中国科技论文在线

Fixed Points Theorems of Ordered Contractive Maps on a Noncommutative Banach Space*

Ni Fei, Jiang Lining[†] Department of Mathematics Beijing Institute of Technology, Beijing, 100081, P.R. China

Abstract The paper introduces the concept of noncommutative Banach spaces and obtains several fixed point theorems for continuous or discontinuous ordered contractive maps in ordered noncommutative Banach spaces. A sufficient condition that the fixed point is unique is given.

Keywords Fixed point; Order contractive map; Noncommutative Banach space. **MR (2000) Subject Classification** 47H10

1 Preliminaries

Amann [1] introduced the concepts of ordered topological linear space and ordered Banach space and gave a number of solutions of nonlinear equations in ordered Banach spaces. Based on his work, many authors studied the properties of fixed points of nonlinear equations in ordered Banach spaces [2-6]. Furthermore, [7] introduced some types of ordered contractive maps and obtained some fixed point theorems in ordered Banach spaces. Illumined by [7] and [1], the paper defines the ordered contractive maps and obtains the corresponding theorems of fixed points ordered contractive maps in noncommutative Banach spaces. Let us give the definition of a noncommutative Banach space firstly.

Definition 1.1 Let *E* be a group. *E* is called a noncommutative Banach space if the following conditions are satisfied.

- 1. There exists a metric d on E so that (E, d) is a complete metric space.
- 2. The *d* is invariant under the translation operation. That is, $\forall x, y, z \in E$, d(xz, yz) = d(x, y);
- 3. There exists a binary continuous operation

$$F: \mathbb{R} \times E \longrightarrow E, \quad (\alpha, g) \mapsto g^{\alpha},$$

^{*}Supported by National Natural Science Foundation of China (No.10301004) and Excellent Young Scholars Research Fund of Beijing Institute of Technology (No. 00Y07-25)

[†]Correspondence should be addressed to Jiang Lining: jianglining@bit.edu.cn

which extends the group multiplications in *E*;

4. The metric *d* is sub-homogeneous, that is, for $x \in E$, there exists a constant $C_x > 0$ such that for $\alpha \in \mathbb{R}$,

$$d(x^{\alpha}, e) \leq C_x |\alpha| d(x, e)$$
.

It is clear that a Banach space is a noncommutative Banach space. The following is a nontrivial example.

Example 1.1 Suppose that *H* is a Hilbert space and U(H) is the unitary group of *H*. As a subset of L(H), U(H) is a complete metric space, where for $S, T \in U(H)$, d(S,T) = ||S - T||. Furthermore, for $T \in U(H)$ and $\alpha \in \mathbb{R}$, set

$$T^{\alpha} = \int_{0}^{2\pi} e^{i\alpha\theta} dE_{\theta},$$

where E_{θ} stands for the spectral measure associated with the operator T [8], then U(H) is a noncommutative Banach space.

Proof. It suffices to prove that U(H) possesses properties 3 and 4 of definition 1.1. Firstly suppose that $d(T_n, T) \to 0$ where $T_n \in U(H)$. Since for $k \in \mathbb{N}$,

$$d(T_n^k, T^k) = ||T_n T_n^{k-1} - TT_n^{k-1} + TT_n^{k-1} - TT^{k-1}||$$

$$\leq ||T_n - T||||T_n^{k-1}|| + ||T||||T_n^{k-1} - T^{k-1}||,$$

using induction one can see for an arbitrary polynomial P(x), $d(P(T_n), P(T)) \to 0$. Since for $\varepsilon > 0$, there exists a polynomial $P_0(x)$ such that $\sup_{x \in [0,2\pi]} |P_0(x) - x^{\alpha}| < \frac{\varepsilon}{3}$, thus

$$d(P_0(T), T^{\alpha}) \leq \frac{\varepsilon}{3}; \quad d(P_0(T_n), T_n^{\alpha}) \leq \frac{\varepsilon}{3};$$

Also for $\frac{\varepsilon}{3} > 0$, $\exists N \in \mathbb{N}$ so that if n > N, $||P_0(T_n) - P_0(T)|| < \frac{\varepsilon}{3}$. Thus when n > N,

$$d(T_n^{\alpha}, T^{\alpha}) \leq ||T_n^{\alpha} - P(T_n) + P(T_n) + P(T) - P(T) - T^{\alpha}||$$

$$\leq ||T_n^{\alpha} - P(T_n)|| + ||P(T_n) - P(T)|| + ||P(T) - T^{\alpha}||$$

$$\leq \varepsilon.$$

Therefore for $\alpha \in \mathbb{R}$, $d(T_n, T) \to 0$ implies that $d(T_n^{\alpha}, T^{\alpha}) \to 0$.

Secondly the metric *d* is pseudo-homogeneous. One can suppose that $T \neq I$. For $\alpha \in \mathbb{R}$,

$$d(T^{\alpha}, I) = \| \int_{0}^{2\pi} \left(e^{i\theta\alpha} - 1 \right) dE_{\theta} \|$$

$$\leq \sup_{\theta \in [0, 2\pi]} |e^{i\theta\alpha} - 1|.$$

Since the exponential function is a periodic function, we can consider only the case of $|\alpha| \in [0, 1]$.

$$\sup_{\theta \in [0,2\pi]} |e^{i\theta\pi} - 1| = \begin{cases} 2 < 2\pi |\alpha|, & \text{if } |\alpha| > \frac{1}{2}; \\ |e^{i2\pi\alpha} - 1| \le 2\pi |\alpha|, & \text{if } 0 \le |\alpha| \le \frac{1}{2}. \end{cases}$$

In all, set $C_T = \frac{2\pi}{d(T, I)}$, then for any $\alpha \in \mathbb{R}$, $d(T^{\alpha}, I) \leq C_T |\alpha| d(T, I)$. Similarly one can prove that for $T \in U(H)$, $\lim_{\alpha \to \alpha_0} T^{\alpha} = T^{\alpha_0}$ and U(H) is a noncommutative Banach space.

2 Ordered contractive maps on the noncommutative Banach Spaces

In this section we will introduce an ordering structure in a noncommutative Banach space, and get basic properties of ordered contractive maps.

Definition 2.1 Suppose that *E* is a noncommutative Banach space. A set $P \subseteq E$ is called convex if $\forall x, y \in P, x^p y^q \in P$, where $p, q \in \mathbb{R}^+$ and p + q = 1. Furthermore, $P \subseteq E$ is called a cone if *P* is closed, convex and invariant under exponential operation by element of $[0, \infty)$, and if $P \cap P^{-1} = \{e\}$, where $P^{-1} = \{x^{-1} | x \in P\}$.

It is easy to see that a cone is a semigroup. Each cone can induces a partial ordering in *E* through the rule $x \leq y$ if and only if $y^{\beta}x^{-\beta} \in E$ for $\beta \in [0, 1]$. This ordering is antisymmetry, reflexive and transitive.

Definition 2.2 If there exists a constant N > 0 such that for any $e \le x \le y$, $d(x, e) \le Nd(y, e)$, *P* is called positive, and the constant *N* is called the positive constant of *P*.

Let " \leq " be the partial ordering determined by a cone *P*. For $u, v \in E$, if one of $u \leq v$ and $v \leq u$ holds, we say that *u* and *v* are comparable and write:

$$\forall (u, v) = \begin{cases} u, & \text{when } v \leq u, \\ v, & \text{when } u \leq v. \end{cases}$$

Lemma 2.1 If u and v are comparable, then uv^{-1} and vu^{-1} are comparable, and

$$e \leq \lor \left(uv^{-1}, vu^{-1} \right).$$

Proof. One can suppose that $v \leq u$. Then $\forall \alpha \in [0, 1]$,

$$(uv^{-1})^{\alpha}(vu^{-1})^{-\alpha} = (uv^{-1})^{\alpha}((uv^{-1})^{-1})^{-\alpha} = (uv^{-1})^{2\alpha}$$

Since $2\alpha > 0$ and $uv^{-1} \in P$, $(uv^{-1})^{2\alpha} \in P$. Thus the elements uv^{-1} and vu^{-1} are comparable, and $vu^{-1} \leq uv^{-1}$. Also, $\forall \alpha \in [0, 1]$, $(uv^{-1})^{\alpha} e^{-\alpha} = (uv^{-1})^{\alpha} \in P$, so $e \leq uv^{-1}$, and $e \leq \lor (uv^{-1}, vu^{-1})$.

Definition 2.3 Let *E* be a noncommutative Banach space and *P* a positive cone of *E* with the positive constant *N*. A map $A : E \to E$ is called a β -ordered contractive map if there exists a constant $0 < \beta < 1$ such that for $u, v \in E$, if *u* and *v* are comparable, then *Au* and *Av* are also comparable, and moreover

$$\vee (Av (Au)^{-1}, Au (Av)^{-1}) \leq \vee (vu^{-1}, uv^{-1})^{\beta}.$$

Here the β is called the constant of the ordered contractive map.

Remark 2.1 The ordered contractive map need not be continuous.

Lemma 2.2 Suppose that for all $n \in \mathbb{N}$, u_n and v_n are comparable. If $v_n \to v_0$, $u_n \to u_0$, then u_0 and v_0 are comparable. That is to say, the ordering structure is compatible with the metric given in *E*.

Proof. Since $\forall n \in \mathbb{N}$, one of $u_n \leq v_n$ and $v_n \leq u_n$ holds, there exist subsequences $\{v_{n_k}\}$ and $\{u_{n_k}\}$ such that for $\forall 0 \leq \beta \leq 1$, either $u_{n_k}^{\beta} v_{n_k}^{-\beta} \in P$ or $v_{n_k}^{\beta} u_{n_k}^{-\beta} \in P$ holds. Without lose of generality, suppose that $u_{n_k}^{\beta} v_{n_k}^{-\beta} \in P$. Then

$$\begin{aligned} d\left(u_{n_k}^{\beta}v_{n_k}^{-\beta}, u_0^{\beta}v_0^{-\beta}\right) &\leq d\left(u_{n_k}^{\beta}v_{n_k}^{-\beta}, u_{n_k}^{\beta}v_0^{-\beta}\right) + d\left(u_{n_k}^{\beta}v_0^{-\beta}, u_0^{\beta}v_0^{-\beta}\right) \\ &= d\left(u_{n_k}^{\beta}, u_0^{\beta}\right) + d\left(v_{n_k}^{-\beta}, v_0^{-\beta}\right). \end{aligned}$$

The last equation holds because the metric is invariant under the translation operation.

Because $v_{n_k} \to v_0$ and $u_{n_k} \to u_0$, we have $v_{n_k}^{-\beta} \to v_0^{-\beta}$ and $u_{n_k}^{-\beta} \to u_0^{-\beta}$. Since the multiplication operation on *E* is continuous,

$$\lim_{k\to\infty}d\left(u_{n_k}^{\beta}v_{n_k}^{-\beta},u_0^{\beta}v_0^{-\beta}\right)=0.$$

Notice the fact that the cone *P* is closed, $u_0^{\beta}v_0^{-\beta} \in P$. This implies that u_0 and v_0 are comparable.

Lemma 2.3 If $x, y \in P$, and $x \leq y$, then $\forall 0 < \beta < 1, x^{\beta} \leq y^{\beta}$.

Proof. Since $x \leq y$, $\forall \alpha \in [0,1]$, $y^{\alpha}x^{-\alpha} \in P$. For $0 < \beta < 1$, $\alpha\beta \in [0,1]$, so $y^{\alpha\beta}x^{-\alpha\beta} \in P$, namely, $x^{\beta} \leq y^{\beta}$.

Lemma 2.4 If x and y are comparable, then $d(\lor(xy^{-1}, yx^{-1}), e) = d(x, y)$.

Proof. One can suppose $\lor (x, y) = x$. Then $yx^{-1} \le xy^{-1}$ and $\lor (xy^{-1}, yx^{-1}) = xy^{-1}$. Since the metric *d* is invariant under the translation operation,

$$d(x, y) = d(xy^{-1}, yy^{-1}) = d(\lor(xy^{-1}, yx^{-1}), e).$$

This completes the proof.

3 Theorems about the Fixed Points

Throughout this section we suppose that E is a noncommutative Banach space which is partially ordered by a positive cone P with the positive constant N, and give several theorems on the fixed points of the ordered contractive maps on E.

Theorem 3.1 Suppose that the β -ordered contractive map $A : E \to E$ is continuous. If there exists an element $x_0 \in E$ such that x_0 and Ax_0 are comparable, then the sequence $A^n x_0$ converges to some fixed point x^* of A. Moreover, there is a number C_{x_0} depending on the choice of x_0 , so that

$$d(x_0, x^*) \leq \left(\frac{C_{x_0} \cdot N \cdot \beta}{1 - \beta} + 1\right) d(x_0, Ax_0)$$

Proof. Consider the sequence

 $x_1 = Ax_0, \ x_2 = Ax_1..., x_{n+1} = Ax_n, ...$

Since x_0 and $x_1 = Ax_0$ are comparable and the map A is a β -ordered contractive map, x_1 and $x_2 = Ax_1$ are comparable, and hence, x_n and $x_{n+1} = Ax_n$ are comparable. Since

$$\vee \left(x_n x_{n+1}^{-1}, x_{n+1} x_n^{-1} \right) = \vee \left(A x_{n-1} \left(A x_n \right)^{-1}, A x_n \left(A x_{n-1} \right)^{-1} \right) \lesssim \vee \left(x_{n-1} x_n^{-1}, x_n x_{n-1}^{-1} \right)^{\beta},$$

using lemma 2.3,

$$\begin{array}{ll} \vee \left(x_{n} x_{n+1}^{-1}, x_{n+1} x_{n}^{-1} \right) & \lesssim & \vee \left(x_{n-1} x_{n}^{-1}, x_{n} x_{n-1}^{-1} \right)^{\beta} \\ & \lesssim & \vee \left(x_{n-2} x_{n-1}^{-1}, x_{n-1} x_{n-2}^{-1} \right)^{\beta^{2}} \\ & \lesssim & \dots \\ & \lesssim & \vee \left(x_{0} x_{1}^{-1}, x_{1} x_{0}^{-1} \right)^{\beta^{n}} . \end{array}$$

Thus,

$$d\left(\vee\left(x_{n}x_{n+1}^{-1}, x_{n+1}x_{n}^{-1}\right), e\right) \leq Nd\left(\vee\left(x_{0}x_{1}^{-1}, x_{1}x_{0}^{-1}\right)^{\beta^{n}}, e\right).$$
(1)

Because the metric *d* is sub-homogeneous, there exists a constant C_{x_0} , which depends on the choice of x_0 , so that

$$d\left(\vee\left(x_{0}x_{1}^{-1},x_{1}x_{0}^{-1}\right)^{\beta^{n}},e\right) \leqslant C_{x_{0}}\cdot\beta^{n}d\left(\vee\left(x_{0}x_{1}^{-1},x_{1}x_{0}^{-1}\right),e\right).$$
(2)

Notice that the metric d is invariant under the translation operation,

$$d\left(\vee\left(x_{n}x_{n+1}^{-1}, x_{n+1}x_{n}^{-1}\right), e\right) = d\left(x_{n}, x_{n+1}\right).$$
(3)

In the same way,

$$d\left(\vee\left(x_{0}x_{1}^{-1}, x_{1}x_{0}^{-1}\right), e\right) = d\left(x_{0}, x_{1}\right).$$
(4)

中国科技论文在线

So the inequality (2) turns into

$$d(x_n, x_{n+1}) = d\left(\lor \left(x_n x_{n+1}^{-1}, x_{n+1} x_n^{-1}\right), e\right) \\ \leqslant N \cdot d\left(\lor \left(x_0 x_1^{-1}, x_1 x_0^{-1}\right)^{\beta^n}, e\right) \\ \leqslant N \cdot C_{x_0} \cdot \beta^n d\left(\lor \left(x_0 x_1^{-1}, x_1 x_0^{-1}\right), e\right) \\ = N \cdot C_{x_0} \cdot \beta^n d(x_0, x_1).$$

Thus the sequence $\{x_n\}$ is a Cauchy sequence since $\beta \in (0, 1)$. Suppose that $x_n \to x^*$, then

$$Ax^* = A \lim_{n \to \infty} x_n = \lim_{n \to \infty} Ax_n = \lim_{n \to \infty} x_{n+1} = x^*,$$

which implies that x^* is a fixed point of *A*. Moreover

$$d(x^*, x_0) \leq d(x_0, x_1) + d(x_1, x_2) + \dots + d(x_n, x_{n+1}) + \dots$$

= $\sum_{n=1}^{\infty} d(x_n, x_{n+1}) + d(x_0, x_1)$
 $\leq \sum_{n=1}^{\infty} C_{x_0} \cdot N \cdot \beta^n d(x_0, x_1) + d(x_0, x_1)$
= $\left(\frac{C_{x_0} \cdot N \cdot \beta}{1 - \beta} + 1\right) d(x_0, Ax_0).$

Corollary 3.2 Conditions and assumptions are the same as in theorem 3.1. Let \tilde{x} be another fixed point of A. If \tilde{x} and x^* are comparable, then $\tilde{x} = x^*$.

Proof. Since \tilde{x} and x^* are comparable, one can suppose that $\tilde{x} \leq x^*$. Using the definition of contractive map,

$$\vee \left(A\widetilde{x}(Ax^*)^{-1}, Ax^*(A\widetilde{x})^{-1}\right) \lesssim \vee \left(x^*\widetilde{x}^{-1}, \widetilde{x}x^{*-1}\right)^{\beta},$$

namely,

$$\lor \left(x^*\widetilde{x}^{-1},\widetilde{x}x^{*-1}\right) \lesssim \lor \left(x^*\widetilde{x}^{-1},\widetilde{x}x^{*-1}\right)^{\beta}.$$

Since $\widetilde{x} \leq x^*$, $\lor (\widetilde{x}x^{*-1}, x^*\widetilde{x}^{-1}) = x^*\widetilde{x}^{-1}$, then $x^*\widetilde{x}^{-1} \leq (x^*\widetilde{x}^{-1})^{\beta}$, $(x^*\widetilde{x}^{-1})^{\beta-1} \in P$. Notice that $1 - \beta \in [0, 1]$, $(x^*\widetilde{x}^{-1})^{1-\beta} \in P$. By $(x^*\widetilde{x}^{-1})^{\beta-1} \in P$ and $(x^*\widetilde{x}^{-1})^{1-\beta} \in P$, $x^*\widetilde{x}^{-1} = e$, and $x^* = \widetilde{x}$.

Theorem 3.3 Suppose that $A : E \to E$ is a β -ordered contractive map. If there exists an element $x_0 \in E$ so that $\forall n, x_0$ and $A^n x_0$ are comparable, then A has some fixed point, and the sequence $\{A^n x_0\}$ converges to one fixed point x^* of A. Moreover, there exists a constant C_{x_0} such that

$$d(x^*, x_0) \leq \left(\frac{C_{x_0} \cdot N \cdot \beta}{1 - \beta} + 1\right) d(x_0, Ax_0).$$

6

Proof. Similar to the proof of theorem 3.1, the sequence $\{x_n = A^n x_0\}$ is a Cauchy sequence. By the completeness of *E*, let $x_n \to x^* \in E$. Now we prove that x^* is a fixed point of *A*.

For all m, n, suppose that m > n, using the given condition, x_0 and x_{m-n} are comparable. Then Ax_n and Ax_{m-n} are comparable, and so are $x_n = A^n x_0$ and $x_m = A^n x_{m-n}$. Let $m \to \infty$, using lemma 2.2, $\forall n, x_n$ and x^* are comparable, therefore Ax_n and Ax^* are comparable, and so

$$e \leq \lor (Ax_n (Ax^*)^{-1}, Ax^* (Ax_n)^{-1}) \leq \lor (x_n x^{*-1}, x^* x_n^{-1})^{\beta}.$$

Since *P* is a positive cone,

$$d\left(\vee\left(Ax_{n}\left(Ax^{*}\right)^{-1},Ax^{*}\left(Ax_{n}\right)^{-1}\right),e\right) \leq C_{x_{0}}\cdot N\cdot\beta d\left(\vee\left(x_{n}x^{*-1},x^{*}x_{n}^{-1}\right),e\right),$$

that is

$$d(x_{n+1}, Ax^*) = d(Ax_n, Ax^*) \leq C_{x_0} \cdot N \cdot \beta d(x_n, x^*) \rightarrow 0.$$

Therefore $x^* = Ax^*$ and x^* is a fixed point of A. At last, similar to the proof of Theorem 3.1, we can get the estimation of $d(x^*, x_0)$ and we omit it here.

Theorem 3.4 Let $A : E \to E$ be a continuous map and satisfy the following condition:

(C1) If u and v are comparable, then Au and Av are comparable. Also, if u and Au are comparable, and v and Av are comparable, then there exists a $\lambda \in (0, \frac{1}{2})$ so that for $\forall \beta \in [0, 1]$,

$$\vee \left(Av\left(Au\right)^{-1}, Au\left(Av\right)^{-1}\right)^{\beta} \lesssim \vee \left(Au \circ u^{-1}, u \circ (Au)^{-1}\right)^{\lambda\beta} \circ \vee \left(Av \circ v^{-1}, v\left(Av\right)^{-1}\right)^{\lambda\beta}.$$

If there exists an element $x_0 \in E$, such that x_0 and Ax_0 are comparable, then the sequence $\{A^n x_0\}$ converges to a fixed point x^* of A. Moreover, there exists a constant C_{x_0} such that

$$d(x_0, x^*) \leq \left(1 + \frac{C_{x_0} \cdot N \cdot \lambda}{1 - 2\lambda}\right) d(x_0, Ax_0).$$

Proof. Set $\beta = \frac{\lambda}{1-\lambda}$, then $1 + \frac{N\beta}{1-\beta} = 1 + \frac{\lambda \cdot N}{1-2\lambda}$. Consider the sequence:

$$x_1 = Ax_0, x_2 = Ax_1 = A^2 x_0, \cdots, x_{n+1} = Ax_n, \cdots$$

Since x_0 and Ax_0 are comparable, for $n \in \mathbb{N}$, x_n and Ax_n are comparable, and

$$e \leq \forall \left(x_{n}x_{n+1}^{-1}, x_{n+1}x_{n}^{-1}\right)$$

= $\forall \left(Ax_{n-1} (Ax_{n})^{-1}, Ax_{n} \left(Ax_{n-1}^{-1}\right)\right)$
$$\leq \forall \left(Ax_{n-1}x_{n-1}^{-1}, x_{n-1} (Ax_{n-1})^{-1}\right)^{\lambda} \lor \left(Ax_{n}x_{n}^{-1}, x_{n} (Ax_{n})^{-1}\right)^{\lambda}$$

= $\forall \left(x_{n}x_{n-1}^{-1}, x_{n-1}x_{n}^{-1}\right)^{\lambda} \lor \left(x_{n+1}x_{n}^{-1}, x_{n}x_{n+1}^{-1}\right)^{\lambda}.$

Therefore

$$e \leq \vee \left(x_n x_{n+1}^{-1}, x_{n+1} x_n^{-1}\right) \leq \vee \left(x_n x_{n-1}^{-1}, x_{n-1} x_n^{-1}\right)^{\lambda} \vee \left(x_{n+1} x_n^{-1}, x_n x_{n+1}^{-1}\right)^{\lambda},$$

and $\forall \beta \in [0, 1]$,

$$\vee \left(x_n x_{n+1}^{-1}, x_{n+1} x_n^{-1}\right)^{\beta} \lesssim \vee \left(x_n x_{n-1}^{-1}, x_{n-1} x_n^{-1}\right)^{\beta \lambda} \vee \left(x_{n+1} x_n^{-1}, x_n x_{n+1}^{-1}\right)^{\beta \lambda}.$$

That is,

$$\vee \left(x_n x_{n-1}^{-1}, x_{n-1} x_n^{-1}\right)^{\beta \lambda} \vee \left(x_{n+1} x_n^{-1}, x_n x_{n+1}^{-1}\right)^{-(1-\lambda)\beta} \in P,$$

and so

$$\vee (x_{n+1}x_n^{-1}, x_nx_{n+1}^{-1})^{(1-\lambda)} \leq \vee (x_nx_{n-1}^{-1}, x_{n-1}x_n^{-1})^{\lambda}.$$

Since $0 < \lambda < \frac{1}{2}, 0 < \frac{\lambda}{1-\lambda} < 1$, using lemma 2.3

$$e \leq \forall \left(x_{n+1} x_n^{-1}, x_n x_{n+1}^{-1} \right) \\ \leq \forall \left(x_n x_{n-1}^{-1}, x_{n-1} x_n^{-1} \right)^{\frac{\lambda}{1-\lambda}} \\ \leq \cdots \\ \leq \forall \left(x_0 x_1^{-1}, x_1 x_0^{-1} \right)^{\left(\frac{\lambda}{1-\lambda} \right)^n}.$$

Using inequality (2) in the proof of theorem 3.1 there exists a constant C_{x_0} such that,

$$d\left(\vee\left(x_{n+1}x_{n}^{-1}, x_{n}x_{n+1}^{-1}\right), e\right) \leq C_{x_{0}} \cdot N \cdot \left(\frac{\lambda}{1-\lambda}\right)^{n} d\left(x_{0}x_{1}^{-1}, x_{1}x_{0}^{-1}\right).$$

Since the metric d is invariant under the translation operation,

$$d(x_n, x_{n+1}) \leq C_{x_0} \cdot N \cdot \left(\frac{\lambda}{1-\lambda}\right)^n d(x_0, x_1).$$

This implies that $\{x_n\}$ is a Cauchy sequence. By the completeness of *E*, let $x_n \to x^* \in E$, then

$$Ax^* = \lim_{n \to \infty} Ax_n = \lim_{n \to \infty} x_{n+1} = x^*.$$

Thus A has a fixed point in E, and the sequence $\{A^n x\}$ converges to a fixed point of A.

Theorem 3.5 Let $A : E \to E$ be a map satisfying the condition (C1) of theorem 3.4. If there exists an element $x_0 \in E$ so that $\forall n \in \mathbb{N}$, x_0 and $A^n x_0$ are comparable, then A has a fixed point in E, and the sequence $\{A^n x_0\}$ converges to a fixed point x^* of A. Moreover, there exists a constant C_{x_0} such that

$$d(x_0, x^*) \leq \left(1 + \frac{N \cdot C_{x_0} \cdot \lambda}{1 - 2\lambda}\right) d(x_0, Ax_0).$$

Proof. Similar to the proof of theorem 3.3, $\{x_n = A^n x_0\}$ is a Cauchy sequence.Let $x_n \to x^* \in E$. Now we prove that x^* is a fixed point of A. As we have proved in theorem 3.2, for all n, x_n and x^* are comparable. Using (C1), for all n, x_{n-1} and $x_n = Ax_{n-1}$ are comparable. Let $n \to \infty$, using lemma 2.2, x^* and Ax^* are comparable. Hence,

$$e \leq \vee \left(Ax_n (Ax^*)^{-1}, Ax^* (Ax_n)^{-1}\right) \leq \vee \left(Ax_n x_n^{-1}, x_n (Ax_n)^{-1}\right)^{\lambda} \circ \vee \left(Ax^* x^{*-1}, x^* (Ax^*)^{-1}\right)^{\lambda}.$$

Let $n \to \infty$, we obtain

$$e \leq \vee \left(x^* (Ax^*)^{-1}, Ax^* (x^*)^{-1}\right) \leq \vee \left(Ax^* x^{*-1}, x^* (Ax^*)^{-1}\right)^{\lambda} \circ \vee \left(Ax^* x^{*-1}, x^* (Ax^*)^{-1}\right)^{\lambda},$$

that is

$$e \leq \vee \left(x^* \left(Ax^* \right)^{-1}, Ax^* \left(x^* \right)^{-1} \right) \leq \vee \left(Ax^* x^{*-1}, x^* \left(Ax^* \right)^{-1} \right)^{2\lambda}.$$

Thus, $\lor (Ax^*x^{*-1}, x^*(Ax^*)^{-1})^{2\lambda-1} \in P$. Since $2\lambda - 1 < 0$ and $\lor ((Ax)^*x^{*-1}, x^*(Ax^*)^{-1}) \in P$, $x^*(Ax^*)^{-1} = Ax^*(x^*)^{-1} = e$, namely, $Ax^* = x^*$. Therefore x^* is a fixed point of A.

Remark 3.1 In Theorems 3.3, 3.4 and 3.5, the estimations of $d(x_0, x^*)$ are the same as that in theorem 3.1. This is because $\{x_n\}$ is the Cauchy sequence which makes $d(x_n, x^*) \leq C_{x_0} \cdot N \cdot \beta^n d(x_1, x_0)$ hold. In theorems 3.4 and 3.5, $\beta = \frac{\lambda}{1-\lambda}$.

Theorem 3.6 Suppose that $u_0, v_0 \in E$ with $u_0 \leq v_0$, and $[u_0, v_0] = \{u \in E | u_0 \leq u \leq v_0\}$ is a ordered interval in E. If $A : [u_0, v_0] \rightarrow [u_0, v_0]$ is a β -ordered contractive map, then A has a unique fixed point. Moreover, for all $x \in [u_0, v_0]$, the sequence $\{A^n x\}$ converges to the only fixed point of A.

Proof. Define the sequences:

$$u_1 = Au_0, u_2 = Au_1, \cdots, u_{n+1} = Au_n, \cdots,$$

 $v_1 = Av_0, v_2 = Av_1, \cdots, v_{n+1} = Av_n, \cdots,$

then $\{u_n\}, \{v_n\} \subset [u_0, v_0]$. Since $u_0 \leq v_0$ and *A* is a β -ordered contractive map, for all *n*, u_n and v_n are comparable, and

$$e \leq \forall \left(u_{n}v_{n}^{-1}, v_{n}u_{n}^{-1}\right)$$

= $\forall \left(Au_{n-1} (Av_{n-1})^{-1}, Av_{n-1} (Au_{n-1})^{-1}\right)$
$$\leq \forall \left(u_{n-1}v_{n-1}^{-1}, v_{n-1}u_{n-1}^{-1}\right)^{\beta}$$

$$\leq \cdots$$

$$\leq \forall \left(u_{0}v_{0}^{-1}, v_{0}u_{0}^{-1}\right)^{\beta^{n}}.$$

Because P is positive, there exists a constant $C_{u_0v_0^{-1}}$ and a positive integer N such that

$$d(u_n, v_n) = d(u_n v_n^{-1}, e) = d(v_n u_n^{-1}, e) \leq C_{u_0 v_0^{-1}} \cdot N \cdot \beta^n d(u_0, v_0).$$

9

Since again $u_0 \leq u_1$, for all n, u_n and u_{n+1} are comparable and

$$e \leq \forall \left(u_{n}u_{n+1}^{-1}, u_{n+1}u_{n}^{-1} \right) \\ = \forall \left(Au_{n-1} \left(Au_{n} \right)^{-1}, Au_{n} \left(Au_{n-1}^{-1} \right) \right) \\ \leq \forall \left(u_{n-1}u_{n}^{-1}, u_{n}u_{n-1}^{-1} \right)^{\beta} \\ \leq \cdots \\ \leq \forall \left(u_{0}u_{1}^{-1}, u_{1}u_{0}^{-1} \right)^{\beta^{n}}.$$

Thus,

$$d(u_n, u_{n+1}) \leq \beta^n N d(u_0, u_1).$$

Notice that $\beta < 1$, $\{u_n\}$ is a Cauchy sequence with a limit point $u^* \in [u_0, v_0]$. Similarly $\{v_n\}$ is a Cauchy sequence with a limit point $v^* \in [u_0, v_0]$. Then

$$d(u^*, v^*) = \lim_{n \to \infty} d(u_n, v_n) \leq \lim_{n \to \infty} C_{u_0 v_0^{-1}} \cdot N \cdot \beta^n d(u_0, v_0) = 0.$$

This implies that $u^* = v^*$.

Now we prove that u^* is a fixed point of A. For all m > n, since u_0 and u_{m-n} are comparable, $A^n u_0 = u_n$ and $A^n u_{m-n} = u_m$ are comparable. Let $m \to \infty$, then u_n and u^* are comparable, and Au_n and Au^* are also comparable,

$$e \leq \vee (Au_n (Au^*)^{-1}, Au^* (Au_n)^{-1}) \leq \vee (u_n u^{*-1}, u^* u_n^{-1})^{\beta}.$$

So,

$$\lim_{n \to \infty} d\left(u_{n+1}, Au^*\right) = \lim_{n \to \infty} d\left(Au_n, Au^*\right) \le \lim_{n \to \infty} C_{u_n u^{*-1}} \cdot N \cdot \beta d\left(u_n, u^*\right) = 0$$

Thus $Au^* = u^*$, u^* is a fixed point of A.

For all $x \in [u_0, v_0]$, since x and u_0 are comparable, $A^n x$ and $A^n u_0$ are comparable, and

$$e \leq \vee \left(A^n x (A^n u_0)^{-1}, A^n u_0 (A^n x)^{-1}\right) \leq \left[\vee \left(u_0 x^{-1}, x u_0^{-1}\right)\right]^{\beta^n} \to e$$

Therefore $A^n x \to u^*$.

Now we prove that the fixed point of A is unique. Suppose that v is another fixed point of A in $[u_0, v_0]$, then

$$d(u^*, v) \leq d(u^*, A^n u_0) + d(A^n u_0, A^n v)$$

Notice that $u_0 \leq v$, we have

$$e \leq \forall (A^{n}u_{0} (A^{n}v)^{-1}, A^{n}v (A^{n}u_{0})^{-1})$$

= $\forall ((AA^{n-1}u_{0}) (AA^{n-1}v)^{-1}, (AA^{n-1}v) (AA^{n-1}u_{0})^{-1})$
$$\leq \forall (A^{n-1}u_{0} (A^{n-1}v)^{-1}, A^{n-1}v (A^{n-1}u_{0})^{-1})^{\beta}$$

$$\leq \cdots$$

$$\leq \forall (u_{0}v^{-1}, vu_{0}^{-1})^{\beta^{n}}.$$

Thus

$$d(A^{n}u_{0}, A^{n}v) = d(\forall A^{n}u_{0} (A^{n}v)^{-1}, A^{n}v (A^{n}u_{0})^{-1})$$

$$\leq Nd(\forall (u_{0}v^{-1}, vu_{0}^{-1})^{\beta^{n}}, e)$$

$$\leq NC_{u_{0}v^{-1}}\beta^{n}d(u^{*}, v).$$

Since u^* and v are fixed points, $d(A^n u_0, A^n v) \rightarrow d(u^*, v)$, we have $d(u^*, v) = 0$. The uniqueness is proved.

References

- H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal. 11(1972) 346-384.
- [2] Y.H. Du, Fixed points of increasing operators in ordered Banach spaces and appliciations, Appl. Anal. 38(1990) 1-20.
- [3] D.J. Guo, Fixed points of mixed monotone operators with applications, Appl. Anal. 31(1988) 215-244.
- [4] D.J. Guo, Lakshmikantham V., Couple fixed points of nonlinear operators with applications, Nonlinear Anal. TMA 11(1987) 623-632.
- [5] J.G. Wang, Fixed points of increasing operators in ordered Banach spaces, Acta Mathematica Sinica, 43(2000) 43-48 (in Chinese).
- [6] Syau Y.R., Some fixed point theorems of *T*-monotone operators, J. Math. Anal. Appl. 205(1997) 325-329.
- [7] Zhang Xian, Fixed Point of Ordered Contractive Maps, Acta Mathematica Sinica, 48(2005) 973-978 (in Chinese).
- [8] Walter Rudin, Functional Analysis (Second Edition), New York-McGraw-Hill, Inc. 1991.