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Some results on the representations for generalized Drazin

inverse of 2X2 matrix
Deng Chunyuan', Wei Yimin®
(1. School of Mathematics Science, South China Normal University, GuangZhou 510631;
2. School of Mathematical Sciences, Fudan University, ShangHai 200433)

D
where A and D are Drazin invertible, in terms of the Drazin inverses of A and D are developed under
the assumptions that (I —D")CA"B =0 and AA"B(l —D”) =0 with the generalized Schur

complement S = D — CA? B neither nonsingular nor zero.
Keywords: Block matrix; Generalized Drazin inverse; Schur complement

A B
Abstract: Some representations for the Drazin inverse of a 2x 2 block matrix M :[C ],

1 Introduction

Let X andY be complex Banach spaces. Denote by B(X,Y)the set of all bounded linear
operators from X toY . An element T € B(X)whose spectrum o(T ) consists of the set {0} is said
to be quasi-nilpotent [1]. It is clear thatT is quasi-nilpotent if and only if the spectral
radius ¥ (T) =sup{|A|: A €c(T)} =0. ForT € B(X), the concept of the generalized Drazin
inverse (for short GD-inverse) in a Banach algebra was introduced by Koliha [2], which is the
unique (if exists) elementT® € B(X)such that TT =TT, TTT? =T, T-T°T%is quad
quasi-nilpotent. If there exists an integer K such that (T —T>T¢)* =0, then the least suchK is the
index of T , denoted by ind (T ) =k . Otherwise, we say ind(T)=o0. If T is generalized Drazin
invertible, then the spectral idempotentT ” of T corresponding to {0} is given by T” =1 -TT?.
The operator matrix form of T with respect to the space decomposition X =N(T*)@R(T”")
isgivenbyT =T, @T,, where T, isinvertible and T, is quasi-nilpotent.

In recent years, the study of GD-inverse has been of leading interest to many researchers (see
[3]-[6]). This is because such inverses are useful tools for several applications. And properties of
the Drazin inverse and its applications to singular differential equations and singular difference
equations, to Markov chains and iterative methods, to structured matrices, and to perturbation
bounds for the relative eigenvalue problem can be found in (see [3,7-9,10,11,12] and [13]). In
[14], Campbell and Meyer posed the following open problem: find an explicit representation for

A B
the Drazin inverse of a2x 2 block matrix M = [C D] in terms of the blocks of the partition,

where the blocks A and D are assumed to be square matrices. The motivation for this open problem
is the desire to find general expressions for the solutions to the second-order system of the

differential equations EX'(t)+ FX (t)+GX(t) = 0, where the matrix E is singular. The detailed

discussion of the importance of the problem together with the prerequisite mathematical
definitions needed for its statement can be found in [7]. Finding an explicit representation for the
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GD-inverse of a general 2x 2block matrix in terms of A’ and D with arbitrary A, B, C and

D appears to be difficult. The generalized Schur complementS = D — CA’B plays an important
role in the representations for M ¢ However, to the best of our knowledge, it is still an open
problem to find an explicit formula for M ¢ if A exists and the generalized Schur complement
S=D-CA'B#0 isnot invertible.

This paper is devoted to the GD-inverse of 2 X 2 operator matrix

m=(” B 1
\c b/ M

Where A€ B(X) and D € B(Y) are GD-invertible. We will obtain some explicit

GD-inverse formulae for a2 x 2 operator matrix M under the conditions thatS = D —CA?B # Qs
not invertible. Our results do not appear in the literature and some resent results are extended with
simplified proof. Moreover, we consider some applications of our results to obtain GD-inverse of

various structured matrices.

2 Key lemmas and preliminaries

First we present some additive results for the GD-inverse of P +Q, which are closely

connected to the GD-inverse of a 2 x 2 operator matrix.

Lemma 2.1 Let P and Q € B(X) be G- invertible.
(1) (see [15]) IfPQ=QP, then P+Q is GD-invertible if and only if | +P?Q is

GD-invertible, in this case we have

(P+Q)* = P*(1+P*Q)* QQ” +(I —QQ"){i(—Q)”(P")”}P"
+Q' {i(Q“)”(—P)”}(I !
(2) (see [16]) IfPQ =0, then P + Q is GD-invertible and
(P+Q)" =(1 —QQ"){?Q”(P")”}P" +Q° {i(@")"P"}(I _PPY),

If the generalized Schur complement S = D —CA’B is equal to 0 , then M is GD-invertible.
The following result is due to Wei in [17].

Lemma 2.2 (see [17]) Let W = AA? + A°BCA® and AW be GD-invertible. IfCA™ =0,

A"B=0and the generalized Schur complement S =D —CA"B is equal to 0, then M is
GD-invertible and

I 2
d_ d d
M _[CAdj[(AW) Al A'B).
LetS, = D”z D"C(A")"?and T, = Z:(Dd )"*CA"A”. Recently, the Drazin inverse of
n=0 n=0

a2 x 2 block matrix has been studied by Hartwig and Cvetkovi¢-Ili¢ (see [18]).
Lemma 2.3 (see [18]) Let M be defined as in (1). f BC=0,BD =0, then M is
GD-invertible and
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. A (A")’B
S, +T,—D!CA* D®+(D"T,+5,A?)B—D?(D?C+CA?)A‘B |

Proof. Since A and D are GD-invertible, we have

A B)_(A" (A)YB) (0 0y ( 0 0
0 0) (0 0 {c Dj_[(D")ZC de’

A B 0 O A BYO O )
Note thatM = + and = (. The result can be obtained
0 0 C D 0 o)lC D

directly by using the second result in Lemma 2.1.
Throughout this paper, we use some notations. Let A and D be GD-invertible,

XIZN(A”), XZZR(A”)’ YIZN(D”) and YZZR(D”).
0 |1
Let S=D-CA"B and |, =1 @(I Oj@l be the invertible operator from

X, ®X,®Y, @Y, onto X, @Y, ® X, ®Y,. Then M as an operator on X, ® X, DY, @Y,

has the following operator matrix form

A 0 B B, A B 0 B
0 B, B C, Db C 0
M — AZ 4 2 — IO 1 1 3 I(;l’ (2)
C, C, D, 0 0 B, A B,
C, C, 0 D, cC, 0 C, D,

where A, D, are invertible, A, , D, are quasi-nilpotent. Denote by

(A B) _ (0 B) . (0 B (A B
A“‘[Cl DJ’ B°‘(cg OJ’ C°‘[C4 Ojand D°_[Cz DJ' ©

Therefore

B B

M =1, A By I;' and M® =1, Ao By 1" (4)
CO DO C0 DO

Arole of 1, is to re-arrange the blocks of a 4 x4 matrix M . For example,

(O B[ 0 AA'BD”

Lo 0)° |DD'A" 0 ’
0 0), 0 A"BDD"

IO IO = P d }) (5)
C, 0 D”CAA 0

| 0 0 - AA*  A"BD”

lo b,)* (D'cA* DD |

Note that AA” and DD” are quasi-nilpotent. The following lemma gives some equivalent
conditions such that D, is quasi-nilpotent.

Lemma 2.4 Let D be defined as in (3). If one of the following conditions holds,

then D, is quasi-nilpotent.
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(1) A"ABD” =0, D"CA"BD”" =0, (2) A'BDD” =0, A"BD"CA" =0,
(3) D'CAA™ =0,D"CA"BD" =0, (4) D"DCA"™ =0, A"BD"CA" =0,
(5) D"CA™ =0, (6) A"BD"CA" =0, D"CA"BD”" =0, D"CAA" =D"DCA",
(7) A"BD" =0, (8) A'BDD" =0,D"CA"BD” =0, A"BDD" = A"ABD".
Proof: Note that A and D, are two quasi-nilpotent operators. If AA"BD” =0 and
D"CA"BD” =0, then AB, =0andC,B, =0. By Lemma 2.1, we have

(2 46 3

95 Hence D, is quasi-nilpotent. Similarly, we can show that if any condition holds in (6),

then D, is quasi-nilpotent. W

http://www.paper.edu.cn

(6)

As for the 2x 2 matrix A, in (3), we have the following result.

Lemma 2.5 Let A, be defined as (3). If ['=DD"SDD" + D" is invertible, then A, is
invertible and

A' 0),., (A'+ABI'D'DCA’ -A'BIr'D'D
100 R=1, I,' = Y o :
0 ~-I'D‘DCA r'n'D
Proof: By (2), we have

s—p_cag=[D O [G G|AT 0)B B
0 D, C, C, 0 0){B, B, ®
_ Dl_C1A|7181 _ClAlilB3 '

_C4 A;l Bl Dz - C4 A;1 B3
If T'=DD‘SDD" + D" is invertible, then S, = D, —C,A"'B, is invertible. Hence, A, is
invertible and

05 a[A B) _[A'+A'BSICA" -A'BS
Cl Dl _SlilclAlil Sfl '

Using rearrangement effect of | ,, we get (7). W

()

3 Some results related to the generalized Schur complement

Let M be defined as in (1) such that A and D are GD-invertible, S = D —CA’B be the
generalized Schur complement. Denote by ' = DD?SDD? + D" . In this section, we will give
110  some expressions for M ¢ according to the R in (7).
Theorem 3.1 Let M be defined as in (1) such that one of the conditions in (6) is satisfied.
LetI’ = DD?SDD? + D” be invertible and R have the form as in (7).
() If
A’ABD"C =0, AYABD"D =0, D'DCA"B =0, D'DCA"A=0, )
115  then M is GD-invertible and

Md:R+i AA"  A'BD")( 0 AB e |l orl © BPTY|
~\pcA® DD* ) (D'C 0 CA" 0
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Q) If
A"B(I —D")C = BD"C(l — A"), D"C(l - A")B=CA"B(l - D"),
A"AB(l -D") = A"BD(I - D), D*DC(l — A")=D"CA(l - A7), (10)

then M is GD-invertible and

ve _ [0 AB) R+ SR 0 BD") AA ABDT) |
D’C 0 =" lcaAr o \pcA® DD”

Proof: Since one of the conditions in (6) is satisfied, we have D, is quasi-nilpotent.
Lemma 2.5 implies that A, is invertible.
(1) From (9), we obtain B)C, =0and B,D, =0. By (4), (5) and Lemma 2.3 and 2.4,

we have

Md

d A (A)B,
IO[A) Boj

1= | = o |7
G, D) > >DICAYB |

{5 8wl A O D
0 0) ==\0 NG O 0 0 0 00 0

[R+°"(AA” A”BD”}”[ 0 A”BDDdJRM] ><|:I+R[ 0 AAdBD”H

~ D'CA* DD ) |D'CAA 0 DDYCA” 0

B
(2) From (10)’ we Obtain BOCO = O’CO BO = Oand DOCO =C0Ab Let PO :[gh DOJ
0

0

N OYere|

0 O
and Q, :(C Oj' Then P,Q, =Q,F,, Qg =0 and Pod =
° 0 0

Lemma 2.1(1), we obtain that

AL YRR
(R +Qo)d = Pod _Qo(Pod)2 = " - .
_Co('%j)2 _COAS Z('Aﬁ? )n+2 Bo D(;]

_ -1
0 _IO IO

C(A)Y CATTA)BD;
=[|—[ 0 AﬂBjR]-R-[HiR”*‘[ 0 BD”)[ A*A A”BD”J 1

Jd Al S (AY)"2B,D
I n=0

D’C 0 =0 CA" 0 D"CA"™ DD~
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Let us use Theorem 3.1 to analyze some interesting special cases. If we replace the
conditions in item (1) with the stronger conditions (I — A")BD” =0and(l —D")CA" =0
the results can be reduced as:

Corollary 3.1 LetM be defined as in (1) such that one of the conditions in (6) be
satisfied. Let I'=DD’SDD" + D" be invertible and R have the form as in (7).

If(1 -A")BD" =0,(1 -D")CA™ =0, then M is GD-invertible and

M¢ = R+ BDY (o B R™?,
~|\caA® DD*)(DC 0

If the invertibility of T is replaced by the stronger condition S = D — CA?B invertible, we
can get following corollary. It is worth pointing out the result (1) in next corollary has been given
in [19], but to the best of out knowledge, the result (2) in next corollary hasn't been given yet by
others.

Corollary 3.2 Let M be defined as in (1) such that S = D—CA"B is invertible and
R A’ +A'BS'CA’ -A’BS
-s7'cA’ st )

(1) (see [19] for matrix case) If CA"B =0and CA"A =0, then M is GD-invertible and

0 Y AA'B 0 0
ME = |1+ Z(; R™! -R-{HR( ﬂ

CA* 0
0 0
(2) fA"BC=0,CA"B=0, A" AB = A"BD, then M is GD-invertible and
0 A'B = 0 0
MY = |I- RIR|I+)> R™ .
[ P EI (R L N

Proof. If S = D —CA’B is invertible, we setY, =Y,Y,={0}.S0B,,B,,C,,C,and D,

are equal to zero in (4). All these are equivalent to that BD” =0,D"C =0and DD =0 in
Theorem 3.1. Hence the results are clear. Wl
Next, letS = D—CA’B,S, = DDSDD" andW, = AA" + A"BDDCA" . By (8), if

| 0) D -CA'B -C,A’'B I 0
SO — DDdSDDd — 1 Clﬁl 1 lAl 713 — 0’
0 o)l -c,A'B, D,-C,A'B,Jl0 0

then D, —C,A'B, =0. By Lemma 2.2, we have A, is GD-invertible and

| 2
AS{ j[(MBICIA‘)"] Al A'B).

CA"
A direct calculation shows that
. Ag 0 1 I d7? d d
R, _.|0(0 o' =| bepeas [(AW,)’ [ A(1 A’BDD?). (11)

So we can deduce some results parallel with Theorem 3.1.
Theorem 3.2 Let M be defined as in (1) such that one of the conditions in (6) is satisfied.
LetS, = DD?SDD? =0 and R, be defined as in (11).

_6-
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(1) If (9) holds, then M is GD-invertible and M  has the representation as in
Theorem 3.1(1), where one need replaceR by R, .

165 (2) If (10) holds, then M is GD-invertible and M ¢ has the representation as in
Theorem 3.1(2), where one needs to replaceR by R, .

We remark that the conditions in Theorem 3.2 are weaker than the conditions used in
papers [19] and [17]. Similar to Corollaries 3.1-3.2, various special results are easily
derived from Theorem 3.2. We leave it to readers who are interested in.

170 4 Block triangular matrices
In this section, we apply results obtained in Theorems 3.1 and 3.2 to 2 x 2 block triangular

matrix. By the proof of Lemma 2.5, if (I — A")B(1 —D") =0, then B, =0and R in (7) reduces

A 0 » A 0
R = | @0 |1, = 12
OK—DI‘CIA‘ D " (-pcA’ D .

(A%)" 0

- _Z(Dd)iHC(Ad)n—i )" |

as

175 and

n

(13)

By Theorem 3.1, we have following results.

Theorem 4.1 Let M be defined as in (1) such that (I — A")B(l —D”)=0and one of
the conditions in (6) is satisfied.
180 (1) If (9) holds, then M is GD-invertible and

A”An 0 T S d i+l d\n—-i+2 T d\n+2
- ~ABY (DY)"'C(AY) AB(DY)
M 2[2 nl . X
m— Dﬁz DICAn—I—l A" Dn D~

i=0
i=0

DﬁC(Ad )n+2 0
A’ 0 ]X I A“BD”
-DCA* D¢ D'CA” |-DYCA“BD”
(2) If (10) holds, then M is GD-invertible and
V.4 d d AT d d
Md:(I+A BDYCA? —A"BD jx[[ A oj

+

1

—~D"CA" | -DcA' D¢
B 0 (Ad )n+2 BDII Al[An 0
+ Z dyn+2 D d il d\n—i+2 X N i~ A n
| (DY)™CAT -> (DY)*'C(A")"?*BD” | | D*Y_D'CA""'A" D'D”
i=0 i=0
185 Proof : (1) If (9) holds, by Theorem 3.1, (12) and (13}), we have
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o o )Y( o0 AB 0 BD”
Rn+2 I R
*=[rs Z;( D*CA” DD”j [D”C 0 j ][ ' [CA” 0 ﬂ

) i} AR 0 .
:[ A 0 +z n-1 0 A B
-D‘CA* D) #Z| D") D'CA™'A" D'D" |[DC 0
i=0
(Ad )n+2 0
n+1
_Z(Dd)iJrlC(Ad)nfiJrZ (Dd)n+2 [

i=0

I A‘BD”
DYCA* | -D'CA'BD”

d ATA" 0
:[ A 0 N i o ' y
_DdCAd Dd e Dﬁz DICAn—I—lAﬁ DnDIT
i=0
n+1
_AIIBZ(Dd)HlC(Ad )n—i+2 Al[B(Dd)n+2 [ I Ad BD;[ j
i=0 dApr _NdeadpnE |
D*C(A)™ 0 D°CA* |1-D"CA'BD
Similar to the proof of (1), we can prove (2). So the details are omitted. H
If(1 -=D*)C(I =A")=0, thenC, =0 and R in (7) reduces as

R = |OKAI “ABD j@OI [Ad _Adedj.
0 D;’ 0 D

190  Under the assumptions of Theorem 4.1(1) with
“A’ABD"C =0,A’ABD"D =0, D'DCA"B=0,D‘DCA"A=0"(i.e., (9)) replaced
by” BD"CAA? =0, DD"CAA’ =0, CA"BDD® =0, AA"BDDP® =0, the further result

may be proved in much the same way as Theorem 4.1(1).
Theorem 4.2 Let M be defined as in (1) such that (I —D")C(l — A™) = 0 and one of the
195  conditions in (6) is satisfied. If (14) holds, then M is GD-invertible and
Md:[ | A"BD* jx [Ad ~A‘BD®
D"CA? |-D"CA’BD" 0 D*

n+1 T AN
Z(Ad )I+l B(Dd )n I+2CAII (Ad )n+2 BDII A A O

+z ].

X -1 .
Dﬁz DICAn—I—lAﬁ Dn D/r

i=0

(D*)™2CA” 0
In finite dimensional space, X. Li and Y. Wei (see [20]) gave a representation of M ¢ under
the conditions that AA"B =0, CA"B=0, DC(l —A")=0,BC(l — A")=0. In this
case,0 = BC(l — A") = BD"CAA" and (14) holds.
200 Moreover, we have 0=DC(l —A")=(1 —D*)C(l — A")and Lemma 2.4(1) holds.

Hence, the result in [20] still holds in infinite space and it is just one special case of Theorem 4.2.
Corollary 4.1 (see [20] for the matrix case) If

AA"B=0, DC(I -A")=0, CA"B=0, BC(I-A")=0,
then M is GD-invertible and
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] | A"BD* A’ —A'BD?
M™ = d dpnd X[ d
CA" |I-CA'BD 0 D
n+1 T AN
© _Z(Ad)i+lB(Dd)n—i+2CA7r (Ad)n+2 BDir A A O

+ Z i=0
n=0

D”EDiCA“-i-IA” D"D” ]'

i=0

(Dd)n+2CA7r O
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