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Abstract: Noncommutative (NC) κ-deformation of a spacetime, whose NC coordinates

close in a Lie algebra, affects the coalgebra of the Poincaré group and the algebra of physical

fields. This leads to a modification of multiplication in the corresponding universal envelop-

ing algebra, thus requiring replacement of the usual pointwise multiplication by a deformed

star (⋆) product. The measure problems in the κ-Minkowski NC spacetime are avoided be-

cause the measure function is naturally absorbed within the new ⋆h-product. That reflects

itself in the way we have constructed the deformed NC scalar φ4 action. The action is

further modified by including harmonic oscillator term and expanding up to linear order in

the κ-deformation parameter a, producing an effective theory on commutative spacetime.

Furthermore, we obtain modified equations of motion and conserved currents due to inter-

nal symmetry at that order. Next, to compute the tadpole diagram contributions to the

scalar field propagation/self-energy, we anticipate that statistics on κ-Minkowski is specifi-

cally deformed. Thus our prescription in fact represents hybrid approach between standard

quantum field theory (QFT) and NCQFT on κ-deformed Minkowski spacetime, producing

κ-effective theory. The results are analyzed in the framework of two-point Green’s func-

tion for low, middle size, and for Planckian energies, respectively. For low energies E, the

tadpole diagram dependence on the κ-deformation parameter a completely drops out. At

Planckian propagation energies, the tadpole diagram contribution tends to a finite fixed

value, which depends only on the Planckian energy and/or the κ-deformation parameter.

Semiclassical/hybrid behavior of the first order quantum effects do show up due to the

κ-deformed momentum conservation law. The mass term of the scalar field is shifted and

these shifts are dramatically different at different propagation energies. Thus, at Planckian

energies we have κ-modified dispersion relations, i.e. our effective theory for the massive

scalar field mode shows genuine effect of birefringence. We conclude that our results could

have physical consequences, in the NC Higgs sector, connection to quantum gravity, etc.
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1. Introduction

Basic areas of interest, quantum gravity and deformation of Poincaré algebra make κ-

Minkowski spacetime an important subject of theoretical investigation from both, physical

as well as mathematical perspective, respectively.

An argument that favors κ-Minkowski spacetime is the indication that it could arise

in the context of quantum gravity coupled to matter fields [1, 2]. These considerations

show that after integrating out gravitational topological degrees of freedom of gravity, the

effective dynamics of matter fields is described by a noncommutative quantum field theory

which has a κ-Poincaré group as its symmetry group [3, 4, 5]. In this context, the κ-

Minkowski spacetime can be, and there are some arguments to support this, considered as

a flat limit of quantum gravity.

Second, since κ-Minkowski emerges naturally from κ-Poincaré algebra [6, 7, 8, 9, 10],

which provides a possible group theoretical framework for describing symmetry lying in

the core of the Doubly Special Relativity (DSR) theories [11, 12, 13, 14, 15, 16], it is

thus a convenient spacetime candidate for DSR theories too. Although different proposals
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for DSR theories can be looked upon as different bases [15, 16] for κ-Poincaré algebra,

they all have in their core the very same noncommutative structure, encoded within κ-

deformed algebra. This situation makes noncommutative field theories on noncommutative

κ-Minkowski spacetime an even more interesting subject to study. Various attempts have

been undertaken in this direction by many authors [17, 18, 19, 20, 21], including various

possibilities for construction and investigation of their properties.

Recently, it was established that if the κ-Poincaré Hopf algebra is supposed to be

a plausible model for describing physics in κ-Minkowski spacetime, then it is necessary

to accept certain modifications in statistics obeyed by the particles. This means that κ-

Minkowski spacetime leads to modification of particle statistics which results in deformed

oscillator algebras [22, 23, 24, 25, 26, 27, 28]. Deformation quantization of Poincaré alge-

bra can be performed by means of the twist operator [29, 30, 31, 32, 33] which happens

to include dilatation generator, thus belonging to the universal enveloping algebra of the

general linear algebra [34, 35, 36, 37, 38]. This twist operator gives rise to a deformed

statistics on κ-Minkowski spacetime [23, 35, 39, 40]. However, since the κ-Poincaré Hopf

algebra is a quantum symmetry described only approximatively by twisted quantum al-

gebra, there could be problems with identifying charges and current conservation, that is

with establishing the Noether theorem. Thus, certain modification towards momentum

conservation is necessary to obtain any reasonable physics out of approximatively twisted

Hopf algebra prescription of our theory.

Transformation from noncommutative κ-Minkowski to Minkowski spacetime in the case

of the free field theory was described in [41], while the star product and interacting fields on

κ-Minkowski space were treated in the same approach in [42]. The problem of UV/IR mix-

ing and κ-deformation was discussed in [43]. In correspondence to the above observations,

as well as by comparing deformed dispersion relations to corresponding time delay calcula-

tions of high energy photons, bounds can be put on the quantum gravity scale [44, 45, 46].

We are continuing along the line where the main aim is to transcribe original NCQFT on κ-

Minkowski to a corresponding commutative QFT on standard Minkowski spacetime. With

this in mind, we are considering κ-deformation of a Minkowski spacetime whose symmetry

has an undeformed Lorentz sector (classical basis [47, 15, 16, 48]) and whose noncommuta-

tive coordinates close in κ-deformed Lie algebra and additionally, form a Lie algebra with

Lorentz generators [49, 50, 51, 52]. That deformation of the spacetime structure affects the

algebra of physical fields, leading to a modification of multiplication in the corresponding

universal enveloping algebra, requiring replacement of the usual pointwise multiplication

by a deformed star product, i.e. by the new star product ⋆h, thus reproducing important

trace-like property [52]. Instead of being given by classical NC φ4, the action describing a

massive and generally complex scalar field in interaction gets modified accordingly. This

way the integral measure problems in the κ-Minkowski NC spacetime are avoided since the

measure function is naturally absorbed within the new ⋆h-product. The action is further

modified by inclusion of the harmonic type of the interacting term [53, 54] and truncating

by expansion only to the first order in the deformation parameter a, producing an effective

theory on commutative spacetime. We obtain further modified equations of motion and

conserved currents at that order, due to invariance under internal symmetry. Next, to
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compute the tadpole diagram contributions to the scalar field propagation/self-energy, we

anticipate that statistics on κ-Minkowski spacetime is specifically deformed. Truncating of

the model was necessary to be able to compute any relevant physical quantity, such as self-

energy of our complex scalar field φ. Above properties are very welcome, however we have

to stress that by truncating κ-deformed action to the linear order in deformation parameter

a we have lost nonperturbative quantum effects like celebrated UV/IR mixing [43], which,

amongst other, connects NC field theories with Holography via UV and IR cutoffs, in a

model independent way [55]. Resummation of expanded action could in principle restore

nonperturbative character of the model, thus producing UV/IR mixing. Those are general

properties of most of NCGFT expanded/resummed in terms of the noncommutative defor-

mation parameter. Holography and UV/IR mixing are in the literature known as possible

windows to quantum gravity phenomena.

On the same line of reasoning we should take into account the harmonic oscillator term,

despite that it is well known that such a term represents translation invariance breaking

[53, 54]. Our approach generally represents hybrid approach modeling between standard

quantum field theory and NCQFT on κ-Minkowski spacetime involving κ-deformed mo-

mentum conservation law [17, 19, 20, 56, 57].

The results are next discussed in the framework of two-point Green’s function for low,

middle, and for Planck scale energy regimes. We have found semiclassical behavior of

the first order quantum effects, and, as a consequence, the mass term of the scalar field

is shifted and these shifts are very much different in low and high propagation energy

regimes, respectively. Thus the dispersion relations are κ-deformed and we have found

genuine birefringence effects, [58, 59], of the massive scalar field mode, at first order in

deformation parameter a. This is similar to the fermion field birefringence in truncated

Moyal ⋆-product theories [59].

The above describes the main results of this paper, which could be of physical impor-

tance, for example for the κ-NC scalar field (Higgs) and its deformed propagation, as well

as to quantum gravity.

In the first section, we give some mathematical preliminaries including the Hopf algebra

structure of κ-deformed Minkowski spacetime and star products. In the second section,

we introduce, the hermitian realization and the star product ⋆h corresponding to this

realization. The modified κ-deformed scalar field action based on the above notions is

introduced next, and the equations of motion are derived. The corresponding currents are

conserved. The properties of our new action like the interpretation of κ-deformed action in

terms of the deformed theory (with undeformed fields) on ordinary Minkowski spacetime

are discussed in the last section. That include the κ-deformed Feynman rules and the field

propagation, via computation of two-point Green’s function, within the proposed model.

2. Mathematical preliminaries of κ-deformed Minkowski spacetime

2.1 Hopf algebra and star product

We are considering a κ-deformation of a Minkowski spacetime whose symmetry has an

undeformed Lorentz sector and whose noncommutative coordinates x̂µ, (µ = 0, 1, ..., n−1),
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close a Lie algebra with the Lorentz generators Mµν , (Mµν = −Mνµ) ,

[x̂µ, x̂ν ] = i(aµx̂ν − aν x̂µ) , (2.1)

[Mµν ,Mλρ] = ηνλMµρ − ηµλMνρ − ηνρMµλ + ηµρMνλ , (2.2)

[Mµν , x̂λ] = x̂µηνλ − x̂νηµλ − i (aµMνλ − aνMµλ) , (2.3)

where the deformation parameter aµ is a constant Lorentz vector and ηµν = diag(−1, 1, · ·
·, 1) defines the metric in this spacetime. The quantity a2 = aµa

µ is Lorentz invariant

having a dimension of inverse mass squared, a2 ≡ 1
κ2 . The above algebra has all the Jacobi

identities satisfied, thus forming a Lie algebra with the property that in the limit aµ → 0,

the commutative spacetime with the usual action of the Lorentz algebra is recovered.

Throughout the paper we shall work in units ~ = c = 1.

The symmetry of the deformed spacetime (2.1) is assumed to be described by an unde-

formed Poincaré algebra. Thus, in addition to Lorentz generators Mµν , we also introduce

momenta pµ which transform as vectors under the Lorentz algebra,

[pµ, pν ] = 0 , (2.4)

[Mµν , pλ] = ηνλ pµ − ηµλ pν . (2.5)

For convenience we refer to algebra (2.1)-(2.5) as a deformed special relativity algebra since

its different realizations lead to different special relativity models with different physics en-

coded in deformed dispersion relations resulting from such theories. This algebra, however,

does not fix the commutation relation between pµ and x̂ν . In fact, there are infinitely many

possibilities for the commutation relation between pµ and x̂ν , all of which are consistent

with the algebra (2.1)-(2.5) in the sense that Jacobi identities are satisfied between all gen-

erators of the algebra. In this way, we have an extended algebra, which includes generators

Mµν , pµ and x̂λ and has Jacobi identities satisfied for all combinations of the generators.

Particularly, the algebra generated by pµ and x̂ν is a deformed Heisenberg-Weyl algebra

that can generally be written in the form

[pµ, x̂ν ] = −iΦµν(p) , (2.6)

where Φµν(p) are functions of the generators pµ that are required to be consistent with

the Jacobi identities and satisfy the boundary conditions Φµν(0) = ηµν , but are otherwise

arbitrary. This condition reflects the requirement that deformed NC space, together with

the corresponding coordinates, reduces to ordinary commutative space in the limiting case

of vanishing deformation parameter, aµ → 0.

The momentum pµ = −i∂̂µ, expressed in terms of deformed derivative ∂̂µ, can be real-

ized in a natural way [50] by adopting the identification between deformed and undeformed

derivatives, ∂̂µ ≡ ∂µ, implying pµ = −i∂µ. The deformed algebra (2.1)-(2.5) then admits a

wide class of realizations

x̂µ = xαΦαµ(p) , (2.7)

Mµν = xµ∂ν − xν∂µ , (2.8)
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in terms of undeformed Heisenberg algebra

[xµ, xν ] = 0, [∂µ, ∂ν ] = 0, [∂µ, xν ] = ηµν (2.9)

and analytic function Φαµ(p) satisfying the boundary conditions Φαµ(0) = ηαµ. At this

point ∂µ’s represent abstract generators of the undeformed Heisenberg algebra. Later on

they shall acquire concrete representation in terms of differential operators, ∂/∂xµ. By

taking this prescription, the deformed algebra (2.1)-(2.5) is then automatically satisfied,

as well as all Jacobi identities among x̂µ, Mµν , and pµ.

Some comments are in order. Algebra (2.1)-(2.5), as it is defined, is not closed. Closing

it by the relations (2.6), we obtain extended algebra containing deformed Heisenberg-Weyl

subalgebra. The realization (2.7) indicates that deformed (2.1), (2.4), (2.6) and undeformed

(2.9) Heisenberg-Weyl algebras are isomorphic at the level of vector spaces. In the same

way one can show that deformed and undeformed extended algebras are isomorphic in the

same sence. It is of no importance which concrete formula, (2.7), is used for closing it.

That was shown under some general setting in [60], where extended algebra (2.1)-(2.5)

has been defined as crossed (smash) product algebra. In Ref [60] authors started from the

coproduct (Hopf algebra + module algebra) and then determined crossed commutation

relation of extended algebra (2.1)-(2.6). Our route is just opposite: we close the algebra

by crossed commutation relation and then accordingly determine the coproduct.

In this paper we shall strictly work with one particular type of realization (as well as

with its hermitian variant, see Eq.(3.7) below), namely with the realization [51] of the form

x̂µ = xµ
√

1 + a2p2 − iMµνa
ν . (2.10)

We refer to this type of realization as Maggiore-type of realization of the algebra (2.1), since

it leads to phase space noncommutativity analyzed for the first time by Maggiore [61, 62].

This particular kind of phase space noncommutativity is directly related to a generalized

uncertainty principle appearing in the contexts of string theory and quantum gravity. It

is also considered in [21]. The realization (2.10) belongs to the class of realizations (2.7)

and is thus consistent with algebra (2.1)-(2.5). With these particular settings the deformed

Heisenberg-Weyl algebra (2.6) receives the following form

[pµ, x̂ν ] = −iηµν
(

ap+
√

1 + a2p2
)

+ iaµpν . (2.11)

As mentioned above, this particular type of phase space noncommutativity leads to

uncertainty relations of the form [61, 62, 63]

△xµ ≥ ~

△pµ
+ αG△pµ , (2.12)

(α is a constant and G is gravitational constant) that have been obtained from the study

of string collisions at Planckian energies, i.e. so called gravity collapse of string [63], thus

manifesting its dynamical origin. The same generalized uncertainty principle emerges from

considerations related to quantum gravity [61, 62].
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The operator appearing in (2.11) in parenthesis appears to play a very important role

in κ-deformed spaces in general. Therefore, we give a special label to it,

Z−1 = ap+
√

1 + a2p2 . (2.13)

This operator, among others, has the following properties that define a universal shift

operator [51]:

[Z−1, x̂µ] = −iaµZ−1, [Z, pµ] = 0 , (2.14)

with Z being its inverse, Z = 1
Z−1 . The operator Z = 1

Z−1 and its properties are described

in great detail in Refs. [51, 52].

It can certainly be expected that a deformation of the spacetime structure will affect

the algebra of physical fields, leading to a modification of the multiplication in the corre-

sponding universal enveloping algebra. Specifically it means that a spacetime deformation

requires one to replace the usual pointwise multiplication by a deformed product or star

product, which will finally have its consequences in physics, particularly it will reflect itself

in the way in which one should construct the field theoretic action. This modified multi-

plication, i.e. star product will obviously depend on the particular realization (2.7), which

in turn is characterized by an analytic function Φµν of generators pµ. In this paper it will

be understood that noncommutative coordinates x̂, appearing in all subsequent course of

exposition, will be represented either by the specific realization determined by (2.7) or by

its hermitian variant, (3.7) in the next section.

In preparation for our further analysis it is useful to introduce a few notions. First,

we denote by A an algebra constituted of physical fields φ(x) in commutative coordinates

xµ. Since physical fields φ(x) are formed out of polynomials in xµ, the algebra A is an

universal enveloping algebra generated by commuting coordinates xµ. The algebra A can

also be understood as a module of the deformed Weyl algebra, which is generated by x̂µ and

∂µ, µ = 0, 1, ..., n − 1, and allows for infinite series in ∂µ. In a similar way as for commu-

tative fields φ(x), the noncommutative fields φ̂(x̂) are built of polynomials in x̂µ, and thus

belong to a universal enveloping algebra Âκ, generated by noncommutative coordinates x̂µ.

Although the universal enveloping algebras A and Âκ are not isomorphic to each other,

there is however a convenient circumstance that for any given realization described by the

function Φµν in (2.7), there exists a unique map and even an isomorphism between A and

Âκ, at the level of vector spaces. Both enveloping algebras, A and Âκ, can be shown to

have a Hopf algebra structure [6, 8, 64], with the later being obtained from the former by

means of a twist deformation [29, 65, 66, 67], satisfying counit and cocycle condition [64].

The full Hopf algebra description of the theory includes algebraic as well as coalgebraic

part. However, for theories in commutative spacetime coalgebraic aspects of the symmetry

are trivial and basically already contained within the algebraic aspects of the symmetry

transformations. It is for this reason that it suffices there to describe symmetries only by

specifying their Lie algebra structure. On the contrary, for theories in noncommutative

spacetime, the coalgebraic aspects of the symmetry are generally not trivial, so complete

characterization of symmetries requires a description in terms of Hopf algebra. The Hopf

algebra is a quantum symmetry where the issue of conserved charges and currents is still

– 6 –
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subject of research, and the Noether theorem generally is still not established. However,

to obtain sensible physical picture out of the Hopf algebra prescription of our theory we

will need to do certain compromises, most important towards the Noether theorem and

momentum conservation. We shall elaborate on this issue in the next subsections. Before

doing that, it still remains to introduce the notion of the star product.

2.2 Coalgebra and star product

The star product is introduced in the following way: first let us introduce the unit element

1 ∈ A and define the action of Poincaré generators ∂µ and Mµν on 1 as

∂µ ⊲ 1 = 0, Mµν ⊲ 1 = 0 , (2.15)

where A is understood as a module for the enveloping algebra U(so(3, 1)) of Poincaré

algebra. In other words, A is considered to be U(so(3, 1))-module. Suppose we have two

associations of the form φ̂(x̂) ⊲ 1 = φ(x) and ψ̂(x̂) ⊲ 1 = ψ(x) for two noncommutative

functions, φ̂(x̂) and ψ̂(x̂). Then the star product is defined by

φ(x) ⋆ ψ(x) = φ̂(x̂)ψ̂(x̂) ⊲ 1

= φ̂(x̂) ⊲ (ψ̂(x̂) ⊲ 1) = φ̂(x̂) ⊲ ψ(x) , (2.16)

where it is understood that x̂ is given either by (2.10) or by its hermitian variant, (3.7).

In this situation A, considered as a vector space, together with the star product (2.16)

constitutes a noncommutative algebra, which we denote by Aκ. Unlike the algebra A, the
algebra Aκ is isomorphic to the enveloping algebra Âκ in NC coordinates. Note that the

commutator (2.1) can be written in terms of ordinary coordinates and ⋆-product (2.16) as

[xµ, xν ]⋆ = xµ ⋆ xν − xν ⋆ xµ = i(aµxν − aνxµ) . (2.17)

In the familiar context of theories on commutative spacetime, we describe a symmetry

as a transformation of the coordinates that leaves the action of the theory invariant. We

keep this notion also in case of noncommutative spacetime. The symmetry underlying

κ-deformed Minkowski space, characterized by the commutation relations (2.1), is the

deformed Poincaré symmetry which can most conveniently be described in terms of Hopf

algebras. As was seen in relations (2.2), (2.4) and (2.5), the algebraic sector of this deformed

symmetry is the same as that of the undeformed Poincaré algebra. However, the action of

the Poincaré generators on the deformed Minkowski space is modified in such a way, that

the whole deformation is contained in the coalgebraic sector. This means that the Leibniz

rules, which describe the action of the generators Mµν and pµ on a product of fields, will

no more have the standard form, but instead will be deformed and will depend on the

Φµν realization. The Hopf algebra structure describes the properties of the generators of

a deformed Poincaré symmetry. Its algebraic sector is determined by the relations (2.2),

(2.4) and (2.5). On the other hand, the coalgebraic sector is determined by the coproducts

– 7 –
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for translation (pµ = −i∂µ), rotation and boost generators (Mµν) [50, 51],

△∂µ = ∂µ ⊗ Z−1 + 1⊗ ∂µ + iaµ(∂λZ)⊗ ∂λ − iaµ
2

�Z ⊗ ia∂ , (2.18)

△Mµν = Mµν ⊗ 1+ 1⊗Mµν

+ iaµ

(

∂λ − iaλ

2
�

)

Z ⊗Mλν − iaν

(

∂λ − iaλ

2
�

)

Z ⊗Mλµ , (2.19)

where ⊗ denotes, as usual, the tensor product. In the above expressions, Z is the shift

operator, determined with (2.13), and which itself has a simple expression for coproduct,

△Z = Z ⊗ Z . (2.20)

The operator � is a deformed d’Alambertian operator [21, 49, 51],

� =
2

a2
(1−

√

1− a2∂2) , (2.21)

which in the limit a → 0 acquires the standard form, � → ∂2, valid in undeformed

Minkowski space.

The Hopf algebra in question also has well defined counits and antipodes. The an-

tipodes for the generators of κ-Poincaré Hopf algebra are given by

S(∂µ) =

(

−∂µ + iaµ∂
2 +

1

2
aµ(a∂)�

)

Z , (2.22)

S(Mµν) = −Mµν + iaµ

(

∂α − iaα
2

�

)

Mαν − iaν

(

∂α − iaα
2

�

)

Mαµ , (2.23)

while the counits remain trivial. In the above relations, the operator Z is given by

Z ≡ 1

Z−1
=

1

−ia∂ +
√
1− a2∂2

, (2.24)

in accordance with (2.13) and � is given in (2.21).

Since we are interested in perturbative expansion of the field theoretic action, for later

convenience we give △∂µ in form of a series expansion up to second order in the deformation

parameter a,

△∂µ = ∂µ ⊗ 1+ 1⊗ ∂µ − i∂µ ⊗ a∂ + iaµ∂α ⊗ ∂α

− 1

2
a2∂µ ⊗ ∂2 − aµ(a∂)∂α ⊗ ∂α +

1

2
aµ∂

2 ⊗ a∂ +O(a3) . (2.25)

Once we have the coproduct (2.18), we can straightforwardly construct a star product

between two arbitrary fields f and g of commuting coordinates [49, 50]. For the noncom-

mutative spacetime (2.1), the star product has the following form

(f ⋆ g)(x) = lim
u→x
y→x

M
(

ex
µ(△−△0)∂µf(u)⊗ g(y)

)

, (2.26)

where △0∂µ = ∂µ ⊗ 1 + 1 ⊗ ∂µ, △(∂µ) is given in (2.18) and M is the multiplication

map in the undeformed Hopf algebra, namely, M(f(x) ⊗ g(x)) = f(x)g(x) [64]. From

– 8 –
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(2.26) we see that star product only depends on the coproduct for translation generators.

Its form does not depend on the Φµν realization in (2.7). However, since coproducts

depend on the Φµν realization, so does the star product according to (2.26), in an implicit

form. At this point we emphasize here once again that in this paper we are doing analysis

based on the specific realization (2.10) and its hermitian variant, (3.7) in the next section.

The coproducts (2.18) and (2.19) are written for and correspond to this particular type

of realization. One can check that the star product (2.26) with the coproduct (2.18) is

associative.

3. Modified κ-deformed scalar field action

3.1 Nonhermitian realization of the NC φ4 action

In this subsection, we construct an interacting scalar field theory on noncommutative space-

time whose short distance geometry is governed by the κ-deformed symplectic structure

(2.1). In particular, we are interested in a field theoretic action describing the dynam-

ics of a massive scalar field, i.e. generalizing the celebrated Grosse-Wulkenhaar action in

dimension n,

Sn[φ] =

∫

dnx L(φ, ∂µφ, ∂µ∂νφ)

=
1

2

∫

dnx (∂µφ) ⋆ (∂
µφ) +

m2

2

∫

dnx φ ⋆ φ+
ξ2

2

∫

dnx xµφ ⋆ x
µφ

+
λ

4!

∫

dnx φ ⋆ φ ⋆ φ ⋆ φ . (3.1)

Note that φ4 interaction term is accompanied by an additional harmonic term of the

Grosse-Wulkenhaar type, along with the standard kinetic and mass terms. Due to the very

definition of the ⋆-product (2.26), all terms in the action (3.1) will be κ-deformed. In the

case of nonhermitian realization (2.10) alone, the scalar field φ is, up to first order in the

deformation parameter a, governed by the action

Sn[φ] =
1

2

∫

dnx
[

(∂µφ)(∂
µφ) +m2φ2 + ξ2x2φ2 +

λ

12
φ4
]

+
1

2
aµ

∫

dnx
{

(n− 1)ξ2xµφ2

+ (ηαβxµ − ηµβxα)

×
[

φxα(∂βφ) + (m2 + ξ2x2 +
λ

3
φ2)(∂αφ)(∂βφ) + (∂α∂γφ)(∂β∂

γφ)
]}

. (3.2)

However, in this case the scalar field cannot be properly defined and it is not clear at

all if it is complex or real. Next, besides that various terms from (3.1) attain an explicit

x-dependence after the expansion in a, it is easy to note the lack of typical Moyal ⋆-

product trace property
∫

f ⋆ g =
∫

f · g for star product (2.26). This makes the above

nonhermitian models uncontrollable, thus less attractive, since it would be very difficult to

find some physical meaning out of them. Generally, to have a scalar field defined in the
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right way and to be able to say whether it is real or complex, it is necessary to introduce

an involution operation † corresponding to adjoint or hermitian conjugation operation ‡,
which in turn requires to consider and work with a hermitian, instead of the nonhermitian

realization. The problems just described can thus be properly resolved only after we replace

the nonhermitian realization (2.10) with a hermitian one and introduce the notion of an

antipode in order to properly define an adjoint or hermitian conjugation operation ‡. In

order to proceed, we introduce scalar product (·, ·) on the algebra Aκ as 1

(ψ, φ)κ =

∫

dnx ψ† ⋆h φ , (3.3)

where † is the involution with respect to this new scalar product, defined in terms of the

star product ⋆h, whose explicit form is going to be given later on. Assuming that functions

in the algebra Aκ have the Fourier expansion

φ(x) =

∫

dnp φ̃(p) eipx, (3.4)

than the action of the operation † on plane waves is specified as follows

(

eipx
)†

= eiS(p)x . (3.5)

Here S(p) = −iS(∂) is the antipode (2.22) and † is the involution defined on Aκ. Note that

reality of the field φ can be defined in a more than one way, depending on the conjugation

operation demanded: φ† = φ or φ∗ = φ. When we use term real field, we have in mind

first case, i.e. the one with †. For further details see reference [52].

For the ordinary Moyal case instead of (3.5), we have (eipx)† = e−ipx, as in the com-

mutative case. In order to clarify particle-antiparticle plane waves, one needs to modify

the interpretation of (3.5) accordingly. However, this is not trivial for a 6= 0. In our ap-

proach the algebraic sector of the Poincare algebra, i.e. commutation relations (2.2) are

undeformed, thus corresponding Casimirs are also undeformed, and the dispersion relation

remains the same, p2 = m2. From the antipodes, (2.22), for the translation generators of κ-

Poincaré Hopf algebra, it follows S2(p) = p2 = m2, in agreement with previous conclusion

regarding dispersion [52].

1To avoid further confusion, we discuss the issue of different notation for different operations and their

properties; that is, the usual scalar product (f, g) =
∫
dnxf∗ · g induces usual hermitian conjugation

operation †. Here ∗ represents usual complex conjugation; scalar product (ψ, φ)κ =
∫
dnx ψ† ⋆h φ on algebra

Aκ, where † is corresponding involution (generalized complex conjugation), induces required hermitian

conjugation operation ‡. Note that we denoted by the same symbol two different notions, that is † designates

ordinary hermitian conjugation operation ∂† = −∂ and involution used to define scalar product in Aκ. From

the context it should be clear which one we are using, namely when † acts on function, it is involution,

however when it is applied on the operator it is ordinary hermitian conjugation. It is understood that

∂‡ = (S(∂))† = −∂, M‡
µν = (S(Mµν))

†, or compactly written A‡ = (S(A))†, for any generator A of the

κ-deformed algebra. It has to be stressed that †, in a previous sentence, means involution with respect to

the deformed scalar product (3.3). Properties of above operations; generalized trace property and behavior

with respect to integration by part, are given in [52].
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3.2 Hermitian realization of the NC φ4 action

In order to obtain the physical meaning of the NC φ4 field theory, we have to introduce

a complex scalar field φ with accompanying notion of hermitian conjugation operation, as

explained above and proceed further with the construction of the hermitian theory.

In order to obtain an action that is hermitian, we are necessarily forced to work with a

hermitian realization represented by an operator x̂hµ, having the property (x̂hµ)
†
= x̂hµ. This

fully hermitian operator x̂hµ can be constructed out of the operator (2.10) as

x̂hµ =
1

2
(x̂µ + x̂†µ) = (x̂hµ)

†
, (3.6)

which results in († here means usual hermitian conjugation operation, x†µ = xµ, ∂
†
µ = −∂µ)

x̂hµ = xµ
√

1 + a2p2 − iMµνa
ν − i

a2

2

1
√

1 + a2p2
pµ . (3.7)

The change of realization (2.10) into (3.7) in accordance with (2.16), modifies the form of

the star product and we obtain a the new star product denoted as ⋆h:

φ(x)⋆hψ(x) = φ̂(x̂h)ψ̂(x̂h) ⊲ 1

= φ̂(x̂h) ⊲ (ψ̂(x̂h) ⊲ 1) = φ̂(x̂h) ⊲ ψ(x) , (3.8)

with x̂h being given by (3.7). Thus, we are forced to replace the star product (2.26) with

a new one of the following form [52]:

(f ⋆h g)(x) = lim
u→x
y→x

M
(

ex
µ(△−△0)∂µ 4

√

1− a2△(∂2)

(1− a2 ∂2 ⊗ 1) (1 − a2 1⊗ ∂2)
f(u)⊗ g(y)

)

,

(3.9)

where it is understood that the coproduct △(∂µ), Eq.(2.18), is a homomorphism, i.e.

△(∂2) = △(∂µ)△(∂µ). In this way, the nonhermitian version of the star product (2.26) is

replaced by the above hermitian one, (3.9).

The star product ⋆h, (3.9), is associative in the same sense as the star product (2.26).

However the star product ⋆h, contrary to the star product (2.26), has the same property

as the usual Moyal-Weyl product [52]:

∫

dnx φ†⋆hψ =

∫

dnx φ∗ · ψ , (3.10)

where the asterisk ∗ denotes usual complex conjugation.

The above results – the new ⋆h-product (3.9), and the identity (3.10) – embrace a

very nice and important property: the integral measure problems are avoided. Namely, by

usage of the ⋆h-product, corresponding to the hermitian realization of the κ-Minkowski

spacetime, the measure function is naturally absorbed within the new ⋆h-product (3.9).
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Therefore, we replace the action (3.1) by

Sn[φ] =

∫

dnx L(φ, ∂µφ, ∂µ∂νφ)

=

∫

dnx (∂µφ)
†⋆h(∂

µφ) +m2

∫

dnx φ†⋆hφ+ ξ2
∫

dnx xµφ
†⋆hx

µφ

+
λ

4

∫

dnx
1

2
(φ†⋆hφ

†⋆hφ⋆hφ+ φ†⋆hφ⋆hφ
†⋆hφ) . (3.11)

In the above action, the interaction φ4 term should in fact incorporate six terms corre-

sponding to all possible permutations of fields φ and φ†. However, due to integral property

(3.10) of the star product (3.9), these six different permutations can be reduced to only

two mutually nonequivalent terms, φ†⋆hφ
†⋆hφ⋆hφ and φ†⋆hφ⋆hφ

†⋆hφ.

When expanded up to first order in the deformation parameter a, the action (3.11)

after rearrangements, including integration by parts, receives the following form

Sn[φ] =

∫

dnx
[

(∂µφ
∗)(∂µφ) + (m2 + ξ2x2)φ∗φ+

λ

4
(φ∗φ)2

]

+ i
λ

4

∫

dnx

[

aµ x
µ
(

φ∗2(∂νφ)∂
νφ− φ2(∂νφ

∗)∂νφ∗
)

+ aν x
µ
(

φ2(∂µφ
∗)∂νφ∗ − φ∗2(∂µφ)∂

νφ
)

+
1

2
aνx

µ φ∗φ
(

(∂µφ
∗)∂νφ− (∂µφ)∂

νφ∗
)

]

+O(a2) . (3.12)

Note that the oscillator term proportional to ξ2 attain no correction in the deformation

parameter a. These two features of our model separate completely in above action.

At the end of this subsection note that the Hopf algebra, yielding (3.11), is a twisted

symmetry algebra, where existence/conservation of charges and currents are still subject

of research. However the action (3.12), obtained by expansion of (3.11) up to first order in

the deformation parameter a, is invariant under the internal symmetry transformations:
(

φ

φ∗

)

→
(

eiχ 0

0 e−iχ

)(

φ

φ∗

)

, (3.13)

thus the corresponding Noether current should be conserved.

3.3 Equations of motion and Noether currents of internal symmetry

We proceed further by evaluating the equations of motion for the fields φ and φ∗:

∂µ∂
µφ− (m2 + ξ2x2)φ =

λ

6

[

φ∗φ2 + iaµx
µ
(

φ2∂ν∂
νφ∗ + φ∗(∂νφ)∂

νφ+ φ(∂νφ)∂
νφ∗
)

− iaµxν
(

φ∗(∂νφ)∂µφ+ φ(∂νφ)∂µφ
∗ + φ2∂µ∂νφ

∗ + φ(∂µφ)∂νφ
∗
)

+
i

4
(1− n)aµφ∗φ∂µφ+

i

2
(1− n)aµφ2∂µφ

∗
]

, (3.14)

where φ = 0 is the trivial solution of the above equation, as it should be. The equation of

motion for φ∗ can be obtained from (3.14).
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Next, we present Noether currents derived from the Lagrangian densities (3.12):

jµ(x) = i
δL

δ(∂µφ)
φ− i

δL
δ(∂µφ∗)

φ∗ , (3.15)

δL
δ(∂µφ)

=
1

2
∂µφ∗ +

iλ

4

[

φ∗2(2aνx
ν∂µ − aνxµ∂ν − aµxν∂ν)φ+

1

2
φ∗φ(aµxν∂ν − aνxµ∂ν)φ

∗
]

,

δL
δ(∂µφ∗)

=
1

2
∂µφ− iλ

4

[

φ2(2aνx
ν∂µ − aνxµ∂ν − aµxν∂ν)φ

∗ +
1

2
φ∗φ(aµxν∂ν − aνxµ∂ν)φ

]

.

The above current (3.15), is conserved; that is

∂µj
µ(x) = 0 , (3.16)

as it should be due to the invariance of the Lagrangian (3.12) under the internal symmetry

transformations (3.13). This is showed by straightforward computations from (3.11)-(3.16).

4. Quantum properties of the model

4.1 Feynman rules

Even though the S matrix LSZ formalism, including Wick theorem, is not quite clearly

defined on κ-Minkowski noncommutative spacetime, we continue bona fide towards the

research of the quantum properties of the model defined by the action (3.12). To do that,

we first derive relevant Feynman rules and than compute the tadpole diagram contributions

to the 2-point Green’s function of our model.

Due to the κ-deformation of our theory, the statistics of particles is twisted, so that

we are generally no more dealing with pure bosons. We are in fact dealing with something

whose statistics is governed by the statistics flip operator [68, 69, 70, 71] and the quasitrian-

gular structure (universal R-matrix) on the corresponding quantum group [64, 72, 73, 74].

It would be interesting to investigate these mutual relations more thoroughly, but at the sur-

face level, we can argue that it is possible to pick up the basic characteristics of the twisted

statistics by using the nonabelian momentum addition law [18, 19, 20, 41, 42, 56, 57, 75, 76].

It can be seen that the accordingly induced deformation of the δ-function (arising from the

implementation of the nonabelian momentum addition/subtraction rule) yields the usual δ-

function multiplied by a certain statistical factor, which could have its origin in κ-modified

statistics. When we speak about deformed statistics, we have in mind less rigid notion of

statistics as applied to the symmetry properties of the states, where multiparticle change

of 4-momenta may change the state’s symmetry properties.

To obtain the Feynman rules in momentum space, we are suggesting to use the following

line of reasoning, which we shall further on call hybrid approach.

(A) We use the methods of standard QFT and treat the modifications in action (3.12) as

a perturbation. In doing this, we obtain propagators and Feynman rules for vertices.

(B) We know that the statistics of particles is twisted and that it has to be implemented into

the formalism. Thus we require that ordinary addition/subtraction rule induces addition

rule for twisted statistics on κ-Minkowski spacetime. This in momentum space means
∑

i

kµi →
∑

⊕i

kµi &
∑

i

kµi −
∑

j

pµj →
∑

⊕i

kµi ⊖
∑

⊕j

pµj , (4.1)
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where induced direct addition/subtraction rules are going to be defined in the Subsection

4.1.2, for simplest cases of two to four momenta. Note that the associativity for direct

summ ⊕ is satisfied due to the associativity of the star product (3.9). We proceed in two

steps:

(1) Following above arguments we implement the induced conservation law within the delta

functions in the Feynman rule, and

(2) whenever needed, we use the modified/deformed conservation law along the course of

evaluation of the Feynman diagrams.

4.1.1 Feynman rules (A): standard momentum addition law

From now on we continue to work with Euclidean metric. Note that in transition from

Minkowski to Euclidean signature we are using transition rules: aM = (aM0 , a
M
i ) −→ aE =

(aEi , a
E
n ), where a

E
n = iaM0 , and similary for any n-vector. Thus scalar product is defined as

aEkE = aEµ k
E
µ = aEi k

E
i + aEn k

E
n = −aM0 kM0 + aMi k

M
i = aMkM . In subsequent consideration

we drop the M and E superscripts, but it is understood that we work with Euclidean

(E) quantities. As the quadratic part of the action (3.12) in κ-space is modified by the

harmonic oscillator term, the propagator in momentum space is also going to be modified,

Γ̃ξ(k1, k2) = −i
(

δ2S[φ̃]

δφ̃∗(k1)δφ̃(k2)

)

φ̃=φ̃∗=0

(4.2)

= −i(2π)n
[

(k1µk2µ +m2) + ξ2∂2k1

]

δ(n)(k1 − k2) ,

with all fields φ, φ∗ having the same nonzero mass. The free propagator is than symbolically

written as

G̃ξ(k1, k2) =
(2π)n

Γ̃ξ(k1, k2)
= i

(

(k1µk2µ +m2 + ξ2∂2k1) δ
(n)(k1 − k2)

)−1

. (4.3)

Since the presence of the harmonic oscillator term in the action (3.12) breaks the translation

invariance, from above it is clear that translation invariance breaking produces a modifi-

cation of the scalar field mass. Parameter ξ2, of dimension dim[ξ] = length−2, represents

the magnitude of translation invariance breaking.

If one includes a harmonic oscillator term, the propagator is given by the so-called

Mehler kernel which depends on different incoming and outgoing momenta since the prop-

agator does not respect momentum conservation [77]. So for full computation, one needs

to take into account the Mehler kernel from the beginning. However, in the spirit of our

hybrid approach and under the assumption of small perturbation due to the harmonic term,

we approximate the full propagator by

Gξ ≡ Gξ(k1, k2) ≃
i

k21 +m2

(

1− ξ2

(k21 +m2)
∂2k1

)

δ(n)(k1 − k2) . (4.4)

This is going to be used in the further computation of the 2-point Green’s function. We

believe that the approximative expression (4.4) is good enough to help us to indicate the
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Figure 1: Scalar 4-field vertex

influence of the ξ2 term on the one-loop quantum corrections. This is going to be presented

in Subsection 4.2. Of course the full computation of quantum corrections including the

Mehler kernel is out of scope for this paper, but it is certainly going to be performed in

the future.

If a is of the order of the Planck length, ξ despite being small, carries contributions to

Green’s functions that are still larger than the terms linear in a.

The vertex function, which in momentum space is given by

Γ̃(k1, k2, k3, k4; a) = i
δ4S[φ̃]

δφ̃(k1)δφ̃(k2)δφ̃∗(k3)δφ̃∗(k4)
, (4.5)

is modified too. It is illustrated in Fig. 1 and amounts to the following expression:

Γ̃(k1, k2, k3, k4; a) = i(2π)n
λ

2
aν

[

aν
a2

+
1

4

(

k4µk3ν + k3µk4ν − 2δµνk4ρk3ρ

+
1

2
(k2µk4ν − k4µk2ν + k2µk3ν − k3µk2ν)

)

∂k1µ

+
1

4

(

k4µk3ν + k3µk4ν − 2δµνk4ρk3ρ

+
1

2
(k1µk4ν − k4µk1ν + k1µk3ν − k3µk1ν)

)

∂k2µ

+
1

4

(

k1µk2ν + k2µk1ν − 2δµνk1ρk2ρ

)

(∂k3µ + ∂k4µ )

]

δ(n)(k1 + k2 − k3 − k4), (4.6)

where we denote ∂kµ = ∂
∂kµ

, and all four momenta ki are flowing into the vertex. Both

couplings, ξ and λ have to be dimensionally regularized.

4.1.2 Feynman rules (B): κ-deformed momentum addition law

Next, we discuss the notion which anticipates induced momentum conservation law on

κ-space, within our hybrid approach. Namely, the δ-function in (4.6) comes from the con-

traction of fields, where the momentum conservation should be obeyed in accordance with

the κ-deformed momentum addition rule [18, 19, 41]. We have two cases for summa-

tion/subtraction of 4-vectors kµ with respect to the physical situation of four particles
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and/or quantum fields propagating in space with respect to an interaction point:

(I) all particle momenta flowing into the vertex, as given in Fig. 1

k1µ + k2µ + k3µ + k4µ = 0 → k1µ ⊕ k2µ ⊕ k3µ ⊕ k4µ = 0 , (4.7)

(II) the process of scattering ”2 particle → 2 particle”, where we have

(k1µ + k2µ)− (k3µ + k4µ) = 0 → (k1µ ⊕ k2µ)⊖ (k3µ ⊕ k4µ) = 0 . (4.8)

Having obtained the Feynman rules (4.4) and (4.6), we have completed the first stage

of our program, that is to deduce the free propagation and interaction properties of the

model by using the standard quantization.

At this point we turn to the second part, which includes the effective description of the

statistics of particles described by the model. As already indicated before, the statistics of

particles is twisted in κ-space [22, 23, 35, 40], with deformation being encoded within the

nonabelian momentum addition rule. It is known that the rule for addition of momenta

is governed by the coproduct structure of the Hopf algebra in question. In our case, the

relevant Hopf algebra is the κ-Poincaré algebra and the corresponding coalgebra structure is

given by (2.18), (2.19), and (2.22), (2.23). In particular, the coproduct (2.18) for translation

generators determines the required momentum addition rule, which in momentum space

and up to the first order in deformation a, from (2.22) and (2.25), yields:

S(pµ) = −iS(∂µ) = −pµ − aµp
2 + (ap)pµ +O(a2) , (4.9)

(pµ ⊕ kµ) = (p+ k)µ + (ak)pµ − aµ(pk) +O(a2) . (4.10)

Here we have nonabelian momentum addition rule (4.10), while S(p) is the antipode with

the property pµ ⊕ S(pµ) = 0, that in fact represents the very definition of the antipode.

Namely, since commutativity in momentum space is not satisfied, i.e. k ⊕ p 6= p ⊕ k,

certain ordering has to be implemented. However, instead of implementation of possibly

complicated unknown ordering, we shall proceed in the most simple way by taking into

account all possible type of contributions; for example k⊕ p⊕ q, p⊕ k⊕ q, etc. Combining

(4.9) and (4.10) we obtain the following momentum subtraction rule:

pµ ⊖ kµ ≡ (p⊕ S(k))µ = (p − k)µ(1− ak) + aµ(pk − k2) +O(a2) . (4.11)

This enables us to rewrite the energy-momentum conservation which is supposed to be

satisfied at each vertex. Thus, if two external momenta k1 and k2 flow into the vertex

and the other two external momenta k3 and k4 flow out of the vertex, then, writing in

components, we have the induced momentum conservation law (4.8), which corresponds to

our physical situation while computing 4-field tadpole diagram in the next subsection.

In order to obtain expressions for the δ-functions in Feynman rules, we are starting

with

δ(n)(p⊖ k) =
∑

i

∣

∣

∣

∣

∣

det

(

∂(p⊖ k)µ
∂pν

)

p=qi

∣

∣

∣

∣

∣

−1

δ(n)(p− qi) , (4.12)
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where we have to sum up over all zeros qi for the expression in the argument of δ-function.

Since there is only one zero, qi = k, with the help of subtraction rule (4.11), we find the

following first order contribution to the above δ(n)-function

δ(n)(p⊖ k) =
δ(n)(p− k)

(1− ap)n−1 = (1 + (n− 1)ap +O(a2))δ(n)(p− k) . (4.13)

It was shown in [52] that the star product ⋆h (3.9) breaks translation invariance (in

the sense of definition introduced in [18]). However, this feature does not show up until

computations are extended to the second order in the deformation parameter a. The

important point is that the translation invariance is thus intact within the first order

deformation. Since we are carrying out our investigation in exactly this order, we are

allowed to invoke the energy momentum conservation albeit in a modified form, dictated

by the modified coproduct structure and by the oscillator term. Relations between Hopf

algebra symmetries and conservation laws is important subject of investigation. This is the

issue of generalizing the Noether theorem, thus the whole subject is still appealing [78].

With the idea of implementing the new physical features that have just been described,

we modify the Feynman rule (4.6). Taking into account all possible contributions, with the

help of (4.10) and (4.11), and choosing the following replacement of δ-function from (4.6)

[17, 19, 20, 79],

δ(n)(k1 + k2 − k3 − k4) → δ(n)((k1 ⊕ k2)⊖ (k3 ⊕ k4)) + δ(n)((k1 ⊕ k2)⊖ (k4 ⊕ k3)) , (4.14)

we obtain the hybrid Feynman rule which obeys κ-deformed momentum addition/subtraction

rule via sum of δ-functions (4.14):

Γ̃(k1, k2, k3, k4; a) = i(2π)n
λ

2
aν

[

aν
a2

+
1

4

(

k4µk3ν + k3µk4ν − 2δµνk4ρk3ρ

+
1

2
(k2µk4ν − k4µk2ν + k2µk3ν − k3µk2ν)

)

∂k1µ

+
1

4

(

k4µk3ν + k3µk4ν − 2δµνk4ρk3ρ

+
1

2
(k1µk4ν − k4µk1ν + k1µk3ν − k3µk1ν)

)

∂k2µ

+
1

4

(

k1µk2ν + k2µk1ν − 2δµνk1ρk2ρ

)

(∂k3µ + ∂k4µ )

]

×
[

δ(n)((k1 ⊕ k2)⊖ (k3 ⊕ k4)) + δ(n)((k1 ⊕ k2)⊖ (k4 ⊕ k3))

]

. (4.15)

In the above, sum of δ-functions represents all mutually different physical situations.

The δ-functions in (4.15), should in principle come from the contraction of fields quite

naturally, if the noncommutative version of the LSZ formalism is applied to our model.

Since such formalism is not developed so far, we choose to follow a kind of approach that

combines the standard quantum field theory consideration (used when treating terms in
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the Lagrangian linear in a as small perturbations) with the peculiarities resulting from the

statistics properties of particles in κ-space. The later part is realized through embedding

a nonabelian momentum-energy conservation within the 4-point vertex function. That

approach may seem as a hybrid construction raised in trying to move our understanding

one step forward towards a complete quantum theory on noncommutative spaces in general.

In this sense, such an approach can serve as an intermediate step bridging the gap between

the standard quantum field theory and a complete field theory on κ-space in as much the

similar way as for example the semiclassical theory of radiation can be considered as a

cross-over towards the quantum theory of radiation. In following the described path we

have to rely in part on intuition, especially when peculiarities of κ-space statistics have to

be taken into account.

The Feynman rule (4.15) now appears to be consistent with the energy-momentum

conservation that respects κ-deformed momentum addition rule. In order to obtain the

complete expression for the δ-functions appearing in (4.15), we are proceeding in two steps.

First, with the help of (4.10) and (4.13), up to linear order in a, and with j, l = 3, 4; j 6= l,

we have:

δ(n)((k1 ⊕ k2)⊖ (kj ⊕ kl)) =
δn((k1 ⊕ k2)− (kj ⊕ kl))
(

1− a(k1 ⊕ k2)

)n−1 (4.16)

=
δ(n)((k1 ⊕ k2)− (kj ⊕ kl))

[

1−
(

a(k1 + k2) + (ak1)(ak2)− a2(k1k2) +O(a3)

)]n−1

= (1 + (n− 1)a(k1 + k2) +O(a2))δ(n)((k1 ⊕ k2)− (kj ⊕ kl)) .

The second step is to compute delta functions from (4.16) in the same way as we

computed the one in (4.13):

δ(n)((k1 ⊕ k2)− (kj ⊕ kl)) =
∑

i

∣

∣

∣

∣

∣

det

(

∂((k1 ⊕ k2)− (kj ⊕ kl)µ
∂k1ν

)

k1=qi

∣

∣

∣

∣

∣

−1

δ(n)(k1 − qi) ,

(4.17)

where we have to sum up over all zeros qi for the expression in the argument of δ-function.

To proceed, we shall choose specific momenta k2 = k3 = ℓ we need for tadpole diagram

evaluation. Since there are no zeros for delta function δ(n)((k1 ⊕ ℓ) − (ℓ ⊕ k4)), the only

contribution comes from second combination δ(n)((k1 ⊕ ℓ)− (k4 ⊕ ℓ)). In order to perform

that computation, we start with (4.10) and orient the vector a in the direction of time,

a = (0, ..., 0, ia0). Then due to covariance, the obtained result will also be valid for an
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arbitrary orientation of a. Hence

det

(

∂((k1 ⊕ ℓ)− (k4 ⊕ ℓ))µ
∂k1ν

)

k1=k4

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 − ia0ℓ1 · · · − ia0ℓn−2 − ia0ℓn−1

0 1 + aℓ · · · 0 0

· · · · · · ·
· · · · · · ·
0 0 · · · 1 + aℓ 0

0 0 · · · 0 1 + aℓ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1 + aℓ)n−1. (4.18)

Since there is only one zero, qi = k4, we find

δ(n)((k1 ⊕ ℓ)− (k4 ⊕ ℓ)) =
δ(n)(k1 − k4)

(1 + aℓ)n−1 =

(

1− (n− 1)aℓ

)

δ(n)(k1 − k4) +O(a2) . (4.19)

which gives final expression for the δ-function in (4.15) via (4.16), up to the first order in

a

δ(n)((k1 ⊕ ℓ)⊖ (k4 ⊕ ℓ)) =

(

1 + (n− 1)a(k1 + ℓ)

)

δ(n)(k1 − k4)

(1 + aℓ)n−1 +O(a2)

= (1 + (n− 1)ak1)δ
(n)(k1 − k4) +O(a2) . (4.20)

In the above expression the ℓ dependences drop out as we expected, thus showing the

consistency of the hybrid Feynman rule derivation. The remaining factor (1 + (n− 1)ak1)

in (4.20) is due to the κ-space twisted particle statistics of our hybrid approach modeling.

4.2 Massive scalar field propagation

4.2.1 Tadpole diagram: standard momentum conservation

In order to compute the tadpole diagram from Fig. 2, using dimension regularization

technique, we have to introduce in the action (3.12) new dimensionfull regularization masses

denoted by µ for the coupling λ, and by µ′ for ξ2, respectively. In accordance with Quantum

Field Theory [80], the regularization of the φ4 model requires that they are given in the

following form:

λnew = λold(µ
2)

n
2
−2 → (µ2)2−

n
2 λ , λ = λnew , (4.21)

ξnew = ξold(µ
′2)

n
2
−4 → (µ′

2
)4−

n
2 ξ , ξ = ξnew . (4.22)

Here µ′ is defined in a way to retain the same dimension of constant dim[ξ2] = dim[mass4],

for n = 4, under the loop integral contribution from ξ-term in (3.12).

In this paper, we shall further restrict our computation only to the first order contri-

bution of the two-point function Πa,ξ
2 in our λφ4 model (3.12) corresponding to the tadpole

diagram from Fig. 2:

Πa,ξ
2 = Π0,0

2 +Πa6=0,0
2 +Π0,ξ 6=0

2 +Πa6=0,ξ 6=0
2 =

∫

dnk2
(2π)n

dnk3
(2π)n

Γ̃(k1, k2, k3, k4; a, µ)G
ξ(k2, k3;µ

′) .

(4.23)
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Figure 2: Scalar 4-field tadpole

In general, the one-loop integral (4.23) produces four different contributions, where for

Gξ(k2, k3;µ
′) we are using the expanded expression (4.4) further on. In computing the

first two terms from (4.23) we assume momentum conservation, k1 + k2 = k3 + k4 and

k2 = k3 = ℓ. Thus we have

Πa,0
2 =

∫

dnℓ

(2π)n
Γ̃(k1, ℓ, ℓ, k4; a, µ)

i

ℓ2 +m2
. (4.24)

First we need Γ̃ from Feynman rule (4.6), in accordance with notations on Fig. 1; that is

for incoming momenta k1 and outgoing momenta k4 we have to replace k3 → −k3 = −ℓ
and k4 → −k4. Thus, we have

Γ̃(k1, ℓ, ℓ, k
out
4 ; a, µ) = i(2π)nµ4−n λ

2

{

1 + aν
1

8

[(

k4µk1ν − k1µk4ν

)

∂ℓµ (4.25)

− 2

(

ℓµk4ν − 3ℓνk4µ + 8δµνk4ρℓρ

)

∂k1µ − 2

(

ℓµk1ν + k1µℓν − 2δµνk1ρℓρ

)

∂k4µ

+

(

ℓµ(2k4 − k1)ν + ℓν(2k4 − 3k1)µ − 4δµν(k4 − k1)
ρℓρ

)

∂ℓµ

]

}

δ(n)(k1 − k4) .

In order to obtain Γ̃(k1, ℓ, ℓ, k
in
4 ; a, µ) we just have to replace k4 → −k4 in (4.25).

As a next step, we compute Πa,ξ
2 straightforward with help of the notion for integral

(4.24) as an effective action describing the given one-loop quantum process. So, employing

integration by parts in (4.24) and using dimensional regularization scheme, we obtain

Π0,0
2 = −λ

2
I0 , (4.26)

Πa6=0,0
2 = −λ

2

{

3

8
(aK)I0 −

1

4
(aK)

(

δµν −
aµKν

(aK)

)

I2,µν

}

, (4.27)

where K = 2k4 − k1. The oscillator contribution from ξ-term we obtain by rude approxi-

mation of (4.23). That is, from

Π0,ξ 6=0
2 = −i

∫

dnℓ

(2π)n
Γ̃(k1, ℓ, ℓ, k4; a, µ)

ξ2

(ℓ2 +m2)2
∂2ℓ δ

(n)(ℓ) , (4.28)
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integrating by part, we found

Π0,ξ 6=0
2 = −λ

2
ξ2

(8n)(µ′2)4−
n
2

m6
. (4.29)

In above equations the presence of (2π)nδ(n)(k1 − k4) is understood, although not being

explicitly shown. For n = 4− ǫ, we have the well known integrals

I0 = (µ2)2−
n
2

∫

dnℓ

(2π)n
1

ℓ2 +m2
=

m2

(4π)2

[(

4πµ2

m2

)
ǫ
2

Γ(−1 +
ǫ

2
)

]

ǫ→0

=
−1

8π2
m2

[

1

ǫ
+
ψ(2)

2
+ log

√

4πµ2

m2
+ ...

]

, (4.30)

I2,µν = (µ2)2−
n
2

∫

dnℓ

(2π)n
ℓµℓν

(ℓ2 +m2)2
=

1

2
δµνI0 , δµνδµν = n , (4.31)

with a simple pole at ǫ = 0. Thus the expression (4.30) is divergent in the UV cut-off.

The non-vanishing contributions come from commutative cases, that is from (4.26), and

from harmonic oscillator term (4.29) which is finite for finite scalar field mass. Integrals

(4.30) and (4.31) for n = 4 give Πa6=0,0
2 = 0, producing in the case ξ = 0, very well known

commutative λφ4 theory result (4.26). All contributions proportional to a, coming from

κ-Minkowski NC φ4 theory cancel out, as one would naively expect by inspecting vertex

(4.25).

Clearly, the one loop computation has to be modified by anticipating the momentum

conservation on κ-space. To illustrate that something nonstandard appears in our model

(4.6), we start with the general one-loop integral (4.23). It should be noted that one cannot

integrate over k3 using the first delta δ(n)(k2 − k3) – from the propagator – and replace k3
by k2 in the above expression as it stands, because of the derivative with respect to k2. So,

as a first step of computation we are using a simple trick

∂k1µ δ
(n)(k1 + k2 − k3 − k4) = ∂k2µ δ

(n)(k1 + k2 − k3 − k4) ,

∂k1µ δ
(n)(k1 + k2 − k3 − k4) = −∂k3µ δ(n)(k1 + k2 − k3 − k4) , etc., (4.32)

and than we rewrite (4.6) and (4.4) as follows:

Γ̃(k1, k2, k3, k4; a)G
ξ(k2, k3) =

{

i(2π)n
λ

4

[

1 + aν

(

2(−k1µk2ν − k2µk1ν + k3µk4ν + k4µk3ν + 2δµν(k1ρk2ρ − k3ρk4ρ))

+
1

2
(k1µk3ν − k3µk1ν + k2µk3ν − k3µk2ν + k1µk4ν − k4µk1ν + k2µk4ν − k4µk2ν)

)

∂k1µ

]

×δ(n)(k1 + k2 − k3 − k4)

}

[

i

k22 +m2

(

1− ξ2

(k22 +m2)
∂2k3

)

δ(n)(k2 − k3)

]

. (4.33)

For the ξ independent part, we obtain after performing the integration over k3 in (4.33)

the following expression:

Πa6=0,0
2 = − λ

8(2π)n
((ak1)k4 − (ak4)k1)µ

[

∂k1µ δ
(n)(k1 − k4)

]
∫

dnk2
k22 +m2

, (4.34)
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where k1 and k4 are the external momenta. This expression is quadratically divergent in

the UV cut-off representing a quantum loop modification of the free action (3.12), which

can be nonzero because of the momentum conservation violation at the vertex. The next

term we obtain after the partial integration,

Π0,ξ 6=0
2 = − λξ2

4(2π)n

[

∂2k1δ
(n)(k1 − k4)

]
∫

dnk2
(k22 +m2)2

. (4.35)

It is logarithmically divergent in n = 4 dimensions. The last term depends on both defor-

mation parameters, a and ξ, it reads

Πa6=0,ξ 6=0
2 = − λξ2

8(2π)n
aν

[(

∂2k1∂
k1
µ δ

(n)(k1 − k4)

)

(k1µk4ν − k4νk1µ)

−4

(

∂k1σ ∂
k1
µ δ

(n)(k1 − k4)

)(

2(δµσk4ν + δνσk4µ − 2δµνk4σ)

+
1

2
(δνσk1µ − δµσk1ν)

)]
∫

dnk2
(k22 +m2)2

, (4.36)

which is also logarithmically divergent in n = 4 dimensions. The one-loop corrections

(4.35)-(4.36) have to be included in the action as counterterms. Their structure is different

from the tree-level terms, and therefore the tree-level action is not stable under 1-loop

quantum corrections. For this reason, we have to question the approximations we have

employed: namely expansion of the action up to first order in the deformation parameter

a and expansion of the propagator up to first order in ξ. The results (4.26) and (4.27)

(as well as the result (4.37) that will follow shortly) are obtained directly from (4.24). We

assume that (4.24) replaces the expression (4.23) for ξ = 0. As for (4.29) (and (4.38)), it is

a rude estimate of what ξ term should produce. It is obtained by making approximations

in (4.23), by approximating/adjusting the form of the propagator (4.4) and by using κ-

deformed addition/subtraction of momenta instead of commutative one. The difference

between (4.29) and (4.38) is that unlike the former expression, the later one is obtained

by making use of κ-deformed addition/subtraction rule for momenta. Due to the results

(4.34)-(4.36) we obviously stumbled across the momentum nonconservation. Such results

seem to favor our hybrid approach.

4.2.2 Tadpole diagram: κ-deformed momentum conservation

In the following computation of the tadpole diagram from Fig. 2, we fully implement the

hybrid approach. That is the notion that standard momentum conservation is not satisfied,

i.e. we use induced momentum conservation on κ-space represented within delta functions

in (4.14). However, in accordance with our hybrid approach, at the end undeformed mo-

mentum conservation has to be applied. General one-loop integral (4.23) can be roughly

reduced to two terms, (4.24) and (4.28), respectively.

In the next step we are applying integration by parts, which is possible due to the

notion that remaining integral in (4.23) is an effective action of the given one-loop quantum

process. This of course plays an essential role in our hybrid approach. Performing the

computation of all terms in the tadpole one-loop integral (4.24) with Feynman rule (4.15)
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and delta function (4.20) and for an arbitrary number of dimensions n, we obtain the

following first order result:

Π0,0
2 +Πa6=0,0

2 = −λ
2

[

(1 + (n− 1)ak1) +
1

2
(1− n

4
)(ak1 − 2ak4)

]

I0 (4.37)

Π0,ξ 6=0
2 +Πa6=0,ξ 6=0

2 = −λ
2
ξ2

8n(µ′2)4−
n
2

m6
(1 + (n− 1)ak1) . (4.38)

First terms in (4.37) and (4.38) for n = 4 corresponds to results (4.26) and (4.29) from

previous subsection. From above formulas it is clear that there exist the non-vanishing

contributions even for number of dimensions n = 4. They are arising via the κ-deformed

momentum conservation rule, entering through the deformed δ-function (4.20) in the hybrid

Feynman rule (4.15), and from the harmonic oscillator term in the action (3.12) via the

modified propagator (4.4).

For n = 4 − ǫ, we obtain modified expression for the tadpole in Fig. 2 in the limit

ǫ → 0, where 1/ǫ divergence is explicitly isolated. For conserved external momentum in

accordance with (4.20), i.e. for k1 = k4 ≡ k, from (4.30), (4.37) and (4.38) we finally have,

Πa,ξ
2 =

λm2

32π2
(1 + 3ak)

[

2

ǫ
+ ψ(2) + log

4πµ2

m2
− 9

4

ak

1 + 3ak
− (4− ǫ)128π2

ξ2µ4−ǫ

m8

]

, (4.39)

where for simplicity we have used µ′ = µ, and in ξ-term we retain the explicit ǫ-dependence

in order to keep dimensional and/or limiting procedure under control. The above finite

parts represent modifications of the scalar field self-energy and depend explicitly on the

regularization parameter, the mass of the scalar field, the magnitude of the translation

invariance breaking, and it contains a correction ak due to the dependence on energy

|k|, where actual scalar field self-energy modification occurs. Dependence of (4.39) on κ-

deformation parameter a enters explicitly, as we expected. Note that there is no need to

do renormalization at the point (1 + 3ak) → 0.

The result (4.39) is next discussed in the framework of Green’s functions. Generally

we know that by summing all the 1PI contributions, for full free propagator modification

(4.3), we get the following expression for two-point connected Green’s function

Ga,ξ
(c,2)(k1, k4) =

[

i

k21 +m2
1

+
i

k21 +m2
1

Πa,ξ
2

i

k21 +m2
1

+ ...

]

, (4.40)

where, symbolically, m2
1 = m2 + ξ2∂2k1δ

(n)(k1 − k4) represents redefined mass. As an

illustration we resume the above series in the limit ξ → 0:

Ga,ξ
(c,2)(k1, k4)

ξ→0
−→ (2π)nδ(n)(k1 − k4)

[

i

k21 +m2 −Πa,0
2

]

. (4.41)

The genuine 1/ǫ divergence in Πa,ξ
2 , can only be removed by introducing the following

counter term δm2:

δm2φ̃∗(k)φ̃(k) =
λm2

32π2

[

2(1 + 3ak)
1

ǫ
+ f

(

4− ǫ

2
,
µ2

m2
, ak,

ξ2

m4

)

]

φ̃∗(k)φ̃(k) , (4.42)
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with f as an arbitrary dimensionless function, which is fixed by the normalization condi-

tions. Adding above counterterm contribution to the previous expression (4.40), results

during the renormalization procedure in the shift m2 → m2 + δm2 in (4.40)/(4.41), thus

leading to

G̃a,ξ
(c,2)(k1, k4) =

[

Ga,ξ
(c,2)(k1, k4) +Ga,ξ

(c,2)(k1, k4)(−δm
2)Ga,ξ

(c,2)(k1, k4) + ...

]

ξ→0
−→ (2π)nδ(n)(k1 − k4)

[

i

k21 +m2 + δm2 −Πa,0
2

]

, (4.43)

where G̃a,ξ
(c,2) denotes Green’s function with the contribution from counter term incorpo-

rated.

However, since Πa,ξ
2 was computed for expanded free propagator (4.4), it is consistent

to compute two-point connected Green’s function under the same approximation. After the

resummation of (4.40), with usage of (4.4), we obtain

Ga,ξ
(c,2)(k1, k4) =

Gξ

1−Gξ Πa,ξ
2

. (4.44)

To identify proper counter term for above expression we resume series in (4.43), but with

replacement (4.40) → (4.44), and the full free propagator i/(k21 +m2
1) replaced with ex-

panded one, (4.4), giving:

G̃a,ξ
(c,2)(k1, k4) =

Gξ

1 +Gξ(δm2 −Πa,ξ
2 )

. (4.45)

In (4.45) δm2 is generic quantity. This is due to the fact that expression (4.39) contains

the finite parts too. The requirement δm2 = Πa,ξ
2 removes infinity. Thus we have

G̃a,ξ
(c,2)(k1, k4) =

Gξ

1 +Gξ λm2

32π2

[

f − (1 + 3ak)

(

ψ(2) + log 4πµ2

m2 − 9
4

ak
1+3ak − 512π2 ξ2µ4

m8

)] .

(4.46)

Precise extraction and removal of genuine UV divergence is performed next via (4.42)

in the context of the analysis of G̃a,ξ
(c,2)(k1, k4) for different energy regimes; that is from low

energy to extremely high -Planck scale- energy propagation.

There is a very interesting property of the expression (4.39) at extreme energies.

Namely, there exists a term (1 + 3ak) which for (1 + 3ak → 0) tends to zero linearly.

For low energies and/or small κ-deformation a, i.e. for ak = 0, (equivalent to a = 0),

which is far away from the point (1 + 3ak = 0), this is not the case.

Low energy limit

Using finite combination (δm2 −Π0,0
2 ) for low energy (ak = 0), and at order λ

δm2 −Π0,0
2 =

λm2

32π2

[

f − ψ(2)− log
4πµ2

m2

]

, (4.47)
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from (4.39) and (4.46), we get

G̃0,ξ
(c,2)(k1, k4) =

Gξ

1 +Gξ λm2

32π2

(

f − ψ(2) − log 4πµ2

m2 + 512π2 ξ2µ4

m8

) ,

(4.48)

while in the case ξ = 0

G̃0,0
(c,2)(k1, k4) =

(2π)4δ(4)(k1 − k4)

k21 +m2

(

1 + λ
32π2

[

f − ψ(2)− log 4πµ2

m2

]) .

(4.49)

This expression has a pole in Minkowski space, and we can define the renormalization con-

dition by requiring that the inverse propagator at the physical mass is k21+m
2
phys/low. This

choice, in the case ξ2 = 0, determines uniquely the sum of the residual terms in (4.47),

which is in accordance with commutative φ4 theory result [80].

Planckian energy limit

At the limiting point (1 + 3ak → 0), which corresponds to extreme energy propagation

|k|, where the components of κ-deformation parameter aµ are extremely small, of Planck

length order, the divergence in (4.39) gets removed under the reasonable assumption that

(1+3ak) tends to zero with the same speed as ǫ does. That is, in the Planckian propagation

energy limit
(1 + 3ak) → 0

ǫ→ 0
−→ O(ǫ0) , (4.50)

the 1/ǫ and ak terms from (4.39) contributes.

Assuming that our κ-noncommutativity is spatial aµ = (~a, 0), and using the momentum

along the third axis kµ = (0, 0, E, iE), i.e. for ak = Ea3, Eq. (4.39) in the Planckian

propagation energy limit (4.50) gives

Πa,0
2

∣

∣

∣

∣

(3Ea3+1→0)

−→ λm2

32π2

[

2− 9

4
ak

]

(3Ea3+1→0)

, (4.51)

producing the following modified Green’s function (4.41):

Πa,0
2

∣

∣

∣

∣

(3Ea3+1→0)

→ λm2

32π2
11

4
⇒ G̃a,0

(c,2)(k1, k4)

∣

∣

∣

∣

(3Ea3+1→0)

≃ i(2π)4δ(4)(k1 − k4)

k21 +m2

(

1− λ
32π2

11
4

) .

(4.52)

At exact zero-point 3Ea3 + 1 = 0 however, from (4.39) we obtain different result

Πa,0
2

∣

∣

∣

∣

(3Ea3+1=0)

=
λm2

32π2
3

4
⇒ G̃a,0

(c,2)(k1, k4)

∣

∣

∣

∣

(3Ea3+1=0)

≃ i(2π)4δ(4)(k1 − k4)

k21 +m2

(

1− λ
32π2

3
4

) . (4.53)
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For time-space noncommutativity with the time component of κ-deformation param-

eter ia0 being also of Planck length order and vanishing space component, i.e. for ak =

−Ea0, Eq. (4.39) in the Planckian energy limit (4.50) produces result,

Πa,0
2 |(3Ea0−1→0) −→

λm2

32π2

[

2− 9

4
ak

]

(3Ea0−1→0)

, (4.54)

equivalent to (4.51), leading to final results identical with (4.52) and (4.53).

The existence of linear type of limit (1 + 3ak → 0) which removes the genuine UV

divergence 1/ǫ is a new, previously unknown feature of NC κ-Minkowski φ4 theory at linear

order in a. Mass shift receive fixed value (4.51), independent on function f , but this does

depend on energy |k| and κ-deformation parameter a. Above expressions gives κ-deformed

dispersion relations, thus, (4.51), (4.52), (4.53) and (4.54) represents birefringence [58, 59]

of the massive scalar field mode. Namely, all finite terms in (4.46)-(4.49), do not contribute

in the limit (1 + 3ak) → 0, and the possibility of their internal cancellation is diminished.

This way massive scalar field mode birefringence arise as genuine effect. The above inverse

propagator determines the physical mass m2
phys/P lanck at respected Planck scale energies.

5. Discussion and conclusion

Let us discuss the final outcome of the above constructed φ4 scalar field theory on the NC

κ-deformed spacetime and describe the main results of this work.

First, we point out the most important new results:

(i) The integral measure problems on κ-Minkowski spacetime are avoided by the introduc-

tion of the new ⋆h-product (3.9), into which the measure function is naturally absorbed

due to the hermitian realization (3.6).

(ii) The trace-like property (the integral identity (3.10)) is valid for κ-deformed spaces,

but only if one is dealing with the hermitian realization (3.6), as one should because only

hermitian realizations have physical meaning. Due to the integral identity (3.10), the only

deformation with respect to the standard scalar field action comes from the interaction

term in (3.11).

(iii) The action (3.12) includes an harmonic type of the interaction term and is expanded

up to first order in the deformation parameter a, producing an effective theory on commu-

tative spacetime. Despite κ-deformation mixture with ξ2 term in (3.11) via ⋆h product, at

first order in κ-deformation these two features of our model separate completely in (3.12).

The action (3.12) further produces modified equations of motion (3.14) and conserved de-

formed currents (3.15) due to the internal symmetry satisfied at that order. The above

properties are very welcome.

(iv) Truncated κ-deformed action (3.12) does not possess celebrated quantum effect of

UV/IR mixing [43]. Lack of UV/IR mixing is general feature of most of NCGFT expanded

in terms of noncommutative deformation parameter. However, resummation of expanded

action could in principle restore nonperturbative character of the model, thus restoring

presence of UV/IR mixing in quantum loop computations. The UV/IR mixing connects

NCGFT with Holography via UV and IR cutoffs, in a model independent way [55]. Both,
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the UV/IR mixing and Holography, represent important windows to quantum gravity phe-

nomena.

(v) Next, we discuss the result for the tadpole diagram contribution to the propagation

and/or self-energy, of our scalar field φ for arbitrary number of dimensions n, depicted in

Fig. 2, as a function of κ-deformed momentum conservation law which originates from

deformed statistics on κ-Minkowski spacetime. Thus our approach represents kind of hy-

brid approach modeling between standard QFT and NCQFT on κ-Minkowski spacetime,

involving κ-deformed δ-functions in the Feynman rules.

(vi) When we worked with the standard conservation of momenta (standard addition of

momenta) and undeformed δ-function, the contributions to the tadpole diagram of the first

order in a are zero. The deformed δ-function can be written in terms of leading term plus

corrections in a. Since the Feynman rule (4.6) has already terms linear in a, we have to

retain only zeroth order term in the modified δ-function, because otherwise we get terms of

quadratic and higher orders in a (and this is not what we are interested in). The only term

where we need to take into account δ-function correction linear in a is the leading order

term in Feynman rule (4.6). However, this term is vanishing due to the integration over

the loop momentum. Analyzing (4.34)-(4.36), we recognize that something nonstandard

appears in the model for the tadpole integral at first order in λ and κ-deformation a.

(vii) It appears that in the computation of the tadpole diagram integrals for arbitrary

number of dimensions n, for n = 4 all contributions linear in a canceled each other au-

tomatically. For dimensions n 6= 4, the same linear in a contributions become nonzero,

regardless of the need for using any momentum conservation rule, even undeformed one.

However the harmonic oscillator term from the action (3.12) modifies the mass term in the

free propagator (4.3), thus producing the additional contribution (4.29) from the tadpole

in Fig. 2. Propagation of the scalar field φ for dimension n = 4 also receive a modification

from κ-deformation at linear order in deformation parameter a, and it does receive contri-

bution due to oscillator term in the action for any number of dimensions.

(viii) In the final computation of the tadpole diagram from Fig. 2 we fully implement

the notion of our hybrid approach modeling, that is that standard momentum conserva-

tion is not explicitly satisfied, i.e. we have to use the momentum conservation on κ-space

given in (4.8), while at the end of computation undeformed momentum conservation has

to be applied. We have found a non-vanishing contributions even for number of dimensions

n = 4. They are arising from the harmonic oscillator term in the action (3.12) via modified

propagator (4.4), and via κ-deformed momentum conservation rule entering through the

deformed δ-function in hybrid Feynman rule (4.15). We have found fully modified expres-

sion for tadpole in Fig. 2 in the limit ǫ → 0, where the genuine 1/ǫ (UV) divergence is

explicitly isolated. For conserved external momenta, i.e. for k1 = k4 ≡ k, we obtain two-

point function (4.39), where the finite parts represent the modification of the scalar field

self-energy Πa,ξ
2 and depend explicitly on the regularization parameter µ2, the mass of the

scalar fieldm2, and the magnitude of translation invariance breaking ξ2. Most important is

that (4.39) contains the finite correction ak due to the deformed statistics on κ-Minkowski

spacetime, thus, via ak term we obtain an explicit dependence on the scale of propagating

energy involved |k| = E, and the κ-deformation parameter a, as we expected.
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(ix) Two-point function (4.39) is next applied in the framework of two-point connected

Green’s function for three energy regimes, that is for low energies, for Planck scale energies,

and for middle size energies respectively. For low energy scale and/or small κ-deformation

a, i.e. for ak ≃ 0, which is far away from the point (1 + 3ak = 0), κ-deformation depen-

dence of two-point Green’s function completely drops out (4.48). Genuine UV divergence

in (4.39) as well as spurious δ-function term in (4.3) have been removed by subtracting

counterterm δm2 (4.42), from previous contribution (4.40), or through shifting m2 into

(m2 + δm2) in (4.41). In this case mass shift (4.48) could increase or decrease m2 depend-

ing on values of function f and/or parameter ξ2.

(x) For energies within limits −1
3a3

<< E << 0, the full expression (4.39), with mass the

counterterm (4.42) has to be used in determining the Green’s function (4.43). In that

particular case the harmonic oscillator term in (4.39) will also give a non-negligible contri-

bution. It’s coupling ξ2 could be in principle determined via higher order contributions to

the Green’s function, which is certainly an issue to be addressed in future work.

(xi) At Planckian energy scale, due to the existence of linear type of limits (1 + 3ak) → 0,

we have new situation and, distinguish two cases. They both are new, previously unknown,

features of linear order in a NC κ-Minkowski φ4 theory. In the first case we have limit

(4.50) which produces self-energy and/or modified Green’s function (4.52).

(xii) Second case, that is exact zero-point 1 + 3Ea3 = 0 case, represents in fact genuine

type of zero-point which exactly removes genuine UV divergence 1/ǫ, giving self-energy

and/or modified Green’s function (4.53). In both cases the mass term is shifted in the

same direction, (the same sign!), but for different amount, +11/4 versus +3/4 respectively.

Or more precisely we can say that mass shift during the limiting process (3Ea3 + 1 → 0)

drops from the value proportional to +11/4 to exact value proportional to +3/4.

(xiii) The results (4.52) and (4.53) are the same for two different choices of κ-noncommutativity,

(with appropriate choice of referent system for momentum kµ), i.e. for aµ = (0, 0, a3, 0)

and aµ = (0, 0, 0, ia0) respectively, since (4.51) and (4.54) are equivalent.

(xiv) At Planckian propagation energy scale E ≃ −1
3a3

contribution of tadpole in Fig. 2

tends to finite fixed value, between (4.52) and (4.53), respectively. That, due to effects of κ-

Minkowski statistics, depends only on Planckian propagation energy and/or κ-deformation

parameter a. This way (4.51), (4.52), (4.53) and (4.54) represents κ-deformed dispersion

relations, producing birefringence, [58, 59], of the massive scalar field mode, which arise as

genuine effect at the first order in κ-deformation parameter a. It is similar to the chiral

fermion field birefringence in truncated Moyal ⋆-product theories [59].

(xv) Considering full renormalization, besides δm2 counterterm, the other divergent parts

have to be added as counterterms to free Lagrangian (3.12) as well:

∫

d4x (L+ Lct) = S[φB ,mB , λB , ξB , aB ] ,

where index B denotes bare quantities. That would include analisys of 4− point one-loop

contributions, counterterms (µ2)2−
n
2 δλ and (µ2)4−

n
2 δξ, as well as 2-loop expansion for the

2-point Green’s function with insertion of counterterms in multi-loop diagrams. Certainly,

the full analysis of the renormalization group equations is also under the same schedule.
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However, the full renormalization of our action (3.12) is anyhow beyond the scope of this

paper and it is planned for our next project.

Regarding the effects of statistics according to the described arguments, important

is to repeat that within first order in κ-deformation a, statistics effects on κ-Minkowski

in our hybrid model do arrises as semiclassical/hybrid behavior of first order quantum

effects, thus showing birefringence of the massive scalar field mode. We believe that this

property of such a constructed model, is of importance for further possible research towards

quantum gravity. At higher orders in a the matter would become growingly interesting and

complicated.
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