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Abstract

The author shows that the interpolation inequalities for derivatives
in variable exponent Lebesgue-Sobolev spaces by applying the bound-
edness of the Hardy-Littlewood maximal operator on Lp(x).

As applications the author proves a new Landau-Komogorov type
inequality for the second order derivative and a embedding theorem
and discusses the equivalent norms in the space W

1,p(x)
0 (Ω)∩W 2,p(x)(Ω).
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1 Introduction

It is well known that upper bounds for Lp norms of the intermediate deriva-
tive , 0 < |β| < m of functions in Wm,p(Ω) are determined by the Lp norms
of u and its partial derivatives of order m(see [1]). These estimates for in-
termediates derivatives play many important roles in the study of partial
differential equations and variation problems.

In these years, there emerged a need to study elliptic and parabolic
boundary value problems and to obtain boundedness of their solutions in
Orlicz spaces and generalize Orlicz spaces. In this context, the interpolations
inequalities of these spaces are of particular interest.

Variable exponent Lebesgue spaces Lp(·) and Sobolev spaces Wm,p(·) are
special case of the generalized Orlicz spaces. Many results for variable ex-
ponent spaces were obtained, we can refer ([3]-[10]) and references therein.
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Since the spaces Lp(·) are not invariant to translations, they have not
some undesired properties. For instance, the translation operator is in gen-
eral not continuous on Lp(·). Especially, for every Lp(·) with p non-constant
there exist f ∈ Lp(·) and a translation τh, such that τhf 6∈ Lp(·) (see The-
orem 2.10 [10]), and the convolution is in general not continuous. There-
fore, Young’s inequality for convolutions does not hold in the spaces Lp(·).
So we will suffer some difficulties for this work. Fortunately, under some
conditions one has proved the continuity of the Hardy-Littlewood maximal
function [3, 4, 6]. For example, if the bounded exponent p(x) > 1 satisfies
the following conditions(see [3, 4, 6, 7]):

|p(x)− p(y)| ≤ C

log |x− y| , x, y ∈ RN |x− y| ≤ 1
2
, (1.1)

|p(x)− p(y)| ≤ C

log(e + |x|) , x, y ∈ RN |y| ≥ |x|, (1.2)

where C > 0, then maximal operator is bounded on Lp(x)(RN ).
Under the aid of the boundedness of maximal operator and Sobolev inte-

gral representation (see[2]), the author obtains some interpolation inequal-
ities in the variable exponent Lebesgue-Sobolev spaces which are similar
to those of the classical Sobolev spaces as above. In fact, they are help-
ful to the study of the differential equations and variational problem with
nonstantdard growth conditions.

This article is organized as follows. In section 2, we introduce some
definitions and basic properties of the variable exponent Lebesgue-Sobolev
spaces W k,p(x) needed in the sequel. In section 3, we prove the our main
results. At last, as applications of our results, We discuss a compact Sobolev
embedding theorem of the space W k,p(x) and the equivalent norms in the
space W

1,p(x)
0 (Ω) ∩ W 2,p(x)(Ω). As a consequence we obtain the Landau-

Kolmogorov type inequality for the second order derivative on the variable
exponent Lebesgue-Sobolev spaces.

2 Preliminaries

Let Ω be a open subset of RN , let L∞+ (Ω) = {p ∈ L∞(Ω) : inf
x∈Ω

p(x) >

1}. For p ∈ L∞+ (Ω), denote

p− = p−(Ω) = ess inf
x∈Ω

p(x), p+ = p+(Ω) = ess sup
x∈Ω

p(x).

On the basic properties of the space W k,p(x)(Ω), we refer to [8, 9, 10]. Here
we display some facts which will be used later.

Denote by U(Ω) the set of all measurable real functions defined on Ω.
Two functions in U(Ω) are considered as the same element of U(Ω) when they
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are equal almost everywhere. For p ∈ L∞+ (Ω), define the spaces Lp(x) (Ω)
and W k,p(x) (Ω) by

Lp(x) (Ω) = {u ∈ U(Ω) :
∫

Ω
|u(x)|p(x) dx < ∞}

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf

{
λ > 0 :

∫

Ω

∣∣∣∣
u(x)

λ

∣∣∣∣
p(x)

dx ≤ 1

}
,

and

W k,p(x) (Ω) =
{

u ∈ Lp(x) (Ω) : | Dαu| ∈ Lp(x) (Ω) , 1 ≤ |α| ≤ k
}

with the norm
‖u‖W k,p(x)(Ω) =

∑

|α|≤k

|Dαu|Lp(x)(Ω) ,

and let |u|j,p(x),Ω =
∑
|α|=j

|Dαu|Lp(x)(Ω) , here α is multi-index and |α| is the

order. Denote by W
k,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W k,p(x) (Ω) .

Proposition 2.1.([8, 9, 10]) The space (Lp(x)(Ω), | · |p(x)) is a separable,
uniform convex Banach space, and its conjugate space is Lq(x)(Ω), where

1
q(x) + 1

p(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have
∣∣∣∣
∫

Ω
uvdx

∣∣∣∣ ≤
(

1
p−

+
1
q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

Proposition 2.2. ([8, 9]) Set ρp(u) =
∫
Ω |u(x)|p(x) dx. For u, uk ∈ Lp(x) (Ω) ,

we have
1)for u 6= 0, |u|p(x) = λ ⇐⇒ ρp(u

λ) = 1.
2) |u|p(x) < 1 (= 1;> 1) ⇔ ρp(u) < 1 (= 1;> 1).

3) If |u|p(x) > 1, then |u|p−p(x) ≤ ρp (u) ≤ |u|p+

p(x) .

4) If |u|p(x) < 1, then |u|p+

p(x) ≤ ρp (u) ≤ |u|p−p(x) .

5)limk→∞ |uk|p(x) = 0 ⇐⇒ limk→∞ ρp(uk) = 0.

Proposition 2.3. ([8, 9, 10])
i)The space (W k,p(x)(Ω), ‖·‖k,p(x)) is a separable, uniform convex Banach

space.
ii)In W

1,p(x)
0 (Ω) the Poincaré inequality holds, that is, there exists a

positive constant c such that

|u|Lp(x)(Ω) ≤ c |∇u|Lp(x)(Ω) , ∀u ∈ W
1,p(x)
0 (Ω) .
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Hereafter, we always denote by |E| the N-Lebesgue measure of set E.
Given a function f ∈ L1

loc(Ω), we define the maximal function Mf, by

Mf(x) = sup
x∈B

1
|B|

∫

B∩Ω
|f(y)|dy

where the supermum is taken over all ball center at x. Let B(Ω) be the set
of p ∈ L∞+ (Ω) such that M is bounded on Lp(x)(Ω).

3 Main Results

In this section, we give some interpolation inequalities for the variable ex-
ponent spaces and their proofs.

Theorem 3.1. If p ∈ B(RN ), for every u ∈ Wn,p(x)(RN ), 0 ≤ j < n
and all ε > 0, there exist finite constants K and K ′ each depending on
N, n, p, but being independent of ε, u. We have

|u|j,p(x) ≤ K(ε|u|n,p(x) + ε
− j

n−j |u|p(x)), (3.1)

|u|j,p(x) ≤ 2K |u|
j
n

n,p(x) |u|
n−j

n

p(x) , (3.2)

‖u‖j,p(x) ≤ K ′(ε ‖u‖n,p(x) + ε
− j

n−j |u|p(x)), (3.3)

‖u‖j,p(x) ≤ 2K ′ ‖u‖
j
n

n,p(x) |u|
n−j

n

p(x) . (3.4)

.
Proof. Inequality (3.3) follows from repeated applications of (3.1), in order
to obtain (3.2), (3.4) choosing ε in (3.1), (3.3) respectively so that the two
terms on the right side are equal. Thus we need only prove (3.1). Let
0 < j < n and u ∈ Wn,p(x)(RN ). Suppose Bσ(x) is any ball whose center
is x ∈ RN and radius is σ > 0. By Sobolev’s integral representation(see[2]),
For any 0 < |β| = j < n we have

|Dβu| ≤ C


σ−j−N

∫

Bσ(x)
|u|dy +

∑

|α|=n

∫

Bσ(x)

|Dαu|
|x− y|N−n+j

dy




≤ C


σ−j 1

|Bσ(x)|
∫

Bσ(x)
|u|dy +

∑

|α|=n

∫

Bσ(x)

|Dαu|
|x− y|N−n+j

dy




≤ C


σ−jMu(x) +

∑

|α|=n

∫

Bσ(x)

|Dαu|
|x− y|N−n+j

dy


 . (3.5)

If n− j < N, it is well known that for all δ > 0 and u ∈ L1
loc(RN ) holds:

∫

Bδ

|u|
|x− y|N−n+j

≤ Cδl−jMu(x).
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Thus
∫
Bσ(x)

|Dαu|
|x−y|N−n+j dy) ≤ Cσn−jM(Dαu(x)) therefore,we obtain

|Dβu| ≤ C


σ−jMu(x) + σn−j

∑

|α|=n

M(Dαu(x))


 . (3.6)

From (3.5), we can immediately obtain

|Dβu|p(x) ≤ C


(σ−jMu(x))p(x) +

∑

|α|=n

(σn−jM(Dαu(x)))p(x)


 . (3.7)

C may be different constants which is independent on u and σ in the (3.4)-
(3.6). Let µ = K0(σ−j |Mu|p(x)+

∑
|α|=n

σn−j |M(Dαu)|p(x)), we always suppose

that K0 ≥ 1. Then

∫
RN

∣∣∣Dβu
µ

∣∣∣
p(x)

dx ≤ C

(∫

RN

∣∣∣∣
σ−jMu

µ

∣∣∣∣
p(x)

dx +
∑
α=n

∫

RN

∣∣∣∣
σn−jM(Dαu)

µ

∣∣∣∣
p(x)

dx

)

≤ C

Kp−
0

(∫

RN

∣∣∣∣
Mu

|Mu|p(x)

∣∣∣∣
p(x)

dx +
∑
α=n

∫

RN

∣∣∣∣
M(Dαu)

|M(Dαu)|p(x)

∣∣∣∣
p(x)

dx

)

≤ (1 + Nn)C
K0

≤ 1.

Hence

|Dβu|p(x) ≤ K0(σ−j |Mu|p(x) + σn−j
∑
α=n

|M(Dαu)|p(x)), (3.8)

Since p ∈ B(RN ), |Mu|p(x) ≤ C1|u|p(x), |M(Dαu)|p(x) ≤ C1|Dαu|p(x), whence
(3.8) implies

|Dβu|p(x) ≤ K(σ−j |u|p(x) + σn−j
∑
α=n

|(Dαu)|p(x)). (3.9)

If n− j > N, then

|Dβu| ≤ C(σ−j−N

∫

Bσ(x)
|u|dy +

∑
α=n

σn−j−N

∫

Bσ(x)
|Dαu|dy)

≤ C(σ−jMu +
∑
α=n

σn−jM(Dαu)) (3.10)

Similarly, we get

|Dβu|p(x) ≤ K(σ−j |u|p(x) + σn−j
∑
α=n

|(Dαu)|p(x)). (3.11)
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It is easy to see that the constantK in (3.9) and (3.11) only depends on
N, n, p, but is independent of σ and u. (3.1) follows by setting ε = σn−j .

In [4], They have pointed out that it is not clear whether every exponent
p ∈ B(Ω) can be extended to an exponent function in B(RN ). But we have

Theorem 3.2. Given an open set Ω ⊂ RN which has uniform cone property
(see [1, 2, 4]), p ∈ L∞+ (Ω) such that (1.1) and (1.2) hold on the the Ω, for
every u ∈ Wn,p(x)(Ω), 0 ≤ k < n and all ε > 0, there exist finite constants
K depending on N, n, p, Ω but being independent of ε. We have

‖u‖j,p(x) ≤ K(ε ‖u‖n,p(x) + ε
− j

n−j |u|p(x)), (3.12)

‖u‖j,p(x) ≤ 2K ‖u‖
j
n

n,p(x) |u|
n−j

n

p(x) . (3.13)

Proof. Thanks to lemma 4.3 in [4], there exist a function p̃ ∈ L∞+ (RN )
such that p̃(x) satisfies (1.1)and (1.2), p̃|Ω = p and p̃− = p−, p̃+ = p+, thus
p̃ ∈ B(RN ). Using Calderón extension theorem for variable Sobolev spaces
due to D. Cruz-Uribe et.al.(see Theorem 4.5 [4]), there exists an extension
operator

E : Wn,p(x)(Ω) → Wn,p(x)(RN ),

such that Eu(x) = u(x), a.e.x ∈ Ω, and

|Eu|p̃(x),RN ≤ C(p, n, Ω)|u|p(x),Ω, ‖Eu‖n,p̃(x),RN ≤ C(p, n, Ω)‖u‖n,p(x),Ω.

From theorem 3.1,we have

‖u‖j,p(x) ≤ ‖Eu‖j,p̃(x),RN

≤ C(ε ‖Eu‖n,p̃(x),RN + ε
− j

n−j |Eu|p̃(x),RN )

≤ K(ε ‖u‖n,p(x) + ε
− j

n−j |u|p(x)),

and

‖u‖j,p(x) ≤ ‖Eu‖j,p̃(x),RN

≤ 2C ‖Eu‖
j
n

n,p̃(x),RN |Eu|
n−j

n

p̃(x),RN

≤ 2K ‖u‖
j
n

n,p(x) |u|
n−j

n

p(x) .

Theorem 3.3. If Ω ⊂ RN is an open set, p(x) as in theorem 3.2, then for
all ε > 0 the inequalities (3.1)-(3.4) hold for any u ∈ W

n,p(x)
0 (Ω).

Proof. Applying lemma 4.3 in [4] again, we have there exist a func-
tion p̃ ∈ L∞+ (RN ) such that p̃(x) satisfies (1.1)and (1.2), p̃|Ω = p and
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p̃− = p−, p̃+ = p+, thus p̃ ∈ B(RN ). Let ũ denote the zero extension
of u to RN \ Ω. As same to proof of lemma 3.27 in [1], one can show the
mapping u 7→ ũ maps W

n,p(x)
0 (Ω) isometrically into Wn,p(x)(RN ). We can

immediately get the conclusion.

4 Applications

4.1 Sobolev embedding theorems for the space W k,p(x)

In this subsection, firstly, we give a Sobolev embedding theorem for variable
exponent spaces which generalize Lemma 13 of chapter 4 in [2].

Theorem 4.1. Let n ∈ Z+,m ∈ Z+ ∪ {0},m < n, p, q ∈ L∞+ (Ω) and
let Ω ⊂ RN be an open set.

1.If the embedding

Wn,p(x)(Ω) ↪→ Wm,q(x)(Ω) (4.1)

is compact, then ∀ε > 0 there exists C(ε) > 0 such that ∀f ∈ Wn,p(x)(Ω)

‖f‖m,q(x) ≤ C(ε)|f |p(x) + ε‖f‖n,p(x). (4.2)

2. If ε > 0 (4.2) holds and the embedding Wn,p(x)(Ω) ↪→ Lp(x)(Ω) is
compact, then embedding (4.1) is also compact.

Proof. 1. Suppose that inequality (4.2) does not hold for all ε > 0, i.e. there
exist ε0 > 0 and functions fk ∈ Wn,p(x)(Ω), k ∈ N, such that ‖f‖n,p(x) = 1
and

‖fk‖m,q(x) ≤ k|fk|p(x) + ε0‖fk‖n,p(x). (4.3)

Since ‖fk‖n,p(x) = 1, by (4.1) it follows that ‖fk‖m,p(x) ≤ M , where M

is independent of k. Consequently, by (4.3) we have |fk|p(x) < M
k . Thus

lim
k→∞

|fk|p(x) = 0. Employing (4.3) again we have

lim inf
k→∞

‖fk‖m,p(x) ≥ ε0. (4.4)

Since embedding (4.1) is compact, there exists a subsequence fkj
converging

to a function f in Wm,q(x)(Ω). Since fkj
→ 0 in Lp(x)(Ω). Thus f = 0 a.e.

in Ω. This contradicts the inequality (4.4).
2. Let M > 0 and S = {f ∈ Wn,p(x) : ‖f‖n,p(x) ≤ M}, Since the

embedding Wn,p(x)(Ω) ↪→ Lp(x)(Ω) is compact, there exists a sequence fk ∈
S, k ∈ N, which is a cauchy consequence in Lp(x)(Ω). Furthermore from (4.2)
for any ε > 0,

‖fk − fj‖m,q(x) ≤ C(ε)|fk − fj |p(x) + ε‖fk − fj‖n,p(x). (4.5)
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From (4.5), we have lim
k,j∞

‖fk − fj‖m,q(x) ≤ Mε. Since ε is arbitrary, thus the

sequence fk is a cauchy sequence in Wm,q(x)(Ω). Therefore there exists a
function f ∈ Wm,q(x)(Ω) such that fk → f in Wm,q(x)(Ω) as k →∞, which
completes the proof.

Remark 4.2. It is well know that if p(x) ≡ p0 a constant then theo-
rem 4.1 is valid. But in [2], it is not true that it doesn’t require 1 < p0 < ∞
which make the space W k,p0(Ω) is a reflexive space in Lemma 13 of chapter 4.

Corollary 4.3. Let n,m ∈ N,m < n,Ω be a bounded domain with
Lipchitz boundary and 1 < q ≤ p < N

n . Supposed that p(x) satisfies
p(x) < Np(x)

N−np(x) − ε, a.e.x ∈ Ω for some ε > 0 such that (1.1) and (1.2)

hold. Then the embedding Wn,p(x)(Ω) ↪→ Wm,q(x)(Ω) is compact.

Proof. Ω be a bounded domain with Lipchitz boundary, then Ω has uni-
form cone property from [1]. Since q(x) ≤ p(x),m < n, the embedding
Wm,p(x)(Ω) ↪→ Wm,q(x)(Ω) is continuous by theorem[ ] in [9]. Thus the
inequality (4.2) holds by theorem 3.2. p(x) < Np(x)

N−np(x) − ε follows the em-

bedding Wn,p(x)(Ω) ↪→ Lp(x)(Ω) is compact from theorem[ ] in[?]. From
theorem 4.1, we can get this conclusion.

4.2 Equivalent norms in the space W
1,p(x)
0 (Ω) ∩W 2,p(x)(Ω)

In this section, we will discuss an application of our results to the quiva-
lent norms in the space W

1,p(x)
0 (Ω)∩W 2,p(x)(Ω). At first, we set a definition.

Definition 4.4. Assume spaces X, Y are Banach spaces, we define the
norm on the space X ∩ Y is ‖u‖X∩Y = ‖u‖X + ‖u‖Y .

In this section, we always assume Ω and p(x) satisfy the conditions of the-
orem 3.3. From definition 4.3, we can know that for any u ∈ W

1,p(x)
0 (Ω) ∩

W 2,p(x)(Ω), ‖u‖ = ‖u‖
W

1,p(x)
0 (Ω)∩W 2,p(x)(Ω)

= ‖u‖1,p(x) + ‖u‖2,p(x) = |u|p(x) +

|∇u|p(x) +
∑
|α|=2

|Dαu|p(x).

Theorem 4.5. In the space W
1,p(x)
0 (Ω) ∩ W 2,p(x)(Ω), the norm ‖·‖ and

|4 · |p(x) are equivalent norms.

Proof. Choose u ∈ C∞
0 (Ω), we will demonstrate that

∑
|α|=2

|Dαu|p(x) ≤

C|4u|p(x). From [11], we know ∂2u
∂xixj

= −RiRj(4u), where Riu is called

Rieze transform of u, namely, Riu = lim
ε→0

CN

∫
|x−y|>ε

xi−yi

|x−y|N+1 u(y)dy, where
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CN = Γ(N+1
2

)

π
N+1

2

. Let k(x, y) = CN
xi−yi

|x−y|N+1 , it is easy to prove that k(x, y)

is a standard kernel of definition 4.3 in [5]. Indeed, there exist δ = 1 >

0, A = (N + 2)NCN > 0,, we have |k(x, y)| ≤ A|x − y|−N and |∂k(x,y)
∂x | ≤

A|x− y|−N−1, |∂k(x,y)
∂y | ≤ A|x− y|−N−1. We can check that k(x, y) satisfies

condition(a) and (b) of proposition 4.3 in [5]. Since N(x, z) = k(x, x− z) =
CN

zi

|z|N+1 . Obviously,
∫
|z|=1 N(x, z)dS =

∫
|z|=1 CN

zi

|z|N+1 dS = 0, and let σ =

2 > 1,
∫
|z|=1 |N(x, z)|σdS =

∫
|z|=1 CN

z2
i

|z|2(N+1) dS = 2π
1
2 Γ(N+1

2
)

NΓ(N
2

)
is bounded

uniformly with respect to x. From corollary 4.12 in [5], we know the op-
erators Rj(j = 1, · · · , N) are uniformly bounded in Lp(x)(RN ). Therefore,

for u ∈ C∞
0 (Ω) ⊂ Lp(x)(RN ), we can get

∣∣∣ ∂2u
∂xi∂xj

∣∣∣
p(x)

= | − RiRj(4u)|p(x) ≤
C1|4u|p(x), for i, j = 1, 2, · · · , N, moreover,

|4u|p(x) ≤
∑

|α|=2

|Dαu|p(x) ≤ C2|4u|p(x). (4.6)

From theorem 3.3, we know |∇u|p(x) ≤ K|u|
1
2

p(x)|u|
1
2

2,p(x). Applying proposi-
tion 2.3. and Cauchy inequality with ε, we have

|∇u|p(x) ≤ C3|4u|p(x) and |u| ≤ C4|4u|p(x). (4.7)

From (4.6) and (4.7) we can claim that

|4u|p(x) ≤ ‖u‖
W

1,p(x)
0 (Ω)∩W 2,p(x)(Ω)

≤ C5|4u|p(x). (4.8)

C∞
0 (Ω) is dense in W

1,p(x)
0 (Ω)∩W 2,p(x)(Ω), hence the inequality (4.8) holds

for any u ∈ W
1,p(x)
0 (Ω) ∩W 2,p(x)(Ω), which completes this proof.

From the proof above and theorem 3.1, It is easy to obtain the following
Landau-Kolmogorov type inequality.

Theorem 4.6. If p ∈ B(RN ) for any f ∈ C2
0 (RN ), then one can have

|∇f |p(x) ≤ C|f |
1
2

p(x)|4f |
1
2

p(x)

where C is independent on the function f .

Acknowledgement. The author thanks specially his advisor Professor
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