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1 Preliminaries

Amann [1] introduced the concepts of ordered topological linear space and ordered
Banach space and gave a number of solutions of nonlinear equations in ordered Banach
spaces. Based on his work, many authors studied the properties of fixed points of
nonlinear equations in ordered Banach spaces [2-6]. Furthermore, [7] introduced some
types of ordered contractive maps and obtained some fixed point theorems in ordered
Banach spaces. Illumined by [7] and [1], the paper defines the ordered contractive
maps and obtains the corresponding theorems of fixed points ordered contractive maps
in noncommutative Banach spaces. Let us give the definition of a noncommutative
Banach space firstly.

Definition 1.1 Let E be a group.E is called a noncommutative Banach space if the
following conditions are satisfied.

1. There exists a metricd on E so that (E,d) is a complete metric space.

2. Thed is invariant under the translation operation. That is,∀x, y, z ∈ E, d(xz, yz) =

d(x, y);

3. There exists a binary continuous operation

F : R × E −→ E, (α,g) 7→ gα,
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which extends the group multiplications inE;

4. The metricd is sub-homogeneous, that is, forx ∈ E, there exists a constant
Cx > 0 such that forα ∈ R,

d (xα, e) 6 Cx|α|d (x,e) .

It is clear that a Banach space is a noncommutative Banach space. The following
is a nontrivial example.

Example 1.1 Suppose thatH is a Hilbert space andU(H) is the unitary group of
H. As a subset ofL(H), U(H) is a complete metric space, where forS,T ∈ U(H),
d(S,T) = ‖S − T‖. Furthermore, forT ∈ U(H) andα ∈ R, set

Tα =

∫ 2π

0
eiαθdEθ,

whereEθ stands for the spectral measure associated with the operatorT [8], thenU(H)
is a noncommutative Banach space.

Proof. It suffices to prove thatU(H) possesses properties 3 and 4 of definition 1.1.
Firstly suppose thatd (Tn,T)→ 0 whereTn ∈ U (H). Since fork ∈ N,

d
(
Tk

n,T
k
)

= ‖TnTk−1
n − TTk−1

n + TTk−1
n − TTk−1‖

6 ‖Tn − T‖‖Tk−1
n ‖ + ‖T‖‖Tk−1

n − Tk−1‖,

using induction one can see for an arbitrary polynomialP (x), d (P (Tn) ,P (T)) → 0.
Since forε > 0, there exists a polynomialP0(x) such that supx∈[0,2π] |P0(x) − xα| < ε

3,
thus

d (P0 (T) ,Tα) 6
ε

3
; d

(
P0 (Tn) ,Tα

n
)
6
ε

3
.

Also for ε
3 > 0,∃N ∈ N so that ifn > N, ‖P0(Tn) − P0(T)‖ < ε

3. Thus whenn > N,

d
(
Tα

n ,T
α) 6 ‖Tα

n − P (Tn) + P (Tn) + P(T) − P (T) − Tα‖
6 ‖Tα

n − P(Tn)‖ + ‖P(Tn) − P(T)‖ + ‖P(T) − Tα‖
6 ε.

Therefore forα ∈ R, d (Tn,T)→ 0 implies thatd
(
Tα

n ,T
α)→ 0.

Secondly the metricd is pseudo-homogeneous. One can suppose thatT , I . For
α ∈ R,

d (Tα, I ) = ‖
∫ 2π

0

(
eiθα − 1

)
dEθ‖

6 sup
θ∈[0,2π]

|eiθα − 1|.
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Since the exponential function is a periodic function, we can consider only the case of
|α| ∈ [0,1].

sup
θ∈[0,2π]

|eiθπ − 1| =
{

2 < 2π|α|, if |α| > 1
2;

|ei2πα − 1| ≤ 2π|α|, if 0 6 |α| 6 1
2 .

In all, setCT = 2π
d(T, I ) , then for anyα ∈ R, d (Tα, I ) 6 CT |α|d (T, I ).

Similarly one can prove that forT ∈ U(H) , limα→α0 Tα = Tα0 and U(H) is a
noncommutative Banach space.

2 Ordered contractive maps on the noncommutative Ba-
nach Spaces

In this section we will introduce an ordering structure in a noncommutative Banach
space, and get basic properties of ordered contractive maps.

Definition 2.1 Suppose thatE is a noncommutative Banach space. A setP ⊆ E is
called convex if∀x, y ∈ P, xpyq ∈ P, wherep,q ∈ R+ and p + q = 1. Furthermore,
P ⊆ E is called a cone ifP is closed, convex and invariant under exponential operation
by element of [0,∞), and ifP∩ P−1 = {e}, whereP−1 = {x−1|x ∈ P}.

It is easy to see that a cone is a semigroup. Each cone can induces a partial ordering
in E through the rulex . y if and only if yβx−β ∈ E for β ∈ [0, 1]. This ordering is
antisymmetry, reflexive and transitive.

Definition 2.2 If there exists a constantN > 0 such that for anye. x . y, d (x,e) 6
Nd(y,e), P is called positive, and the constantN is called the positive constant ofP.

Let “.” be the partial ordering determined by a coneP. Foru, v ∈ E, if one ofu . v
andv . u holds, we say thatu andv are comparable and write:

∨(u, v) =

{
u, whenv . u,
v, whenu . v.

Lemma 2.1 If u and v are comparable, then uv−1 and vu−1 are comparable, and

e. ∨
(
uv−1, vu−1

)
.

Proof. One can suppose thatv . u. Then∀α ∈ [0,1],

(
uv−1

)α (
vu−1

)−α
=

(
uv−1

)α ((
uv−1

)−1
)−α

=
(
uv−1

)2α
.

Since 2α > 0 anduv−1 ∈ P,
(
uv−1

)2α ∈ P. Thus the elementsuv−1 and vu−1 are

comparable, andvu−1 . uv−1. Also, ∀α ∈ [0,1],
(
uv−1

)α
e−α =

(
uv−1

)α ∈ P, so

e. uv−1, ande. ∨
(
uv−1, vu−1

)
.
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Definition 2.3 Let E be a noncommutative Banach space andP a positive cone ofE
with the positive constantN. A mapA : E → E is called aβ-ordered contractive map
if there exists a constant 0< β < 1 such that foru, v ∈ E, if u andv are comparable,
thenAuandAvare also comparable, and moreover

∨
(
Av(Au)−1 ,Au(Av)−1

)
. ∨

(
vu−1,uv−1

)β
.

Here theβ is called the constant of the ordered contractive map.

Remark 2.1 The ordered contractive map need not be continuous.

Lemma 2.2 Suppose that for all n∈ N, un and vn are comparable. If vn → v0,
un → u0, then u0 and v0 are comparable. That is to say, the ordering structure is
compatible with the metric given in E.

Proof. Since∀n ∈ N, one ofun . vn and vn . un holds, there exist subsequences
{vnk} and{unk} such that for∀0 6 β 6 1, eitheruβnk

v−βnk
∈ P or vβnk

u−βnk
∈ P holds. Without

lose of generality, suppose thatuβnk
v−βnk
∈ P. Then

d
(
uβnk

v−βnk
,uβ0v−β0

)
6 d

(
uβnk

v−βnk
,uβnk

v−β0

)
+ d

(
uβnk

v−β0 ,uβ0v−β0

)

= d
(
uβnk
,uβ0

)
+ d

(
v−βnk

, v−β0

)
.

The last equation holds because the metric is invariant under the translation operation.
Becausevnk → v0 andunk → u0, we havev−βnk

→ v−β0 andu−βnk
→ u−β0 . Since the

multiplication operation onE is continuous,

lim
k→∞

d
(
uβnk

v−βnk
,uβ0v−β0

)
= 0.

Notice the fact that the coneP is closed,uβ0v−β0 ∈ P. This implies thatu0 and v0 are
comparable.

Lemma 2.3 If x, y ∈ P, and x. y, then ∀0 < β < 1, xβ . yβ.

Proof. Since x . y, ∀α ∈ [0,1], yαx−α ∈ P. For 0 < β < 1, αβ ∈ [0,1], so
yαβx−αβ ∈ P, namely,xβ . yβ.

Lemma 2.4 If x and y are comparable, then d
(
∨

(
xy−1, yx−1

)
,e

)
= d (x, y).

Proof. One can suppose∨ (x, y) = x. Thenyx−1 . xy−1 and∨
(
xy−1, yx−1

)
= xy−1.

Since the metricd is invariant under the translation operation,

d (x, y) = d
(
xy−1, yy−1

)
= d

(
∨

(
xy−1, yx−1

)
,e

)
.

This completes the proof.
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3 Theorems about the Fixed Points

Throughout this section we suppose thatE is a noncommutative Banach space which
is partially ordered by a positive coneP with the positive constantN, and give several
theorems on the fixed points of the ordered contractive maps onE.

Theorem 3.1 Suppose that theβ-ordered contractive map A: E→ E is continuous. If
there exists an element x0 ∈ E such that x0 and Ax0 are comparable, then the sequence
Anx0 converges to some fixed point x∗ of A. Moreover, there is a number Cx0 depending
on the choice of x0, so that

d (x0, x
∗) 6

(
Cx0 · N · β

1− β + 1

)
d (x0,Ax0) .

Proof. Consider the sequence

x1 = Ax0, x2 = Ax1..., xn+1 = Axn, ...

Sincex0 and x1 = Ax0 are comparable and the mapA is aβ-ordered contractive map,
x1 and x2 = Ax1 are comparable, and hence,xn and xn+1 = Axn are comparable. Since

∨
(
xnx−1

n+1, xn+1x−1
n

)
= ∨

(
Axn−1 (Axn)−1 ,Axn (Axn−1)−1

)
. ∨

(
xn−1x−1

n , xnx−1
n−1

)β
,

using lemma 2.3,

∨
(
xnx−1

n+1, xn+1x−1
n

)
. ∨

(
xn−1x−1

n , xnx−1
n−1

)β

. ∨
(
xn−2x−1

n−1, xn−1x−1
n−2

)β2

. ...

. ∨
(
x0x−1

1 , x1x−1
0

)βn

.

Thus,

d
(
∨

(
xnx−1

n+1, xn+1x−1
n

)
,e

)
6 Nd

(
∨

(
x0x−1

1 , x1x−1
0

)βn

,e
)
. (1)

Because the metricd is sub-homogeneous, there exists a constantCx0, which depends
on the choice ofx0, so that

d
(
∨

(
x0x−1

1 , x1x−1
0

)βn

,e
)
6 Cx0 · βnd

(
∨

(
x0x−1

1 , x1x−1
0

)
,e

)
. (2)

Notice that the metricd is invariant under the translation operation,

d
(
∨

(
xnx−1

n+1, xn+1x−1
n

)
,e

)
= d (xn, xn+1) . (3)

In the same way,

d
(
∨

(
x0x−1

1 , x1x−1
0

)
,e

)
= d (x0, x1) . (4)
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So the inequality (2) turns into

d (xn, xn+1) = d
(
∨

(
xnx−1

n+1, xn+1x−1
n

)
,e

)

6 N · d
(
∨

(
x0x−1

1 , x1x−1
0

)βn

,e
)

6 N ·Cx0 · βnd
(
∨

(
x0x−1

1 , x1x−1
0

)
,e

)

= N ·Cx0 · βnd(x0, x1).

Thus the sequence{xn} is a Cauchy sequence sinceβ ∈ (0, 1). Suppose thatxn → x∗,
then

Ax∗ = A lim
n→∞

xn = lim
n→∞

Axn = lim
n→∞

xn+1 = x∗,

which implies thatx∗ is a fixed point ofA. Moreover

d (x∗, x0) 6 d (x0, x1) + d (x1, x2) + · · · + d (xn, xn+1) + · · ·

=

∞∑

n=1

d (xn, xn+1) + d (x0, x1)

6
∞∑

n=1

Cx0 · N · βnd (x0, x1) + d (x0, x1)

=

(
Cx0 · N · β

1− β + 1

)
d (x0,Ax0) .

Corollary 3.2 Conditions and assumptions are the same as in theorem 3.1. Letx̃ be
another fixed point of A. If̃x and x∗ are comparable, theñx = x∗.

Proof. Since x̃ and x∗ are comparable, one can suppose thatx̃ . x∗. Using the
definition of contractive map,

∨
(
Ax̃ (Ax∗)−1 ,Ax∗ (Ax̃)−1

)
. ∨

(
x∗ x̃−1, x̃x∗−1

)β
,

namely,

∨
(
x∗ x̃−1, x̃x∗−1

)
. ∨

(
x∗ x̃−1, x̃x∗−1

)β
.

Since x̃ . x∗,∨
(
x̃x∗−1, x∗ x̃−1

)
= x∗ x̃−1, thenx∗ x̃−1 .

(
x∗ x̃−1

)β
,
(
x∗ x̃−1

)β−1 ∈ P. Notice

that 1− β ∈ [0,1],
(
x∗ x̃−1

)1−β ∈ P. By
(
x∗ x̃−1

)β−1 ∈ P and
(
x∗ x̃−1

)1−β ∈ P, x∗ x̃−1 = e,
andx∗ = x̃.

Theorem 3.3 Suppose that A: E → E is aβ-ordered contractive map. If there exists
an element x0 ∈ E so that∀n, x0 and Anx0 are comparable, then A has some fixed
point, and the sequence{Anx0} converges to one fixed point x∗ of A. Moreover, there
exists a constant Cx0 such that

d (x∗, x0) 6
(
Cx0 · N · β

1− β + 1

)
d (x0,Ax0) .
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Proof. Similar to the proof of theorem 3.1, the sequence{xn = Anx0} is a Cauchy
sequence. By the completeness ofE, let xn → x∗ ∈ E. Now we prove thatx∗ is a
fixed point ofA.

For all m,n, suppose thatm > n, using the given condition,x0 and xm−n are
comparable. ThenAxn and Axm−n are comparable, and so arexn = Anx0 and xm =

Anxm−n. Let m→ ∞, using lemma 2.2,∀n, xn and x∗ are comparable, thereforeAxn

and Ax∗ are comparable, and so

e. ∨
(
Axn (Ax∗)−1 ,Ax∗ (Axn)−1

)
. ∨

(
xnx∗−1, x∗x−1

n

)β
.

Since P is a positive cone,

d
(
∨

(
Axn (Ax∗)−1 ,Ax∗ (Axn)−1

)
,e

)
6 Cx0 · N · βd

(
∨

(
xnx∗−1, x∗x−1

n

)
,e

)
,

that is

d (xn+1,Ax∗) = d (Axn,Ax∗) 6 Cx0 · N · βd (xn, x
∗)→ 0.

Therefore x∗ = Ax∗ and x∗ is a fixed point of A. At last, similar to the proof of
Theorem 3.1, we can get the estimation ofd (x∗, x0) and we omit it here.

Theorem 3.4 Let A : E → E be a continuous map and satisfy the following condi-
tion:

(C1) If u and v are comparable, then Au and Av are comparable. Also, if u and
Au are comparable, and v and Av are comparable, then there exists aλ ∈

(
0, 1

2

)
so

that for∀β ∈ [0,1],

∨
(
Av(Au)−1 ,Au(Av)−1

)β
. ∨

(
Au◦ u−1,u ◦ (Au)−1

)λβ ◦ ∨
(
Av◦ v−1, v (Av)−1

)λβ
.

If there exists an element x0 ∈ E, such that x0 and Ax0 are comparable, then the
sequence{Anx0} converges to a fixed point x∗ of A. Moreover, there exists a constant
Cx0 such that

d (x0, x
∗) 6

(
1 +

Cx0 · N · λ
1− 2λ

)
d (x0, Ax0) .

Proof. Set β = λ
1−λ , then 1+

Nβ
1−β = 1 + λ·N

1−2λ . Consider the sequence:

x1 = Ax0, x2 = Ax1 = A2x0, · · · , xn+1 = Axn, · · · .
Since x0 and Ax0 are comparable, forn ∈ N, xn and Axn are comparable, and

e . ∨
(
xnx−1

n+1, xn+1x−1
n

)

= ∨
(
Axn−1 (Axn)−1 ,Axn

(
Ax−1

n−1

))

. ∨
(
Axn−1x−1

n−1, xn−1 (Axn−1)−1
)λ ∨

(
Axnx−1

n , xn (Axn)−1
)λ

= ∨
(
xnx−1

n−1, xn−1x−1
n

)λ ∨
(
xn+1x−1

n , xnx−1
n+1

)λ
.
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Therefore

e. ∨
(
xnx−1

n+1, xn+1x−1
n

)
. ∨

(
xnx−1

n−1, xn−1x−1
n

)λ ∨
(
xn+1x−1

n , xnx−1
n+1

)λ
,

and ∀β ∈ [0,1],

∨
(
xnx−1

n+1, xn+1x−1
n

)β
. ∨

(
xnx−1

n−1, xn−1x−1
n

)βλ ∨
(
xn+1x−1

n , xnx−1
n+1

)βλ
.

That is,

∨
(
xnx−1

n−1, xn−1x−1
n

)βλ ∨
(
xn+1x−1

n , xnx−1
n+1

)−(1−λ)β ∈ P,

and so
∨

(
xn+1x−1

n , xnx−1
n+1

)(1−λ)
. ∨

(
xnx−1

n−1, xn−1x−1
n

)λ
.

Since 0< λ < 1
2 ,0 <

λ
1−λ < 1, using lemma 2.3

e . ∨
(
xn+1x−1

n , xnx−1
n+1

)

. ∨
(
xnx−1

n−1, xn−1x−1
n

) λ
1−λ

. · · ·

. ∨
(
x0x−1

1 , x1x−1
0

)( λ
1−λ )

n

.

Using inequality (2) in the proof of theorem 3.1 there exists a constantCx0 such that,

d
(
∨

(
xn+1x−1

n , xnx−1
n+1

)
,e

)
6 Cx0 · N ·

(
λ

1− λ
)n

d
(
x0x−1

1 , x1x−1
0

)
.

Since the metricd is invariant under the translation operation,

d (xn, xn+1) 6 Cx0 · N ·
(

λ

1− λ
)n

d (x0, x1) .

This implies that{xn} is a Cauchy sequence. By the completeness ofE, let xn→ x∗ ∈
E, then

Ax∗ = lim
n→∞

Axn = lim
n→∞

xn+1 = x∗.

ThusA has a fixed point inE, and the sequence{Anx} converges to a fixed point ofA.

Theorem 3.5 Let A : E → E be a map satisfying the condition (C1) of theorem 3.4.
If there exists an element x0 ∈ E so that∀n ∈ N, x0 and Anx0 are comparable, then
A has a fixed point in E, and the sequence{Anx0} converges to a fixed point x∗ of A .
Moreover, there exists a constant Cx0 such that

d (x0, x
∗) 6

(
1 +

N ·Cx0 · λ
1− 2λ

)
d (x0,Ax0) .

8
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Proof. Similar to the proof of theorem 3.3,{xn = Anx0} is a Cauchy sequence.Let
xn → x∗ ∈ E. Now we prove that x∗ is a fixed point of A . As we have proved
in theorem 3.2, for alln, xn and x∗ are comparable. Using (C1), for alln, xn−1 and
xn = Axn−1 are comparable. Letn→ ∞, using lemma 2.2,x∗ and Ax∗ are comparable.
Hence,

e. ∨
(
Axn (Ax∗)−1 ,Ax∗ (Axn)−1

)
. ∨

(
Axnx−1

n , xn (Axn)−1
)λ ◦ ∨

(
Ax∗x∗−1, x∗ (Ax∗)−1

)λ
.

Let n→ ∞, we obtain

e. ∨
(
x∗ (Ax∗)−1 ,Ax∗ (x∗)−1

)
. ∨

(
Ax∗x∗−1, x∗ (Ax∗)−1

)λ ◦ ∨
(
Ax∗x∗−1, x∗ (Ax∗)−1

)λ
,

that is

e. ∨
(
x∗ (Ax∗)−1 ,Ax∗ (x∗)−1

)
. ∨

(
Ax∗x∗−1, x∗ (Ax∗)−1

)2λ
.

Thus,∨
(
Ax∗x∗−1, x∗ (Ax∗)−1

)2λ−1 ∈ P. Since 2λ−1 < 0 and∨
(
(Ax)∗ x∗−1, x∗ (Ax∗)−1

)
∈

P , x∗ (Ax∗)−1 = Ax∗ (x∗)−1 = e, namely,Ax∗ = x∗. Thereforex∗ is a fixed point ofA.

Remark 3.1 In Theorems3.3, 3.4and3.5, the estimations of d(x0, x∗) are the same
as that in theorem 3.1. This is because{xn} is the Cauchy sequence which makes
d (xn, x∗) 6 Cx0 · N · βnd (x1, x0) hold. In theorems 3.4 and 3.5,β = λ

1−λ .

Theorem 3.6 Suppse that u0, v0 ∈ E with u0 . v0, and[u0, v0] = {u ∈ E|u0 . u . v0}
is a ordered interval in E. If A: [u0, v0] → [u0, v0] is a β-ordered contractive map,
then A has a unique fixed point. Moreover, for all x∈ [u0, v0] , the sequence{Anx}
converges to the only fixed point of A.

Proof. Define the sequences:

u1 = Au0,u2 = Au1, · · · ,un+1 = Aun, · · · ,
v1 = Av0, v2 = Av1, · · · , vn+1 = Avn, · · · ,

then {un}, {vn} ⊂ [u0, v0]. Since u0 . v0 and A is aβ-ordered contractive map, for all
n, un and vn are comparable, and

e . ∨
(
unv−1

n , vnu−1
n

)

= ∨
(
Aun−1 (Avn−1)−1 ,Avn−1 (Aun−1)−1

)

. ∨
(
un−1v−1

n−1, vn−1u−1
n−1

)β

. · · ·

. ∨
(
u0v−1

0 , v0u−1
0

)βn

.

BecauseP is positive, there exists a constantCu0v−1
0

and a positive integerN such that

d (un, vn) = d
(
unv−1

n ,e
)

= d
(
vnu−1

n ,e
)
6 Cu0v−1

0
· N · βnd (u0, v0) .
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Since againu0 . u1, for all n,un and un+1 are comparable and

e . ∨
(
unu−1

n+1,un+1u−1
n

)

= ∨
(
Aun−1 (Aun)−1 ,Aun

(
Au−1

n−1

))

. ∨
(
un−1u−1

n ,unu−1
n−1

)β

. · · ·

. ∨
(
u0u−1

1 ,u1u−1
0

)βn

.

Thus,

d (un,un+1) 6 βnNd(u0,u1) .

Notice thatβ < 1, {un} is a Cauchy sequence with a limit pointu∗ ∈ [u0, v0]. Similarly
{vn} is a Cauchy sequence with a limit pointv∗ ∈ [u0, v0]. Then

d (u∗, v∗) = lim
n→∞

d (un, vn) 6 lim
n→∞

Cu0v−1
0
· N · βnd (u0, v0) = 0.

This implies thatu∗ = v∗.
Now we prove thatu∗ is a fixed point of A. For all m> n, since u0 and um−n are

comparable,Anu0 = un and Anum−n = um are comparable. Letm→ ∞ , then un and
u∗ are comparable, andAun and Au∗ are also comparable,

e. ∨
(
Aun (Au∗)−1 ,Au∗ (Aun)−1

)
. ∨

(
unu∗−1,u∗u−1

n

)β
.

So,

lim
n→∞

d (un+1,Au∗) = lim
n→∞

d (Aun,Au∗) 6 lim
n→∞

Cunu∗−1 · N · βd (un,u
∗) = 0

Thus Au∗ = u∗, u∗ is a fixed point ofA.
For all x ∈ [u0, v0], since x and u0 are comparable,Anx and Anu0 are comparable,

and

e. ∨
(
Anx (Anu0)−1 ,Anu0 (Anx)−1

)
.

[
∨

(
u0x−1, xu−1

0

)]βn

→ e

ThereforeAnx→ u∗.
Now we prove that the fixed point ofA is unique. Suppose thatv is another fixed

point of A in [u0, v0], then

d(u∗, v) ≤ d(u∗,Anu0) + d(Anu0,A
nv).

Notice thatu0 . v, we have

e . ∨
(
Anu0 (Anv)−1 ,Anv (Anu0)−1

)

= ∨
((

AAn−1u0

) (
AAn−1v

)−1
,
(
AAn−1v

) (
AAn−1u0

)−1
)

. ∨
(
An−1u0

(
An−1v

)−1
,An−1v

(
An−1u0

)−1
)β

. · · ·

. ∨
(
u0v−1, vu−1

0

)βn

.
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Thus

d (Anu0,A
nv) = d

(
∨Anu0 (Anv)−1 ,Anv (Anu0)−1

)

≤ Nd
(
∨

(
u0v−1, vu−1

0

)βn

,e
)

≤ NCu0v−1βnd (u∗, v) .

Sinceu∗ andv are fixed points,d (Anu0,Anv) → d (u∗, v), we haved (u∗, v) = 0. The
uniqueness is proved.
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