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Abstract

We show that the Entropy Photon-Number Inequality (EPnI) holds where one of the input
states is the vacuum state and for several candidates of the other input state that includes the
cases when the state has the eigenvectors as the number states and either has only two non-zero
eigenvalues or has arbitrary number of non-zero eigenvalues but is a high entropy state. We also
discuss the conditions, which if satisfied, would lead to an extension of these results.

1 Introduction

The Entropy Photon Number Inequality (EPnI) was conjectured by Guha et. al. [1]. EPnI has a
classical analogue called Entropy power inequality which is stated as follows. LetX andY be
independent random variables with densities andh(X) be the differential entropy ofX, then

e2h(X) + e2h(Y ) ≤ e2h(X+Y ) (1)

holds. It was first stated by Shannon in Ref. [2] and the proof was given by Stam and Blachman
[3, 4].

The EPnI has some important consequences in quantum information theory. In particular,
if this conjecture is true, then one would be able to establish the classical capacity of certain
bosonic channels [1, 5]. EPnI is shown to imply two minimum output entropy conjectures,
which would suffice to prove the capacity of several other channels such as the thermal noise
channel [5] and the bosonic broadcast channel [6, 7].

The statement of the inequality is as follows. Leta andb be the photon annihilation operators
and let the joint state of the modes associated witha andb be the product state, i.e.,ρAB = ρA⊗
ρB , whereρA andρB are the density operators associated with thea andb modes respectively.
For the beam-splitter with inputsa andb and outputc with transmissivityη and reflectivity1−η
respectively, the annihilation operator evolution is given by

c =
√
ηa+

√

1− ηb, (2)
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The EPnI is now stated as

g−1 [S(ρC)] ≥ ηg−1 [S(ρA)] + (1− η)g−1 [S(ρB)] , (3)

where
g(x) = (x+ 1) log(x+ 1)− x log(x) (4)

is the von Neumann entropy of the thermal state with mean photon-number x, and
S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy.

In this paper, we prove the EPnI for the case ofρB to be the vacuum state,ρA having
its eigenvectors as the number states and either having two nonzero eigenvalues or high von
Neumann entropy with arbitrary number of eigenvalues. There are other candidates as well for
which some special cases EPnI hold and these are mentioned later.

2 The beam-splitter transformation

We obtain the output density matrixρC from the beam-splitter transformations. The annihilation
operators for the two outputs are

c =
√
ηa+

√

1− ηb, (5)

d = eιφ(
√

1− ηa−√
ηb), (6)

where[a, a†] = [b, b†] = [c, c†] = [d, d†] = I and [a, b] = [a, c] = [a, d] = 0 and so on. We
assume that the inputs density operators are diagonal in thenumber state basis and hence,

ρAB =

∞∑

i=0

∞∑

j=0

xiyj |i〉A |j〉B 〈i|A 〈j|B , (7)

wherexi andyj are theith andjth eigenvalues ofA andB respectively,|i〉A and|j〉B are the
Fock number states for the systemsA andB respectively. Any state|i〉A |j〉B can be written as
(see Ref. [8] for example)

|i〉A |j〉B =
(a†)i√

i!

(b†)j√
j!

|0〉A |0〉B . (8)

From (5) and (6), we geta† =
√
ηc† +

√
1− ηeιφd† andb† =

√
1− ηc† − √

ηeιφd†. Using
these with (8), we get the transformation

|i〉A |j〉B
B.S.−−→ (

√
ηc† +

√
1− ηeιφd†)i√
i!

(
√
1− ηc† −√

ηeιφd†)j√
j!

|0〉C |0〉D , (9)

where B.S. indicates the action of the beam splitter. Using the fact that the operatorsc† andd†

commute and the binomial expansion, we get

|i〉A |j〉B
B.S.−−→ 1√

i!
√
j!

i∑

k=0

j
∑

l=0

eι(k+l)φ(−1)l
(
i

k

)(
j

l

)

η
i−k+l

2 (1− η)
j−l+k

2

(c†)(i+j)−(k+l)(d†)k+l |0〉C |0〉D . (10)
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Incorporating the action ofc† andd† on the vacuum states ofC andD, we get

|i〉A |j〉B
B.S.−−→ 1√

i!
√
j!

i∑

k=0

j
∑

l=0

eι(k+l)φ(−1)l
(
i

k

)(
j

l

)

η
i−k+l

2 (1− η)
j−l+k

2

√

[(i+ j)− (k + l)]!(k + l)! |(i+ j)− (k + l)〉C |k + l〉D . (11)

Hence, we arrive at the expression forρCD as

ρCD =
∞∑

i=0

∞∑

j=0

xiyj
1

i!j!

i∑

k=0

j
∑

l=0

i∑

k′=0

j
∑

l′=0

eι[(k+l)−(k′+l′)]φ(−1)l+l′
(
i

k

)(
j

l

)(
i

k′

)(
j

l′

)

ηi−
k+k′

2
+ l+l′

2 (1− η)j−
l+l′

2
+ k+k′

2

√

[(i+ j) − (k + l)]!(k + l)!
√

[(i+ j)− (k′ + l′)]!(k′ + l′)!

|(i+ j)− (k + l)〉C |k + l〉D 〈(i + j) − (k′ + l′)|C 〈k′ + l′|D . (12)

Now, tracing out system D, we get

ρC =

∞∑

i=0

∞∑

j=0

xiyj
1

i!j!

i∑

k=0

j
∑

l=0

i∑

k′=0

j
∑

l′=0

(−1)l+l′
(
i

k

)(
j

l

)(
i

k′

)(
j

l′

)

ηi−
k+k′

2
+ l+l′

2 (1− η)j−
l+l′

2
+ k+k′

2

[(i+ j)− (k + l)]!(k + l)! |(i+ j)− (k + l)〉 〈(i+ j) − (k + l)| δk+l,k′+l′ . (13)

We now consider the special case whenρB is a vacuum state. Let the set of all probability
vectors (with infinite length) be denoted byP and ifxxx ∈ P, then

∑∞
i=0 xi = 1 andxi ≥ 0 ∀

i ≥ 0. Then (13) reduces to

ρC =
∞∑

i=0

zi |i〉C 〈i|C , (14)

wherezzz = Mη(xxx) , M(η,xxx), M : [0, 1] × P → P is a transformation given by

zi =

∞∑

k=i

(
k

i

)

ηi(1− η)k−ixk. (15)

Hence, (3) reduces to
g−1 {H[Mη(xxx)]} ≥ ηg−1 [H(xxx)] . (16)

Note that this equation is expected to hold for allxxx ∈ P and η ∈ [0, 1]. The inequality is
trivially true for η = 0 sinceM0(xxx) = [1, 0, ...] implying H[M0(xxx)] = 0, and forη = 1 since
M1(xxx) = xxx.

3 ρA is two-dimensional in the number state basis and
ρB is the vacuum state

Let
Hb(p) , −p log(p)− (1− p) log(1− p) (17)
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to be the binary entropy of a two-point probability distribution [p, 1 − p] with 0 ≤ p ≤ 1.
Let the eigenvalues ofρA given by the probability vectorxxx = [1 − α,α, 0, ...]. Therefore,
H(xxx) = Hb(α) andH[Mη(xxx)] = Hb(ηα). We now prove (16) for the above case.

Lemma 1. For all η ∈ [0, 1] and α ∈ [0, 1], we have

g−1 [Hb(ηα)] ≥ ηg−1 [Hb(α)] . (18)

with equality if and only if η ∈ {0, 1} or α = 0.

Proof. One can see thatg−1 [Hb(ηα)] = ηg−1 [Hb(α)] if η ∈ {0, 1} or α = 0. In all other
cases, we show that

g−1 [Hb(ηα)] > ηg−1 [Hb(α)] . (19)

Let f(β) , g−1 [Hb(β)]. The Lemma is equivalent to showing thatf(β)/β is a strictly
decreasing function in0 < β ≤ 1. Note that sinceg(β) = Hb(β)+2 [log(2) −Hb (1/2 + β/2)]
andlog(2) > Hb (1/2 + β/2) for all β ∈ (0, 1), henceg(β) > Hb(β) for all 0 < β < 1. Since
g is one-to-one and increasing, we haveg−1 [Hb(β)] < β for all 0 < β < 1 or f(β) < β for all
0 < β < 1.

It is not difficult to see that

d

dβ

f(β)

β
=

log {(1− β)[1 + f(β)]}
β2 log

[
1+f(β)
f(β)

] (20)

and since, usingf(β) < β for all 0 < β < 1, it follows that (1 − β)[1 + f(β)] < 1 for all
0 < β < 1, hence,f(β)/β is a strictly decreasing function in0 < β ≤ 1.

Recall that if the distribution of a random variableX is Binomial, denoted by Bin(L, η) ∈ P,
then Bin(L, η, k) , Pr{X = k} =

(L
k

)
ηk(1− η)L−k if k ∈ {0, 1, ..., L} and is zero otherwise.

Let the two non-zero entries of the probability vectorxxxN,P be at theN -th andP -th position,
i.e.,xN = 1− α, xP = α and letzzzN,P = Mη(xxx

N,P ).

Lemma 2. For all η ∈ [0, 1], α ∈ [0, 1] and L ≥ 1, we have

g−1
[
H(zzzN,P )

]
≥ ηg−1

[
H(xxxN,P )

]
. (21)

Proof. By Lemma 1, we have

g−1 [Hb(ηα)] ≥ ηg−1 [Hb(α)] . (22)

Note thatg is one-one and and strictly increasing, thereforeg−1 is also strictly increasing. There-
fore, it is enough to prove that

H(zzzN,P ) ≥ H(zzz0,1). (23)

asH(zzz0,1) = Hb(ηα) andH(xxxN,P ) = Hb(α). We first show that

H(zzz0,P ) ≥ H(zzz0,1). (24)

Note that

H(zzz0,P ) =f
[
α, (1 − η)P

]
+ αH [Bin(P, η)] , (25)
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where

f(α, x) = − [(1− α) + αx] log [(1− α) + αx]− (1− x)α log(α) + x log(x)α. (26)

It is not difficult to show thatf(x) is a decreasing function ofx. Note thatH [Bin(P, η)] in-
creases withP . SinceH(xxx0,P ) is a sum of two functions each of which increases withP , (24)
follows.

Next, we show that for allN,P ≥ 0, we have

H(zzzN+1,P+1) ≥ H(zzzN,P ). (27)

Note first that Bin(N + 1, η) = (1− η)Bin(N, η) + ηBin+1(N, η), where ifX has distribution
Bin+1(N, η), thenPr{X = k + 1} = Bin(N, η, k) ∀ k. This implies that

zzzN+1,P+1 = (1− η)zzzN,P + ηzzzN,P
+1 , (28)

where we definezzzN,P
+1 similarly. UsingH(zzzN,P ) = H(zzzN,P

+1 ), it is not difficult to show that

H(zzzN+1,P+1) = H(zzzN,P ) + (1− η)D
[
zzzN,P ||zzzN+1,P+1

]
+ ηD

[

zzzN,P
+1 ||zzzN+1,P+1

]

, (29)

whereD(·||·) is the relative entropy that is always non-negative and hence, (27) follows.
Assume w.l.o.g. thatP > N . Applying (24) repeatedly followed by (27), we get

H(zzzN,P ) ≥ H(zzz0,P−N) ≥ H(zzz0,1). (30)

The result follows.

4 ρA has number states as eigenvectors and ρB is the
vacuum state

We have observed that the EPnI holds whenρA has two non-zero eigenvalues with eigenvectors
as the number states andρB is a vacuum state. We now consider the case whenρA has number
states as the eigenvectors and could have arbitrary number of nonzero eigenvalues andρB is the
vacuum state. We derive some necessary and sufficient conditions for this inequality to hold.

We first note thatMη

[
Mη′(xxx)

]
= Mηη′(xxx) ∀ η, η′ ∈ [0, 1] andxxx ∈ P. To prove this, let

yyy = Mη′(xxx), zzz = Mη(yyy) and note that

zi =

∞∑

k=i

(
k

i

)

ηi(1− η)k−iyk (31)

=

j
∑

k=i

(
k

i

)

ηi(1− η)k−i
∞∑

j=k

(
j

k

)

(η′)k(1− η′)
j−k

xj (32)

=

∞∑

j=i

(
j

i

)

(ηη′)
i
xj

j−i
∑

k−i=0

(
j − i

k − i

)

(η′ − ηη′)k−i(1− η′)
j−k (33)

=

∞∑

j=i

Mηη′xj . (34)
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To simplify the notation, let us define

H(η,xxx) , H(Mηx) (35)

h(η,xxx) , g−1 [H(η,xxx)] . (36)

AsM1 is an identity transformation, we sometimes writeH(xxx) for H(1,xxx) andh(xxx) for h(1,xxx).
Note thath(1,xxx) = g−1 [H(xxx)] and therefore, (16) can be rephrased as

h(η,xxx)

η
≥ h(1,xxx). (37)

It is not difficult to see that if (16) holds, thenh(η,xxx)/η is a decreasing function inη. To see
this, letη′ ≤ η andδ = η′/η where0 ≤ δ ≤ 1. Then

h(η′,xxx)

η′
=

h[δ,Mη(xxx)]

δ

1

η
(38)

≥ h[1,Mη(xxx)]

η
(39)

=
h(η,xxx)

η
. (40)

As h(η,xxx)/η is differentiable, we have

d

dη

h(η,xxx)

η
= η

dH(η,xxx)

dη
−H(η,xxx) + log [1 + h(η,xxx)] . (41)

Lemma 3. Let Mη : [0, 1] × P → P be the transformation given by (15). The following are
equivalent:

(i) h(η,xxx) ≥ ηh(1,xxx) ∀ xxx ∈ P,∀ η ∈ (0, 1], (42)

(ii)
d

dη

h(η,xxx)

η
≤ 0 ∀ xxx ∈ P,∀ η ∈ (0, 1], (43)

(iii)
d

dη

h(η,xxx)

η

∣
∣
∣
η=1

≤ 0 ∀ xxx ∈ P. (44)

Proof. It is clear from (40) that(i) and(ii) are equivalent. Furthermore,(ii) implies(iii) since
(iii) is a special case of(ii). We prove that(iii) implies(ii). Note that

d

dβ

h[β,Mη(xxx)]

β

∣
∣
∣
β=1

=
d

dβ

h(ηβ,xxx)

β

∣
∣
∣
β=1

(45)

= η2
d

dθ

h(θ,xxx)

θ

∣
∣
∣
θ=η

. (46)

Now (iii) implies that

d

dθ

h(θ,xxx)

θ

∣
∣
∣
θ=η

≤ 0 (47)

and hence,(ii) follows using (46).
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We now state EPnI in (16) in the form of an entropic inequality, i.e., an inequality involving
Shannon entropy of discrete probability distributions. ByLemma 3, (16) is equivalent to

η
dH(η,xxx)

dη
−H(η,xxx) + log [1 + h(η,xxx)] ≤ 0. (48)

The above can be expressed as

g

[

e
H(η,xxx)−η dH(η,xxx)

dη − 1

]

≥ H(η,xxx). (49)

Note thatg(1/β − 1) = Hb(β)/β ∀ β ∈ [0, 1] and hence, (16) is equivalent to showing that

H(η,xxx) ≤
Hb

[

e−H(η,xxx)+η
dH(η,xxx)

dη

]

e
−H(η,xxx)+η

dH(η,xxx)
dη

. (50)

For the two dimensional case withη = 1, xxx = [α, 1 − α, 0, ...], α ∈ [0, 1], H(η,xxx) −
ηdH(η,xxx)/dη = − log(α), H(xxx) = Hb(α), and substituting this in (50), we get

Hb(α) ≤
Hb(α)

α
, (51)

which is true. This gives a short proof of (16) for this special case. Evaluating (50) atη = 1
gives an interesting expression that depends only on the distributionxxx. It is shown in (62) that

Θ(xxx) ,
dH(η,xxx)

dη

∣
∣
∣
η=1

= −
∞∑

i=1

ixi log

(
xi
xi−1

)

, (52)

and hence, (50) reduces to

H(xxx) ≤ Hb

[
e−H(xxx)+Θ(xxx)

]

e−H(xxx)+Θ(xxx)
. (53)

The above inequality involves only entropies and another functionΘ of the distribution but, to
the best of our knowledge, has never been studied before in the literature.

We now show that if (16) is true, then it implies that

η
dH(η,xxx)

dη
< 1, (54)

η
dH(η,xxx)

dη
≤ H(η,xxx). (55)

If (16) holds, then using Lemma 3, we haveH(η,xxx) − ηdH(η,xxx)/dη ≥ log [1 + h(η,xxx)]. As
log [1 + h(η,xxx)] ≥ 0, we haveH(η,xxx)− ηdH(η,xxx)/dη ≥ 0, which proves (55).

Using Lemma 3 again, we haveηdH(η,xxx)/dη − H(η,xxx) + log [1 + h(η,xxx)] ≤ 0. It is
enough to prove thatH(η,xxx)− log [1 + h(η,xxx)] ≤ 1, i.e.,

1 + g−1 [H(η,xxx)] ≥ eH(η,xxx)−1. (56)
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We first consider the case when0 ≤ H(η,xxx) ≤ 1. TheneH(η,xxx)−1 ≤ 1. Therefore,1 +
g−1 [H(η,xxx)] ≥ eH(η,xxx)−1 and (54) holds.

Now considerH(η,xxx) ≥ 1. Hence, it is enough to prove that1 + g−1(x) ≥ ex−1 ∀ x ≥ 1,
or, x+1 ≥ g(ex − 1) ∀ x ≥ 0. Simplifying, we can show that this is equivalent to showingthat
r(e−x) ≥ 0, wherer : [0, 1] → R and

r(x) = x+ (1− x) log(1− x). (57)

Note thatr(0) = 0 anddr(x)/dx = − log(1 − x) ≥ 0 ∀ x ∈ [0, 1]. Therefore,r(x) ≥ 0 ∀
x ∈ [0, 1] and (54) follows.

(54) and (55) are the necessary conditions for (16) to hold. We now show that they both hold
under general conditions.

Lemma 4. For all η ∈ [0, 1] and xxx ∈ P, the following hold:

η
dH(η,xxx)

dη
< 1, (58)

η
dH(η,xxx)

dη
≤ H(η,xxx) (59)

with equality if and only if Mη(xxx) = [1, 0, ...].

Proof. Let zzz = Mη(xxx) and using

η
dzi
dη

= izi − (i+ 1)zi+1, (60)

we get

−η
dH(η,xxx)

dη
= η

∞∑

i=0

[1 + log(zi)]
dzi
dη

(61)

=

∞∑

i=1

izi log

(
zi
zi−1

)

(62)

a
≥

∞∑

i=1

izi

(

1− zi−1

zi

)

(63)

= −1, (64)

where ina, we have used the inequality thatlog(x) ≥ 1− 1/x for all x ≥ 0 with equality if and
only if x = 1. If zzz is such thatzi 6= 0 ∀ i, then it is impossible to have an equality ina since
equality would implyzi−1 = zi ∀ i and this would imply that

∑∞
i=0 zi is unbounded.

If zzz has a finite number of nonzero values sayzzz = [z0, z1, ..., zL−1, 0, ...], then (64) can be
further tightened as

η
dH(η,xxx)

dη
≤ 1− LzL−1. (65)
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Hence, (54) holds.
We now prove (59) or equivalently

Θ(zzz) = −
∞∑

i=1

izi log

(
zi
zi−1

)

≤ H(zzz). (66)

Let us define a sequence of probability distributions{zzz(L)}, L = 0, 1, ..., wherezzz(L) has length
L + 1 andzzz(L) = [(1 − zL)zzz

(L−1), zL] andzzz(0) = [1]. It is easy to see that the following
recurrence relations hold

Θ(zzz(L)) = (1− zL)Θ(zzz(L−1)) + LzL log

(
1− zL
zL

zL−1

)

(67)

H(zzz(L)) = (1− zL)H(zzz(L−1)) +Hb(zL). (68)

Define
Ξ(zzz(L)) , Θ(zzz(L))−H(zzz(L)). (69)

Using the recurrence relations in (67) and (68), we get

Ξ(zzz(L)) = (1− zL)Ξ(zzz
(L−1)) + LzL log

(
1− zL
zL

zL−1

)

−Hb(zL). (70)

We now claim that
Ξ(zzz(L)) ≤ L log(1− zL). (71)

We prove this by induction. It is easy to check thatΞ(zzz(1)) = log(1 − z1). Let (71) hold for
L− 1, L > 1. Then we have

Ξ(zzz(L)) = (1 − zL)Ξ(zzz
(L−1)) + LzL log

(
1− zL
zL

zL−1

)

−Hb(zL) (72)

a
≤ (L− 1)(1 − zL) log(1− zL−1) + (L− 1)zL log (zL−1) + LzL log

(
1− zL
zL

)

−Hb(zL) (73)
b
= −(L− 1)d(zL, zL−1) + L log(1− zL) (74)

≤ L log(1− zL), (75)

where ina, we have used the induction hypothesis and the fact thatzL log(zL−1) ≤ 0, in b,

d(x, y) = x log

(
x

y

)

+ (1− x) log

(
1− x

1− y

)

(76)

is the relative entropy between[x, 1 − x] and [y, 1 − y] and is always nonnegative. (59) now
follows from (71) sincelog(1− zL) ≤ 0. The equality condition follows straightforwardly.

It is not difficult to see that the sufficient condition for (16) to hold is thatdH(η,xxx)/dη ≤ 0.
This condition is, of course, not true for many distributions such as a distribution whose sequence
of entries are non-increasing. Supposezzz = Mη(xxx) has some zero entries in its interior, i.e.,
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zi = 0 andzi+1 6= 0 for somei. Then one can easily check thatdH(η,xxx)/dη = −∞ and (16)
holds. It also follows from (65) that if, for distributions with finite non-zero entries of the form
zzz = [z0, z1, ..., zL−1, 0, ...] andzL−1 ≥ 1/L, then (16) holds.

We now show that (16) holds ifH(xxx) is sufficiently large.

Lemma 5. For a given η ∈ (0, 1), xxx ∈ P, (16) holds if H(xxx) is large enough.

Proof. Using (49), we need to show that

g
[

eH(η,xxx)−ηdH(η,xxx)/dη − 1
]

≥ H(η,xxx). (77)

We have

g
[

eH(η,xxx)−ηdH(η,xxx)/dη − 1
]

a
> H(η,xxx) + δ − e−H(η,xxx)+ηdH(η,xxx)/dη (78)

b
> H(η,xxx) + δ − e−H(η,xxx)+1 (79)

≥ H(η,xxx), (80)

where ina, we use the inequality thatg(ex − 1) ≥ x + 1 − e−x and we use Lemma 4 to get
ηdH(η,xxx)/dη < 1 − δ for someδ > 0, in b, we useηdH(η,xxx)/dη < 1 and the last inequality
would hold ifH(η,xxx) ≥ 1− log(δ) or if H(η,xxx) is large enough.

We now show that ifH(xxx) is large, then so isH(η,xxx) for η ∈ (0, 1). Define

q(η,xxx) ,
H(η,xxx)

η
. (81)

Differentiating w.r.t.η, we get using (59),

dq(η,xxx)

dη
=

1

η2

[

η
dH(η,xxx)

dη
−H(η,xxx)

]

(82)

≤ 0. (83)

Hence,q(η,xxx) is a decreasing function ofη andH(η,xxx) ≥ ηH(xxx). Similarly, using (58), we
get

∫ 1

η
dH(β,xxx) <

∫ 1

η

dβ

β
(84)

H(η,xxx) > H(xxx) + log(η). (85)

Hence,
H(η,xxx) ≥ max {ηH(xxx),H(xxx) + log(η)} . (86)

This shows that ifH(xxx) is large, then so isH(η,xxx) and hence, (16) would hold for anyη ∈ (0, 1]
for largeH(xxx).
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5 Discussion

It is, of course, of great interest to see if these results could be generalized for the cases where
ρA andρB do not have the special structure such as the eigenvectors being the number states etc.
It would seem that our results may extend over to cover some ofthese cases if the following is
established. Suppose there exists anxxx ∈ P such that

d

dη

h[η,Mβ(xxx)]

η

∣
∣
∣
η=1

< 0 ∀ β ∈ (0, 1]. (87)

Then, it follows from (46) that

d

dη

h(η,xxx)

η

∣
∣
∣
η=β

< 0 ∀ β ∈ (0, 1]. (88)

This would then imply thath(β,xxx) is a strictly decreasing function ofβ ∈ (0, 1] and hence, (16)
holds with strict inequality.

An example of such axxx isxxx = [α, 1 − α, 0, ...], α 6= 1, andMβ(xxx) = [1 − (1 − α)β, (1 −
α)β, 0, ...], and (16) is strict using (51).

For finiten and any stateσ defined on the number states as

σ =
n∑

i,j=0

ξi,j |i〉 〈j| , (89)

we define a function

f(n, σ) =
n∑

i,j=0

ξi,j |eni 〉 〈enj | , (90)

where{|eni 〉} is the standard basis for the Hilbert space of dimensionn+ 1, i.e.,〈ei| = [

i
︷ ︸︸ ︷

0, ..., 0

, 1,

n−i
︷ ︸︸ ︷

0, ..., 0], i = 0, 1, ..., n. It follows thatS(σ) = S[f(n, σ)].
Now consider the input states such that

ρA =

nA∑

i,j=0

λi,j |i〉A 〈j|A , (91)

ρB =

nB∑

i,j=0

γi,j |i〉B 〈j|B , (92)

ρ̂A = α |0〉A 〈0|A + (1− α) |1〉A 〈1|A (93)

ρ̂B = |0〉B 〈0|B , (94)

wherenA, nB are finite and||f(nA, ρA)−f(nA, ρ̂A)||tr < δ and||f(nB, ρB)−f(nB, ρ̂B)||tr <
δ.

It is not difficult to see that under the action off , the outputρC of beam splitter withρA
andρB as inputs is close to the outputρ̂C with ρ̂A and ρ̂B as inputs, i.e.,||f(nA + nB , ρC) −

11



f(nA+nB , ρ̂C)||tr < ǫ, where we could makeǫ as small as possible by choosingδ small. Using
Fannes’ inequality [9, 10], this would result in a small deviation in the von Neumann entropies
of ρA, ρB andρC as compared tôρA, ρ̂B and ρ̂C respectively that can be absorbed while still
preserving the inequality since the inequality is strict.
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