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Abstract: Some representations for the Drazin inverse of a 2 2× block matrix
A B

M
C D
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

where A and D are Drazin invertible, in terms of the Drazin inverses of A and D are developed under 
the assumptions that ( ) 0I D CA Bπ π− = and ( ) 0AA B I Dπ π− = with the generalized Schur 

complement dS D CA B= − neither nonsingular nor zero. 10 
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1 Introduction 
Let X andY be complex Banach spaces. Denote by ( , )B X Y the set of all bounded linear 

operators from X toY . An element ( )T B X∈ whose spectrum ( )Tσ consists of the set{0}is said 15 

to be quasi-nilpotent [1].  It is clear that T is quasi-nilpotent if and only if the spectral 
radius ( ) sup{| |: ( )} 0T Tγ λ λ σ= ∈ = . For ( )T B X∈ , the concept of the generalized Drazin 
inverse (for short GD-inverse) in a Banach algebra was introduced by Koliha [2], which is the 

unique (if exists) element ( )dT B X∈ such that d dTT T T= , d d dT TT T= , 2 dT T T− is quad 

quasi-nilpotent. If there exists an integer k such that 2( ) 0d kT T T− = , then the least such k is the 20 

index ofT , denoted by ind ( )T k= . Otherwise, we say ind ( )T = ∞ . If T is generalized Drazin 

invertible, then the spectral idempotentT π ofT corresponding to{0}is given by dT I TTπ = − . 

The operator matrix form of T with respect to the space decomposition ( ) ( )X N T R Tπ π= ⊕  

is given by 1 2T T T= ⊕ , where 1T  is invertible and 2T is quasi-nilpotent. 

In recent years, the study of GD-inverse has been of leading interest to many researchers (see 25 
[3]-[6]). This is because such inverses are useful tools for several applications. And properties of 
the Drazin inverse and its applications to singular differential equations and singular difference 
equations, to Markov chains and iterative methods, to structured matrices, and to perturbation 
bounds for the relative eigenvalue problem can be found in (see [3,7-9,10,11,12] and [13]). In 
[14], Campbell and Meyer posed the following open problem: find an explicit representation for 30 

the Drazin inverse of a 2 2× block matrix
A B

M
C D
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

in terms of the blocks of the partition, 

where the blocks A and D are assumed to be square matrices. The motivation for this open problem 
is the desire to find general expressions for the solutions to the second-order system of the 

differential equations '' '( ) ( ) ( ) 0Ex t Fx t Gx t+ + = , where the matrix E is singular. The detailed 

discussion of the importance of the problem together with the prerequisite mathematical 35 
definitions needed for its statement can be found in [7].  Finding an explicit representation for the 
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GD-inverse of a general 2 2× block matrix in terms of dA and dD with arbitrary ,A ,B C  and 

D appears to be difficult. The generalized Schur complement dS D CA B= −  plays an important 

role in the representations for dM . However, to the best of our knowledge, it is still an open 

problem to find an explicit formula for dM if dA exists and the generalized Schur complement  40 
dS D CA B= − ≠ 0  is not invertible. 

This paper is devoted to the GD-inverse of 2 2× operator matrix  
A B

M
C D
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,                        (1)  

Where ( )A B X∈ and ( )D B Y∈ are GD-invertible. We will obtain some explicit 

GD-inverse formulae for a 2 2× operator matrix M under the conditions that dS D CA B= − ≠ 0 is 45 
not invertible. Our results do not appear in the literature and some resent results are extended with 
simplified proof. Moreover, we consider some applications of our results to obtain GD-inverse of 
various structured matrices. 

2 Key lemmas and preliminaries 
First we present some additive results for the GD-inverse of P Q+ , which are closely 50 

connected to the GD-inverse of a 2 2× operator matrix. 

Lemma 2.1 Let P and ( )Q X∈B be GD-invertible. 

(1) (see [15]) If PQ QP= , then P Q+ is GD-invertible if and only if dI P Q+ is 

GD-invertible, in this case we have 

0

0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ).

d d d d d d n d n d

n

d d n n d

n

P Q P I P Q QQ I QQ Q P P

Q Q P I PP

∞

=

∞

=

⎡ ⎤
+ = + + − −⎢ ⎥

⎣ ⎦
⎡ ⎤+ − −⎢ ⎥⎣ ⎦

∑

∑
 55 

(2) (see [16]) If 0PQ = , then P Q+ is GD-invertible and 

0 0
( ) ( ) ( ) ( ) ( ).d d n d n d d d n n d

n n
P Q I QQ Q P P Q Q P I PP

∞ ∞

= =

⎡ ⎤ ⎡ ⎤
+ = − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑  

If the generalized Schur complement dS D CA B= − is equal to 0 , then M is GD-invertible. 
The following result is due to Wei in [17]. 

    Lemma 2.2 (see [17]) Let d d dW AA A BCA= + and AW be GD-invertible. If 0,CAπ =  60 

0A Bπ = and the generalized Schur complement dS D CA B= − is equal to 0 , then M is 
GD-invertible and 

( )2
( ) .d d d

d

I
M AW A I A B

CA
⎛ ⎞ ⎡ ⎤= ⎜ ⎟ ⎣ ⎦
⎝ ⎠

 

Let 2
1

0
( )n d n

n
S D D C Aπ

∞
+

=

= ∑ and 2
1

0
( ) .d n n

n
T D CA Aπ

∞
+

=

= ∑  Recently, the Drazin inverse of 

a 2 2× block matrix has been studied by Hartwig and Cvetković-Ilić (see [18]). 65 
    Lemma 2.3 (see [18]) Let M be defined as in (1). If 0, 0BC BD= = , then M is 

GD-invertible and  
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2

1 1 1 1

( )
.

( ) ( )

d d
d

d d d d d d d d d

A A B
M

S T D CA D D T S A B D D C CA A B
⎛ ⎞

= ⎜ ⎟
+ − + + − +⎝ ⎠

 

Proof. Since A and D are GD-invertible, we have 
2(

0 0 0 0
)d dA AA B B⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and 
2

0 0
( )

0 0
.ddDC D DC

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 70 

Note that
0 0

0 0
A B

M
C D

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and 
0 0

0
0 0
A B

C D
⎛ ⎞⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. The result can be obtained 

directly by using the second result in Lemma 2.1. ■ 
Throughout this paper, we use some notations. Let A and D be GD-invertible,  

1 ( )X Aπ= N , 2 ( )X Aπ=R , 1 ( )Y Dπ= N  and 2 ( )Y Dπ=R . 

Let dS D CA B= − and 0

0
0
I

I I I
I
⎛ ⎞

= ⊕ ⊕⎜ ⎟
⎝ ⎠

be the invertible operator from 75 

1 2 1 2X X Y Y⊕ ⊕ ⊕  onto 1 1 2 2X Y X Y⊕ ⊕ ⊕ . Then M as an operator on 1 2 1 2X X Y Y⊕ ⊕ ⊕  
has the following operator matrix form 

   

1 1 3 1 1 3

2 4 2 1 1 3 1
0 0

1 3 1 4 2 2

4 2 2 4 2 2

0 0
0 0

0 0
,

0 0

A B B A B B
A B B C D C

M I I
C C D B A B
C C D C C D

−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                (2) 

where 1A , 1D are invertible, 2A , 2D are quasi-nilpotent. Denote by 

1 1
0

1 1

A B
A

C D
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 3
0

3

0
0
B

B
C
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 4
0

4

0
0
B

C
C
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 and 2 2
0

2 2

A B
D

C D
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.    (3)  80 

Therefore 

0 0 1
0 0

0 0

A B
M I I

C D
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 and 0 0 1
0 0

0 0

d
d A B

M I I
C D

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.              (4)   

A role of 0I  is to re-arrange the blocks of a 4 4× matrix M . For example, 

0 1
0 0

0 0
0 0 0

d

d

B AA BD
I I

DD CA

π

π
− ⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ,  

1
0 0

0

0 0 0
0 0

d

d

A BDD
I I

C D CAA

π

π
− ⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ,                     (5) 85 

1
0 0

0

0 0
0

AA A BD
I I

D D CA DD

π π π

π π π
− ⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

= .  

Note that AAπ and DDπ are quasi-nilpotent. The following lemma gives some equivalent 
conditions such that 0D is quasi-nilpotent.  

Lemma 2.4 Let 0D be defined as in (3). If one of the following conditions holds, 
then 0D is quasi-nilpotent.  90 
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(1) 0, 0, (2) 0, 0,
(3) 0, 0, (4) 0, 0,
(5) 0, (6) 0, 0, ,
(7) 0, (8) 0, 0, .

A ABD D CA BD A BDD A BD CA
D CAA D CA BD D DCA A BD CA
D CA A BD CA D CA BD D CAA D DCA
A BD A BDD D CA BD A BDD A ABD

π π π π π π π π π π

π π π π π π π π π π

π π π π π π π π π π π π

π π π π π π π π π π π

= = = =

= = = =

= = = =

= = = =

  (6) 

Proof: Note that 2A and 2D are two quasi-nilpotent operators. If 0AA BDπ π = and 

0,D CA BDπ π π =  then 2 2 0A B = and 2 2 0.C B =  By Lemma 2.1, we have 

2 2
0

2 2

0 0
0.

0 0

d

d A B
D

C D
⎛ ⎞⎛ ⎞ ⎛ ⎞

= + =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Hence 0D is quasi-nilpotent. Similarly, we can show that if any condition holds in (6), 95 

then 0D is quasi-nilpotent. ■       

As for the 2 2× matrix 0A in (3), we have the following result. 

Lemma 2.5 Let 0A be defined as (3). If d dDD SDD DπΓ = + is invertible, then 0A is 
invertible and 

1 1 1
10

0 0 1 1

0
: .

0 0

d d d d d d

d d d

A A A B D DCA A B D D
R I I

D DCA D D

− − −
−

− −

⎛ ⎞ ⎛ ⎞+ Γ − Γ
= =⎜ ⎟ ⎜ ⎟

−Γ Γ⎝ ⎠ ⎝ ⎠
          (7) 100 

Proof:  By (2), we have 

 

1
1 1 3 1 31

2 4 2 4 2

1 1
1 1 1 1 1 1 3

1 1
4 1 1 2 4 1 3

0 0
0 0 0

.

d D C C B BA
S D CA B

D C C B B

D C A B C A B
C A B D C A B

−

− −

− −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = − ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞− −

= ⎜ ⎟
− −⎝ ⎠

               (8) 

If d dDD SDD DπΓ = + is invertible, then 1
1 1 1 1 1S D C A B−= −  is invertible. Hence, 0A is 

invertible and 
1 1 1 1 1 1 1

1 11 1 1 1 1 1 1 1 1 1
0 1 1 1

1 1 1 1 1 1

.
A B A A B S C A A B S

A
C D S C A S

− − − − − − −
−

− − −

⎛ ⎞+ −⎛ ⎞
= = ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

 105 

Using rearrangement effect of 0I , we get (7). ■  

3 Some results related to the generalized Schur complement 
Let M be defined as in (1) such that A and D are GD-invertible, dS D CA B= − be the 

generalized Schur complement. Denote by d dDD SDD DπΓ = + . In this section, we will give 
some expressions for dM according to the R in (7). 110 
    Theorem 3.1 Let M be defined as in (1) such that one of the conditions in (6) is satisfied. 
Let d dDD SDD DπΓ = + be invertible and R have the form as in (7).  

(1) If 

0, 0, 0, 0,d d d dA ABD C A ABD D D DCA B D DCA Aπ π π π= = = =             (9) 

then M is GD-invertible and 115 

2

0

0 0
.

0 0

n

d n

n

AA A BD A B BD
M R R I R

D CA DD D C CA

π π π π π

π π π π π

∞
+

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

∑  
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(2) If 

( ) ( )A B I D C BD C I Aπ π π π− = − , ( ) ( )D C I A B CA B I Dπ π π π− = − , 

( ) ( )A AB I D A BD I Dπ π π π− = − , ( ) ( )D DC I A D CA I Aπ π π π− = − ,       (10) 

then M is GD-invertible and 120 

2

0

0 0
.

0 0

n

d n

n

A B BD A A A BD
M I R R R

D C CA D CA DD

π π π π π

π π π π π

∞
+

=

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞
⎢ ⎥= − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦ ⎣ ⎦

∑    

Proof: Since one of the conditions in (6) is satisfied, we have 0D is quasi-nilpotent.  

Lemma 2.5 implies that 0A is invertible.  

(1) From (9), we obtain 0 0 0B C = and 0 0 0B D = . By (4), (5) and Lemma 2.3 and 2.4, 
we have 125 

2
0 0 0

0 0 1 1
0 0 0 02 3

0 0 0 0 0 0 0 0 0
0 0

2
0 10 0 0

0 0
0 0 0

( )

( ) ( )

0 0 0 0 00

 

( ) 0 0
0 0 0 00 0 0 0 0 0

  

 

{ }

[

d d
d

d
d d n d d n

n n

d d n d

n
n

A A BA B
M I I I I

C D C A C AD B

BA A A
I I I

D C

D
− −∞ ∞

+ +

= =

+∞
−

=

⎛ ⎞
⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟

⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞

= + × +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

=

∑ ∑

∑

2

0
 

0 0
.

0 0
]

n d d
n

d d
n

AA A BD A BDD AA BD
R R I R

D CA DD D CAA DD CA

π π π π π

π π π π π

∞
+

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ × +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑

     (2) From (10), we obtain 0 0 0 00, 0B C C B= = and 0 0 0 0.D C C A=  Let 0 0
0

00
A B

P
D

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

and 0
0

0 0
.

0
Q

C
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 Then 0 0 0 0P Q Q P= , 0 0dQ = and 
2

0 0 0 0
00

( )
.

0 0

d d n n
d

n
A A B D

P

∞
+

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑  By 

Lemma 2.1(1), we obtain that 

2
0 0 0 0

02
0 0 0 0 0

2 2
0 0 0 0 0 0 0

0

( )
( ) ( ) .

( ) ( )

d d n n

nd d d

d d d n n

n

A A B D
P Q P Q P

C A C A A B D

∞
+

=

∞
+

=

⎛ ⎞
⎜ ⎟
⎜ ⎟+ = − =
⎜ ⎟
− −⎜ ⎟
⎝ ⎠

∑

∑
 130 

Hence,  

2
0 0 0 0

00 0 1 1
0 0 0 0

0 0 2 2
0 0 0 0 0 0 0

0

1

0

( )

( ) ( )

0 0
· · .

0 0
[ ] [ ]

d d n n
d

nd

d d d n n

n

n
n

n

A A B D
A B

M I I I I
C D

C A C A A B D

A B BD A A A BD
I R R I R

D C CA D CA DD

π π π π π

π π π π π

∞
+

=− −
∞

+

=

∞
+

=

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ − −⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= =

=

∑

∑

∑
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Let us use Theorem 3.1 to analyze some interesting special cases. If we replace the 
conditions in item (1) with the stronger conditions ( ) 0I A BDπ π− = and ( ) 0I D CAπ π− =  135 
the results can be reduced as: 

    Corollary 3.1 Let M be defined as in (1) such that one of the conditions in (6) be 

satisfied. Let d dDD SDD DπΓ = + be invertible and R have the form as in (7). 

If ( ) 0I A BDπ π− = , ( ) 0I D CAπ π− = , then M is GD-invertible and 

2

0

0
.

0

n

d n

n

AA BD A B
M R R

CA DD D C

π π π

π π π

∞
+

=

⎛ ⎞ ⎛ ⎞
= + ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑  140 

If the invertibility of Γ is replaced by the stronger condition dS D CA B= − invertible, we 
can get following corollary. It is worth pointing out the result (1) in next corollary has been given 
in [19], but to the best of out knowledge, the result (2) in next corollary hasn't been given yet by 
others. 

Corollary 3.2 Let M be defined as in (1) such that dS D CA B= − is invertible and 145 
1 1

1 1 .
d d d d

d

A A BS CA A BS
R

S CA S

− −

− −

⎛ ⎞+ −
= ⎜ ⎟

−⎝ ⎠
  

(1) (see [19] for matrix case)  If 0CA Bπ = and 0,CA Aπ = then M is GD-invertible and  

1
0

0 0 0
· · .

0
0 0

n
d n

n
A A B

M I R R I R
CA

π

π

∞

+
=

⎡ ⎤⎛ ⎞
⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟= + +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

∑  

(2) If 0A BCπ = , 0CA Bπ = , A AB A BDπ π= , then M is GD-invertible and 

1

0

0 00
· · .

00 0
[ ] [ ]d n

n
n

A B
M I R R I R

CA A

π

π

∞
+

=

⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑  150 

Proof. If dS D CA B= − is invertible, we set 1 2, {0}Y Y Y= = . So 2 3 2 4, , ,B B C C and 2D  

are equal to zero in (4). All these are equivalent to that 0, 0BD D Cπ π= = and 0D Dπ = in 
Theorem 3.1. Hence the results are clear. ■ 
    Next, let dS D CA B= − , 0

d dS DD SDD= and 0
d d d dW AA A BDD CA= + . By (8), if 

1 1
1 1 1 1 1 1 3

0 1 1
4 1 1 2 4 1 3

0 0
0,

0 0 0 0
d d I ID C A B C A B

S DD SDD
C A B D C A B

− −

− −

⎛ ⎞− −⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

 155 

then 1
1 1 1 1 0D C A B−− = . By Lemma 2.2, we have 0A is GD-invertible and 

( )21 1
0 1 1 1 1 1 1 11

1 1

( ) .d dI
A A B C A A I A B

C A
− −

−

⎛ ⎞
⎡ ⎤= +⎜ ⎟ ⎣ ⎦

⎝ ⎠
 

A direct calculation shows that 

( )210
0 0 0 0

0
: ( ) .

0 0

d
d d d

d d

IA
R I I AW A I A BDD

D DCA
−⎛ ⎞ ⎛ ⎞ ⎡ ⎤= =⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠

           (11) 

So we can deduce some results parallel with Theorem 3.1.  160 
    Theorem 3.2 Let M be defined as in (1) such that one of the conditions in (6) is satisfied. 
Let 0 0d dS DD SDD == and 0R be defined as in (11). 
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(1) If (9) holds, then M is GD-invertible and dM has the representation as in 
Theorem 3.1(1), where one need replace R by 0R . 

(2) If (10) holds, then M is GD-invertible and dM has the representation as in 165 
Theorem 3.1(2), where one needs to replace R by 0R . 

We remark that the conditions in Theorem 3.2 are weaker than the conditions used in 
papers [19] and [17]. Similar to Corollaries 3.1-3.2, various special results are easily 
derived from Theorem 3.2. We leave it to readers who are interested in. 

4 Block triangular matrices 170 

In this section, we apply results obtained in Theorems 3.1 and 3.2 to 2 2× block triangular 

matrix. By the proof of Lemma 2.5, if ( ) ( ) 0I A B I Dπ π− − = , then 1 0B = and R in (7) reduces 

as  
1

11
0 01 1 1

1 1 1 1

0 0
0

d

d d d

A A
R I I

D C A D D CA D

−
−

− − −

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⊕ =⎢ ⎥⎜ ⎟ ⎜ ⎟

− −⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦
                (12) 

and 175 

1
1

0

( ) 0
.

( ) ( ) ( )

d n

n n
d i d n i d n

i

A
R

D C A D
−

+ −

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟−⎜ ⎟
⎝ ⎠
∑

                                (13) 

By Theorem 3.1, we have following results. 
    Theorem 4.1 Let M be defined as in (1) such that ( ) ( ) 0I A B I Dπ π− − = and one of 
the conditions in (6) is satisfied. 

(1) If (9) holds, then M is GD-invertible and 180 
1

1 2 2

1
01

0 2
0

0 ( ) ( ) ( )

( ) 0

0

[

]

n n
d i d n i d n

d n
ii n i n

n d n
i

d d

d d d d d d

A A A B D C A A B D
M

D D CA A D D
D C A

A I A BD
D CA D D CA I D CA BD

π
π π

π π π
π

π

π π

+
+ − + +∞

−
=− −

= +
=

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟×⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ ×⎜ ⎟ ⎜ ⎟
− −

=

⎝ ⎠ ⎝ ⎠

∑∑ ∑

 
(2) If (10) holds, then M is GD-invertible and  

2

1 1
2 1 2 1

0
0 0

0

0 ( ) 0
.

( ) ( ) ( )

[

]

d d d d
d

d d d d

d n n

n n
d n d i d n i i n i n

n
i i

I A BD CA A BD A
M

D CA I D CA D

A BD A A

D CA D C A BD D D CA A D D

π π

π

π π

π π π π π

+
∞

+ −
+ + − + − −

=
= =

⎛ ⎞ ⎛ ⎞+ −
×⎜ ⎟ ⎜ ⎟

− −⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ ×⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

∑ ∑ ∑
:Proof  (1) If (9) holds, by Theorem 3.1, (12) and (13}), we have 185 
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0

1

2

1

2

1
1 2

0

2

0

0

0 0 0
0 0

0 0
0

( ) 0

( ) (

0

( ) )

[ ]

[

n
d n

n
d

i n i nd d d

d n

n
d i d n

n

i d n

i

n

n
i

A A A B BD
M R R I R

D CA DD D C CA

A A
A A B

D D CA A D DD CA D D C

A

D C A D

π π π

π π π π π

π
π

π π π π

+

− −

+

+
+ −

∞

=

∞
−

=
=

+ +

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣
⎛ ⎞
⎜ ⎟
⎜ ⎟

⎦

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

−⎝ ⎠ ⎝ ⎠⎜ ⎟

⎛ ⎞
⎜×⎜−⎜

⎠

⎝ ⎠

⎝

∑

∑ ∑

∑

1
0

1

1

1 2

0

2

0
2

0
0

( ) ( ) ( )
.

( ) 0

[

]

d

d d d

n
d

i n i nd d d
n

n
d i d n i d n d

i d d

n

d
d n

i

I A BD
D CA I D CA BD

A A
A

D D CA A D DD CA D

A B D C A A B D I A BD
D CA I D CA BDD C A

π

π π

π

π π π

π π π

π π
π

∞

− −
=

+
+ − + +

=
+

−

=

⎛ ⎞⎟
⎜ ⎟⎟ −⎝ ⎠⎟

⎛ ⎞
⎛ ⎞ ⎜ ⎟= + ×⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎜ ⎟

⎝ ⎠
⎛ ⎞
− ⎛ ⎞⎜ ⎟

⎜ ⎟⎜ ⎟ −⎝ ⎠⎜ ⎟
⎝ ⎠

∑ ∑

∑

Similar to the proof of (1), we can prove (2). So the details are omitted. ■ 

If ( ) ( ) 0I D C I Aπ π− − = , then 1 0C = and R in (7) reduces as  

1 1 1
11 1 1 1

0 01
1

0 .
0 0

d d d

d

A A B D A A BD
R I I

D D

− − −
−

−

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
= ⊕ =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦
 

Under the assumptions of Theorem 4.1(1) with 190 

“ 0dA ABD Cπ = , 0dA ABD Dπ = , 0dD DCA Bπ = , 0dD DCA Aπ = ”(i.e., (9)) replaced 

by” 0dBD CAAπ = , 0dDD CAAπ = , 0dCA BDDπ = , 0DAA BDDπ = ”, the further result 
may be proved in much the same way as Theorem 4.1(1). 

    Theorem 4.2 Let M be defined as in (1) such that ( ) ( ) 0I D C I Aπ π− − = and one of the 

conditions in (6) is satisfied. If (14) holds, then M is GD-invertible and 195 

1

0
0

1 2 2

1
1

2
0

0

0( ) ( ) (

0

)

( )
.

[

]

d d d d
d

d d d d

n

i

n
d i d n i d n

n
i n i

d n
i

n
n

I A BD A A BD
M

D CA I D CA BD D

A AA B D CA A BD
D D CA A D D

D CA

π

π π

π
π π

π π π
π

+ − + +

−
− −

+
=

+
∞

=
=

⎛ ⎞
−⎜

⎛ ⎞ ⎛ ⎞−
= ×⎜ ⎟ ⎜ ⎟

−⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟+ ×⎜ ⎟
⎜ ⎟
⎝

⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎠

∑∑ ∑

 

    In finite dimensional space, X. Li and Y. Wei (see [20]) gave a representation of dM under 

the conditions that 0AA Bπ = , 0CA Bπ = , ( ) 0DC I Aπ− = , ( ) 0BC I Aπ− = . In this 

case, 0 ( ) dBC I A BD CAAπ π= − = and (14) holds.  

Moreover, we have 0 ( ) ( ) ( )DC I A I D C I Aπ π π= − = − − and Lemma 2.4(1) holds. 200 

Hence, the result in [20] still holds in infinite space and it is just one special case of Theorem 4.2. 
Corollary 4.1 (see [20] for the matrix case) If  

0AA Bπ = , ( ) 0DC I Aπ− = , 0CA Bπ = , ( ) 0,BC I Aπ− =  

then M is GD-invertible and 
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1 2 2

1
1

1

0
0 2

0

0

0( ) ( ) ( )
 .

( ) 0

[

]

d d d d
d

d d d d

n
d i d n i d n

n
i n i

n

ni
d nn

i

I A BD A A BD
M

CA I CA BD D

A AA B D CA A BD
D D CA A D D

D CA

π

π
π π

π π π
π

+
+

∞

=
=

− + +

−
− −

+
=

⎛ ⎞
−⎜

⎛ ⎞ ⎛ ⎞−

⎟
⎜ ⎟⎜ ⎟

= ×⎜ ⎟ ⎜ ⎟
−⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟+ ×⎜ ⎟
⎜ ⎟
⎝ ⎠⎝ ⎠

∑
∑∑  205 
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2X2 算子矩阵的广义 Drazin 逆的表示 
邓春源1，魏益民2 

（1. 华南师范大学数科院，广州 510631； 

2. 复旦大学数学科学学院，上海 200433） 250 
摘要：设 2X2 算子矩阵的对角元是 Drazin 可逆的, 在一定的条件下, 我们给出 2X2 算子矩

阵的 Drazin 逆的表示. 我们的结论推广了现有的一些结论, 把原有的关于矩阵的 Drazin

逆的表示仅仅限定在Schur补可逆或为零的情形推广到更一般的广义Schur补即可奇异也可

不为零的情形.  
关键词：块矩阵；广义 Drazin 逆；Schur 补 255 
中图分类号：O177. 2 


