies $(V1) \ V \in C^1(\mathbb{R}^n, \mathbb{R})$

(V2) There exist constants $\mu_1 > 2, \mu_2 \in \mathbb{R}$ such that

$$V'(x) \cdot x \ge \mu_1 V(x) + \mu_2, \quad \forall x \in \mathbb{R}^n,$$

(V3) There are $a_1 > 0, a_2 \in R$ such that

$$V(x) \ge a_1 |x|^{\mu_1} + a_2, \quad \forall x \in \mathbb{R}^n,$$
$$V'(x) \cdot x - 2V(x) \to +\infty, |x| \to +\infty$$

(V4)

 $V(x) \le A|x|^2, |x| \to 0.$

Then for any $T < (\frac{2}{A})^{1/2}\pi$, (1.1) has a non-constant *T*-periodic solution.

Remark Comparing Rabinowitz's Theorem1.0, the biggest difference is that we didn't assume the potential V is nonnegative, our conditions V(2) - V(4) are weaker.

For sub-quadratic second order Hamiltonian system, we can get

Theorem 1.2 Suppose V satisfies

 $(V1) \ V \in C^1(R^n,R).$

(V2') There exist constants $\mu_1 < 2, \mu_2 \in R$ such that

$$V'(x) \cdot x \le \mu_1 V(x) + \mu_2, \quad \forall x \in \mathbb{R}^n.$$

(V3')

$$V'(x) \cdot x - 2V(x) \to -\infty, |x| \to +\infty.$$

(V4')

$$V(x) \le A|x|^2 + a.$$

(V5)

$$V(x) \to +\infty, |x| \to +\infty.$$

Then for any $T < (\frac{2}{A})^{1/2}\pi$, (1.1) has a *T*-periodic solution.

2. Some Lemmas

In order to prove Theorem 1.1, we define functional

$$f(q) = \frac{1}{2} \int_0^T |\dot{q}|^2 dt - \int_0^T V(q) dt, \quad \forall q \in H^1$$
(2.1)

where

$$H^{1} = W^{1,2}(R/TZ, R^{n}).$$
(2.2)

Lemma 2.1([11,12]) Let $\tilde{q} \in H^1$ be such that $f'(\tilde{q}) = 0$ Then $\tilde{q}(t)$ is a *T*-periodic solution for (1.1).

Lemma2.2(Sobolev-Rellich-Kondrachov, Compact Imbedding Theorem, [5], [6], [8], [13])

$$W^{1,2}(R/TZ, R^n) \subset C(R/TZ, R^n)$$

中国科技论文在线

and the imbedding is compact.

Lemma 2.3(Eberlein-Shmulyan [14]) A Banach space X is reflexive if and only if any bounded sequence in X has a weakly convergent subsequence.

Lemma 2.4([1],[8],[15]) Let $q \in W^{1,2}(R/TZ, R^n)$ and q(0) = q(T) = 0We have Friedrics-Poincare's inequality:

$$\int_0^T |\dot{q}(t)|^2 dt \ge \left(\frac{\pi}{T}\right)^2 \int_0^T |q(t)|^2 dt$$

Let $q \in W^{1,2}(R/TZ, R^n)$ and $\int_0^T q(t)dt = 0$, then (i) We have Poincare-Wirtinger's inequality

$$\int_{0}^{T} |\dot{q}(t)|^{2} dt \ge \left(\frac{2\pi}{T}\right)^{2} \int_{0}^{T} |q(t)|^{2} dt$$

(ii) We have Sobolev's inequality

$$\max_{0 \le t \le T} |q(t)| = ||q||_{\infty} \le \sqrt{\frac{T}{12}} \left(\int_0^T |\dot{q}(t)|^2 dt \right)^{1/2}$$

We define the equivalent norm in $H^1 = W^{1,2}(R/TZ, R^n)$

$$\|q\|_{H^1} = \left(\int_0^T |\dot{q}|^2 dt\right)^{1/2} + |q(0)|$$

Definition2.1([4]) Let X is a Banach space, $\{q_n\} \subset X$ satisfy

$$f(q_n) \to C, \quad (1 + ||q_n||) f'(q_n) \to 0.$$
 (2.3)

Then we call $\{q_n\}$ satisfy Cerami-Palais-Smale condition.

Lemma 2.5(Benci-Rabinowitz [3],[5], Generalized Mountain-Pass Lemma) Let X be a Banach space, $f \in C(X, R)$. Let $X = X_1 \bigoplus X_2$, dim $X_1 < +\infty, X_2$ is closed in X. Let

$$B_{a} = \{x \in X | ||x|| \le a\},\$$

$$S = \partial B_{\rho} \cap X_{2}, \rho > 0,\$$

$$Q = \{x_{1} + se|(x_{1}, s) \in X_{1} \times R^{1}, s \ge 0, ||x_{1}||^{2} + s^{2} \le R^{2}\},\$$

$$\partial Q = (B_{R} \cap X_{1}) \cup (\partial B_{R} \cap (X_{1} \bigoplus R^{+}e)), R > \rho,\$$

where $e \in X_2, ||e|| = 1$,

$$\partial B_R \cap (X_1 \bigoplus R^+ e) = \{x_1 + se | (x_1, s) \in X_1 \times R^+, \|x_1\|^2 + s^2 = R^2\}$$

If

$$f|_S \ge \alpha,$$

中国科技论文在线

and

$$f|_{\partial Q} \le \beta < \alpha,$$

Then $C = \inf_{x \in \Gamma} \sup f(\phi(x)) \ge \alpha$, if f(q) satisfies $(CPS)_C$ on $[\beta, \alpha]$, then C is a critical $\phi \in \Gamma_{x \in C}$ value for f.

Lemma 2.6 (Rabinowitz's Saddle Point Theorem [12], Mawhin-Willem [8]) Let Xbe a Banach space and let $f \in C^1(X, R)$, let $X = X_1 \bigoplus X_2$ with

$$\mathrm{dim}X_1 < +\infty$$

and

$$\sup_{S_R^1} f < \inf_{X_2} f$$

where $S_R^1 = \{u \in X_1 | |u| = R\}$. Let $B_R^1 = \{u \in X_1, |u| \le R\}, M = \{g \in C(B_R^1, X) | g(s) = s, s \in S_R^1\}$

$$C = \inf_{g \in M} \max_{s \in B_R^1} (g(s))$$

Then $C \ge \inf_{X_2} f$, if f satisfies $(PS)_C$ condition, C is a critical value of f.

3. The Proof of Theorems 1.1 and 1.2

Lemma 3.1 If (V1) - (V3) in Theorem 1.1 hold, then f(q) satisfies the (Cerami – Palais - Smale) condition on H^1 .

Proof Let $\{q_n\} \subset H^1$ satisfy

$$f(q_n) \to C, \quad (1 + ||q_n||) f'(q_n) \to 0.$$
 (3.1)

Then we claim $\{q_n\}$ is bounded. In fact, by $f(q_n) \to C$, we have

$$\frac{1}{2} \|\dot{q}_n\|_{L^2}^2 - \int_0^T V(q_n) dt \to C$$
(3.2)

By (V2) we have

$$< f'(q_n), q_n > = \|\dot{q}_n\|_{L^2}^2 - \int_0^T (< V'(q_n), q_n >) dt$$

 $\leq \|\dot{q}_n\|_{L^2}^2 - \int_0^T [\mu_2 + \mu_1 V(q_n)] dt$ (3.3)

By (3.2) and (3.3) we have

$$< f'(q_n), q_n > \leq a \|\dot{q_n}\|_{L^2}^2 + C_1 + \delta, n \to +\infty$$
 (3.4)

Where $C_1 = C\mu_1 - T\mu_2 + \delta, \delta > 0, a = 1 - \frac{\mu_1}{2} < 0.$

By $f'(q_n) \to 0$, there exist $C_2 > 0$ and $C_3 > 0$ such that

$$| < f'(q_n), q_n > | \le C_2 + C_3 ||q_n|| = C_2 + C_3 (||\dot{q}_n||_{L^2} + |q_n(0)|)$$
(3.5)

By (3.4) and (3.5) we have

$$-(C_2 + C_3 \|q_n\|) \le \left(1 - \frac{\mu_1}{2}\right) \|\dot{q}_n\|_{L^2}^2 + C_1 + \delta,$$
(3.6)

If $\|\dot{q}_n\|_{L^2}$ is unbounded, then since $\mu_1 > 2$, $|q_n(0)|$ must be unbounded and there exists subsequence, still denoted by $\{q_n\}$, and b > 0, s.t.

$$|q_n(0)| \ge b \|\dot{q}_n\|_{L^2}^2, \tag{3.7}$$

By Newton-Leibniz formula and Cauchy-Schwarz inequality, we have

$$\begin{aligned} |q_n(t)| &\geq |q_n(0)| - \|\dot{q}_n\|_2 \\ &\geq b \|\dot{q}_n\|_2^2 - \|\dot{q}_n\|_2 \to +\infty, \quad \text{as } n \to +\infty \end{aligned}$$
(3.8)

$$\min_{0 \le t \le 1} |q_n(t)| \to +\infty, \quad \text{as } n \to +\infty$$
(3.9)

We notice that

$$f'(q_n)q_n = \int_0^T |\dot{q}_n|^2 dt - \int_0^T \langle V'(q_n), q_n \rangle dt$$
(3.10)

$$= 2f(q_n) + \int_0^T [2V(q_n) - \langle V'(q_n), q_n \rangle] dt$$
(3.11)

By (V3)and (3.1), this is a contradiction, so $\|\dot{q}_n\|_{L^2} \leq M_1$. Then we claim $|q_n(0)|$ is also bounded. Otherwise, there a subsequence, still denoted by q_n , s.t. $|q_n(0)| \to +\infty$, since $\|\dot{q}_n\| \leq M_1$, then

$$\min_{0 \le t \le 1} |q_n(t)| \ge |q_n(0)| - \|\dot{q}_n\|_2 \to +\infty, \text{ as } n \to +\infty$$
(3.12)

Similar to the above proof,(3.11) is a contradiction.

So $||u_n|| = ||\dot{u}_n||_{L^2} + |u_n(0)|$ is bounded.

By the embedding theorem, $\{q_n\}$ has a weakly convergent subsequence which uniformly converges to $q \in H^{1,2}$.

Hence by $V \in C^1$ we have

$$V(q_n) \to V(q), \langle V'(q_n), q_n \rangle \to \langle V'(q), q \rangle, \qquad (3.13)$$

Furthermore, it's standard step for the rest proof , the weakly convergent subsequence is also strongly convergent to $q \in H^{1,2}$.

$$\begin{aligned} X_1 &= R^n, X_2 = \{ u \in W^{1,2}(R/TZ, R^n), \int_0^T u dt = 0 \} \\ S &= \left\{ u \in X_2 | \left(\int_0^T |\dot{u}_2|^2 dt \right)^{1/2} = \rho \right\}, \\ \partial Q &= \{ u_1 \in R^n | |u_1| \le R \} \cup \\ \left\{ u = u_1 + se, u_1 \in R^n, e \in X_2, \|e\| = 1, s > 0, \|u\| = (|u_1(0)|^2 + s^2)^{1/2} = R > \rho \right\}. \end{aligned}$$

When $q \in X_2$, by Sobolev's inequality, $\int_0^T |\dot{q}|^2 dt \to 0$ implies $max|q(t)| \to 0$. So

when $\int_0^T |\dot{q}|^2 dt \to 0$, (V4) implies

$$V(q) \le A|q|^2$$

When $q \in X_2$, we have Poincare-Wirtinger inequality, so when

$$\rho = \left[\int_0^T |\dot{q}|^2 dt\right]^{\frac{1}{2}} \to 0$$

We have

$$f(q) \ge \frac{1}{2} \int_0^T |\dot{q}|^2 dt - A \int_0^T |q|^2 dt$$
$$\ge [\frac{1}{2} - A(2\pi)^{-2}T^2]\rho^2,$$

On the other hand, if $q \in X_1$, then we have

$$f(q) = -\int_0^T V(q)dt \to -\infty, |q| = R \to +\infty,$$

if

 $q \in \{q = u_1 + se, u_1 \in \mathbb{R}^n, e \in X_2, \|e\| = 1, s > 0, \|u\| = (|u_1(0)|^2 + s^2)^{1/2} = \mathbb{R} > \rho\},\$ then by (V3) and Jensen's inequality, we have

$$\begin{split} f(q) &= \frac{1}{2}s^2 - \int_0^T V(u_1 + se)dt \\ &\leq \frac{1}{2}s^2 - \int_0^T (a|u_1 + se|^{\mu_1} + b)dt \\ &\leq \frac{1}{2}s^2 - [aT^{1-\frac{\mu_1}{2}}(\int_0^T |u_1 + se|^2dt)^{\frac{\mu_1}{2}} + bT] \\ &= \frac{1}{2}s^2 - aT^{1-\frac{\mu_1}{2}}[T|u_1|^2 + s^2\int_0^T |e(t)|^2dt]^{\frac{\mu_1}{2}} - bT \\ &\to -\infty, s \to +\infty(R \to +\infty). \end{split}$$

The rest of the proof for Theorem 1.1 is obvious.

Using Rabinowitz's Saddle Point Theorem and similar methods to Theorem 1.1,we can prove Theorm1.2,here we omit it

Acknowledgements

The author Zhang Shiqing sincerely thank the supports of NSF of China and the Grant for the Advisors of Ph.D students.

References

- R.A.Adams and J.F.Fournier, Sobolev spaces, Second Edition, Academic Press, 2003.
- [2] A.Ambrosetti and P.Rabinowitz, Dual variational methods in critical point thery and applications, J.Funct. Anal.14(1973), 349-381.
- [3] V.Benci and P.Rabinowitz, Critical point theorem for indefinite functionals, Inv. Math. 52(1979), 241-273.
- [4] Cerami G., Un criterio di esistenza per i punti critici so variete illimitate, Rend. dell academia di sc.lombardo112(1978),332-336.
- [5] Chang K.C., Critical point theory and applications, Shanghai Academic Press, 1986.
- [6] J.Jost and X.Jost, Calculus of variations, Cambridge Univ. Press, 1998.
- [7] Y.Long, Index theory for symplectic paths with applications, Birkhauser Verlag, 2002.
- [8] J. Mawhin and M.Willem, Critical point theory and Hamiltonian system, Springer, Berlin ,1989.
- [9] L.Nirenberg, Variational and toplogical methods in nonlinear problems, Bull. AMS, New Series 4(1981), 267-302.
- [10] R.Palais, S.Smale, A generalized Morse theory, BAMS70(1964), 165-171.
- [11] P.H.Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31(1978), 157-184.
- [12] P.H.Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. 65, AMS, 1986.
- [13] M.Struwe , Variational methods, Springer, Berlin, 1990.
- [14] K.Yosida, Functional analysis, 5th ed., Springer, Berlin, 1978.
- [15] W.P., Ziemer, Weakly differentiable functions, Springer, 1989.
- [16] Zhang S.Q., Notes on Rabinowitz's Saddle Point Theorems, Preprint, 2008.