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Abstract

We investigate the properties of the inverse limit of the algebras of local unitary invariant
polynomials of quantum systems containing various types of fermionic and/or bosonic particles
as the dimensions of the single particle state spaces tend to infinity. We show that the result-
ing algebras are free and present a combinatorial description of an algebraically independent
generating set in terms of graphs. These generating sets can be interpreted as minimal sets of
polynomial entanglement measures distinguishing between states showing different nonclassical
behaviour.

1 Introduction

One of the most important questions in quantum information theory is the classification of states
containing inequivalent types of quantum correlations. Many results exist in the case when the
parts of the composite system are effectively distinguishable, but much less is known in the case
of identical particles. When discussing entanglement at short scales, one can expect that indistin-
guishability of identical particles changes the nature of quantum correlations in a fundamental way.
Understanding such correlations and inequivalent types of entanglement of identical particles is also
of great importance outside quantum information theory [1].

Following recent success in describing the algebra of polynomial invariants under the local uni-
tary group of multipartite quantum systems in the limiting case of large Hilbert space dimensions
[2], in this paper we turn to the question of finding a similar description when identical particles
are present.

In the case of distinguishable subsystems one has a natural notion of local operations: these
can be realized by acting on the parts separately. Lack of distinguishability of particles, however,
prevents one to apply this definition directly to identical particles, and indeed, the notion of en-
tanglement in this case is not entirely settled yet and several different definitions exist [3, 4, 5, 6].
In this paper we regard unitary evolutions generated by Hamiltonians built from single-particle
observables as the analogue of local transformations as e.g. in ref. [7]. The state space is then
of the form Sl(H) = S(l)H (bosons) or Λl(H) = S(1l)H (fermions), and a local transformation is

described by the appropriate restriction of U⊗l (to be denoted by S(l)U and S(1l)U respectively)
for some unitary operator U acting on H.

In some cases the physical setting provides a splitting of the single particle Hilbert space into the
direct sum of orthogonal subspaces. The most natural example is when the position of a particle
can be localized in one of a few possible regions of space having vanishing or negligible overlap. In
this situtation we may assume that the single-particle Hamiltonian leaves the orthogonal subspaces
fixed, and this further restricts the possible transformations leading to conservation of local particle
numbers.

Finally, one may have to consider a quantum mechanical system where both bosons and fermions
are present and the most general Hilbert space obtained this way has the form

Sλ1
H1 ⊗ · · · ⊗ SλkHk (1)
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on which the local unitary operations Sλ1
U1 ⊗ · · · ⊗ SλkUk act where λj ∈ {(lj), (1lj )}. Note that

the same Hilbert space can also be interpreted as the state space of a system of k types of particles
where different types can be distinguished but particles of the same type are identical.

The outline of this paper is as follows. In section 2 we introduce the object which we study,
namely, the inverse limit of the algebras of invariant polynomials under products of unitary groups
starting over any irreducible representation where the limit is taken as the dimensions tend to
infinity. Here we state that the inverse limit does not contain “too many” elements, that is every
element is already represented for some finite values of the dimensions.

Section 3 summarizes some concepts related to the representation theory of the unitary groups
and its connection to symmetric groups and their representations. In section 4 we derive a formula
for the dimensions of the homogeneous subspaces of the inverse limit in terms of induced characters.

Section 5 prepares the detailed study of bosonic and fermionic systems by collecting some prop-
erties of regular bipartite graphs and integer stochastic matrices. In section 6 we utilize these tools
in the simplest nontrivial case: we describe invariants of pure states of a quantum system containing
any number of identical bosons.

The main result is stated in section 7 which deals with the most general quantum systems
containing different types of bosonic, fermionic or distinguishable particles in any combination.
We find a convenient way of encoding elements of an algebraically independent generating set by
certain graphs. In section 8 we show that the problem of finding invariants of mixed states can be
completely reduced to the case of pure states.

Some concluding remarks follow in section 9. For the readers’ convenience some more technical
proofs are presented outside the main text in section 10.

2 The algebra of local unitary invariants

Let k ∈ N, λ1, . . . , λk be nonempty partitions and n = (n1, . . . , nk) ∈ Nk, and let us consider
the complex Hilbert space Hk,(λ1,...,λk),n = Sλ1

(Cn1) ⊗ Sλ2
(Cn2) ⊗ · · · ⊗ Sλk(Cnk). This space

carries an irreducible representation of LUn := U(n1,C)×· · ·×U(nk,C), the group of local unitary
transformations. For n ≤ n′ ∈ Nk (with respect to the componentwise partial order) we have the

usual inclusions Cnj ↪→ Cn
′
j sending an n-tuple of complex numbers to the first n′ components which

gives rise to the inclusion ιn,n′ : Hk,(λ1,...,λk),n ↪→ Hk,(λ1,...,λk),n′ (obtained by tensoring the images
of the former inclusions under the appropriate Schur functor). Regarding LUn as the subgroup of
LUn′ acting on the first ni entries in the ith factor and stabilizing the image of ιn,n′ , one can see
that ιn,n′ is an LUn-equivariant linear map.

Let Ik,(λ1,...,λk),n denote the algebra of LUn-invariant polynomial functions over Hk,(λ1,...,λk),n,
regarded as a real vector space. Polynomial functions can be identified with elements in S(Hk,(λ1,...,λk),n⊕
H∗k,(λ1,...,λk),n

), the symmetric algebra on Hk,(λ1,...,λk),n⊕H∗k,(λ1,...,λk),n
on which an action of LUn

is induced and we have

Ik,(λ1,...,λk),n = S(Hk,(λ1,...,λk),n ⊕H
∗
k,(λ1,...,λk),n

)LUn (2)

As in ref. [2], we use a grading which is different from the usual one in a factor of two, and
call homogeneous of degree m the polynomials which are of degree m both in the coefficients and
their conjugates. This convention is convenient as an invariant must have the same degree in the
coefficients and their conjugates, as seen from the fact that eiϕ ∈ U(1) ' Z(U(nj ,C)) acts on
Sp(Hk,(λ1,...,λk),n)⊗ Sq(H∗k,(λ1,...,λk),n

) by multiplication with ei(p−q)|λj |ϕ.
The inclusions ιn,n′ : Hk,(λ1,...,λk),n ↪→ Hk,(λ1,...,λk),n′ induce morphisms of graded algebras

%n,n′ : Ik,(λ1,...,λk),n′ → Ik,(λ1,...,λk),n defined by (%n,n′f)(ϕ) = f(ιn,n′ϕ). Thus we obtain the
inverse system ((Ik,(λ1,...,λk),n)n∈Nk , (%n,n′)n≤n′∈Nk) of graded algebras, the inverse limit of which
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will be denoted by Ik,(λ1,...,λk) and called the algebra of LU-invariants:

Ik,(λ1,...,λk) := lim←−
n∈Nk

Ik,(λ1,...,λk),n =

(fn)n∈Nk ∈
∏
n∈Nk

Ik,(λ1,...,λk),n

∣∣∣∣∣∀n ≤ n′ : fn = %n,n′fn′

 (3)

Note that Ik,(λ1,...,λk),n is a quotient of Ik,(λ1,...,λk).
The next lemma implies that every element of Ik,(λ1,...,λk) is already represented in some

Ik,(λ1,...,λk),n.

Lemma 1. Let k ∈ N and n ≤ n′ ∈ N. Then the restriction of %n,n′ : Ik,n′ → Ik,n to the subspace
of elements of degree at most min{|λ1|n1, . . . , |λk|nk} is an isomorphism.

For the proof see sec. 10.

3 Polynomial representations of the unitary groups, sym-
metric functions and the characteristic map

In this section we collect some well-known facts related to the representations of unitary and sym-
metric groups and their characters. For more details see e.g. refs. [8, 9].

Recall that the isomorphism class of a polynomial representation of the unitary group U(n,C) is
uniquely determined by its character which is a symmetric polynomial of the eigenvalues with integer
coefficients. Irreducible representations correspond to Schur polynomials indexed by partitions of
integers into at most n parts. We are interested in the large n limit, therefore it is convenient to
work with the algebra Λ of symmetric functions in infinitely many variables. A basis of Λ is the set
{sλ|λ ` n, n ∈ N} where sλ is the Schur polynomial labelled by λ and λ ` m denotes the fact that
λ is a partition of m.

The usual inner product on the space of class functions on the compact group U(n,C) translates
to an inner product on Λ defined by

〈sλ, sµ〉 = δλµ (4)

Direct sums and tensor products of the representations correspond to sums and products of the cor-
responding symmetric functions, respectively. Given two representations %1 : U(n1,C)→ U(n2,C)
and %2 : U(n2,C)→ U(n3,C), we can form their composition %2 ◦ %1 : U(n1,C)→ U(n3,C) and its
character can be calculated as the plethysm of that of %1 with %2. This operation may be defined
on Λ by pn[pn′ ] = pnn′ and f [pn] = pn[f ] for f ∈ Λ and extending to be an algebra endomorphism
in the outer variable.

The ring of symmetric functions is also connected to the representation theory of the symmetric
groups via the characteristic map. Denoting the space of class functions on Sn by Rn and the nth
homogeneous part of Λ by Λn, we define ch : Rn → Λn by

ch f =
∑
µ`n

z−1µ f(µ)pλ (5)

where f ∈ Rn and f(µ) denotes its value on the conjugacy class labelled by µ, that is, on elements
of cycle type µ, and

zµ =
∏
i

iaii! (6)

if µ has a1 ones, a2 twos etc. We may also regard ch as a map from
⊕

n∈NRn to Λ. Note also that
Rn is equipped with the usual inner product, and hence also their direct sum.
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Characters of irreducible representations of Sn are indexed by partitions of n, and will be denoted
by χµ where µ ` n. These form an orthonormal basis of Rn, and an important property of ch is
that chχµ = sµ, in particular, ch is an isometry.

The sum, product and plethysm operations also have a description in terms of representations of
the symmetric group. Clearly, the direct sum of representations corresponts to the sum in Λ. The
product translates to the induction product defined as follows. Let χi : Sni → C be the character
of the representation Vi of Sni for i = 1, 2. Then Sn1

× Sn2
can be regarded as the subgroup of

Sn1+n2
containing bijections which permute the first n1 numbers among themselves and similarly

the last n2 numbers. The induction product of the two representations is

ind
Sn1+n2

Sn1
×Sn2

V1 ⊗ V2 (7)

It can be shown that the image of its character under ch is chχ1 · chχ2

Finally, plethysm can be described in terms of the wreath product of representations. Similarly
as before, Smk can be regarded as a subgroup of Skm. Its normalizer is isomorphic to the wreath
product Sk o Sm.

We can think of the wreath product Sk oSm as the set Smk ×Sm with multiplication defined by

(p1, p2, . . . , pm, v) · (p′1, p′2, . . . , p′m, v′) = (p1p
′
v−1(1), p2p

′
v−1(2), . . . , pmp

′
v−1(m), vv

′) (8)

Now let V be a representation of Sk with character χ and W a representation of Sm with
character θ. We can define a representation of Sk o Sm on V ⊗m ⊗W by

(p1, p2, . . . , pm, v) · (x1 ⊗ · · · ⊗ xm ⊗ y) = (p1 · xv−1(1))⊗ · · · ⊗ (pm · xv−1(m))⊗ (v · y)) (9)

We denote the character of this representation by χ o θ. Regarding Sk o Sm as the subgroup of Skm
above, we have the following equality:

ch indSkmSkoSm(χ o θ) = (ch θ)[chχ] (10)

Finally, applying to irreducible representations and expanding in the basis of Schur functions
(equivalently: irreducible characters of the symmetric groups) we write:

indSkmSkoSm(χλ o χmu) =
∑
ν`km

Mλµνχν (11)

and

sµ[sλ] =
∑
ν`km

Mλµνsν (12)

or as the composition of the corresponding Schur functors

SµSλ =
∑
ν`km

MλµνSν (13)

4 Hilbert series of the algebra of LU-invariants

Let k,m ∈ N, λ1, . . . , λk be nonempty partitions and n ∈ Nk such that n ≥ (m,m, . . . ,m). Our
aim is to calculate the dimension dm of the mth graded subspace of Ik,(λ1,...,λk),n. This subspace
can be written as

S2m(Hk,(λ1,...,λk),n⊕H
∗
k,(λ1,...,λk),n

)LUn = (Sm(Hk,(λ1,...,λk),n)⊕Sm(Hk,(λ1,...,λk),n)∗)LUn (14)
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hence if we write Sm(Hk,(λ1,...,λk),n) as the direct sum of irreducible representations of LUn, then
dm is the sum of the squares of multiplicities.

For λ ` m we have the isomorphism

Sλ(V1 ⊗ . . .⊗ Vk) '
⊕

µ1,...,µk`m

Cλµ1...µkSµ1
V1 ⊗ · · · SµkVk (15)

where Cλµ1...µk = 〈χλ, χµ1
· · ·χµk〉Sm is the multiplicity of the irreducible representation of Sm

indexed by the λ in the tensor product of irreducible representations corresponding to µ1, . . . , µk.
Now we can write

Sm(Hk,(λ1,...,λk),n) '
⊕

µ1,...,µk`m
ν1,...,νk
νi`m|λi|

C(m)µ1...µkMλ1µ1ν1 · · ·Mλ1µ1ν1Sν1Cn1 ⊗ · · · ⊗ SνkCnk

'
⊕

ν1,...,νk
νi`m|λi|

 ∑
µ1,...µk`m

C(m)µ1...µnMλ1µ1ν1 · · ·Mλ1µ1ν1

 Sν1Cn1 ⊗ · · · ⊗ SνkCnk

(16)

and therefore

dm =
∑

ν1,...,νk
νi`m|λi|

 ∑
µ1,...µk`m

C(m)µ1...µnMλ1µ1ν1 · · ·Mλ1µ1ν1

2

=
∑

ν1,...,νk
νi`m|λi|

∑
µ1,...µk`m
µ′1,...µ

′
k`m

C(m)µ1...µnC(m)µ′1...µ
′
n
Mλ1µ1ν1Mλ1µ′1ν1

· · ·Mλ1µ1ν1Mλ1µ′1ν1

=
∑

µ1,...µk`m
µ′1,...µ

′
k`m

〈1, χµ1 · · ·χµk〉Sm〈1, χµ′1 · · ·χµ′k〉Sm ·

·
∑

ν1,...,νk
νi`m|λi|

k∏
i=1

〈ind
Sm|λi|
Sλ1 oSm

χλi o χµ1
, χν1〉Sm|λi|〈χν1 , ind

Sm|λi|
Sλ1 oSm

χλi o χµ′1〉Sm|λi|

=
∑

µ1,...µk`m
µ′1,...µ

′
k`m

〈
〈1, χµ1

· · ·χµk〉Sm indGmH′m(χλ1
o χµ1

)× · · · × (χλk o χµk),

〈1, χµ′1 · · ·χµ′k〉Sm indGmH′m(χλ1
o χµ′1)× · · · × (χλk o χµ′k)

〉
Sm|λ1|×···×Sm|λk|

(17)

where we have used that the appearing characters are all real, irreducible characters χνi form an
orthonormal basis and introduced the notation Gm = Sm|λ1|×· · ·×Sm|λk| and H ′m = (S|λ1| oSm)×
· · · × (S|λk| o Sm)

To simplify the last expression we need the following.

Lemma 2. Let A1, . . . Ak be finite groups, m ∈ N, µ ` m and let αi be a class function on Ai for
every i. Then

ind
(A1oSm)×···×(AkoSm)
(A1×···×Ak)oSm (α1×· · ·×αk)oχµ =

∑
µ1,...,µk`m

〈χµ, χµ1
· · ·χµk〉Sm(α1oχµ1

)×· · ·×(αkoχµk) (18)
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The proof can be found in sec. 10
Using this result the dimension of the degree m homogeneous subspace of Ik,(λ1,...,λk) can be

rewritten as

Theorem 3.

dm = 〈indGmHm(χλ1 × · · · × χλk) o 1, indGmHm(χλ1 × · · · × χλk) o 1〉 (19)

where Gm = Sm|λ1| × · · · × Sm|λk| and Hm = (S|λ1| × · · · × S|λk|) o Sm.

Note that in the m = 0 case Gm = Hm is the trivial group, and therefore d0 = 1 corresponding
to the one dimensional space of constant polynomials.

In the special case λ1 = λ2 = . . . = λk = (1) the groups reduce to Gm = Skm and Hm = Sm,
and we have that dm equals the number of orbits of Skm under Sm × Sm acting via left and right
multiplication, or equivalently, the number of orbits of Sk−1m under Sm acting by simultaneous
conjugation [10].

In the remaining sections we will restrict ourselves to the study of the cases where the Ferrers
diagrams of the appearing partitions have either a single row or a single column, which corresponds
to a multipartite quantum system with various types of bosonic and fermionic particles. The next
two sections deal with the simplest case of a system of identical bosons.

5 Integer stochastic matrices and regular bipartite graphs

Following the strategy of refs. [11, 2], in this section we introduce certain combinatorial objects
which can be used to conveniently label a basis of I1,((l)).

An integer stochastic matrix is a square matrix with nonnegative integer entries and such that
the sum of entries in each row and in each column is the same. Clearly, if M and N are two such
matrices with line sums l, then the block-diagonal matrix

M ⊕′ N :=

[
M 0
0 N

]
(20)

built from them is also an integer stochastic matrix with line sums l. We will call integer stochastic
matrices differing only in a permutation of rows and columns equivalent. Clearly, this is an equiva-
lence relation and ⊕′ gives rise to a well defined operation on the equivalence classes, to be denoted
by ⊕.

A matrix with nonnegative integer entries may also be thought of as biadjacency matrix of
a bipartite graph G = (V1, V2, E) on a labelled vertex set, say V1 = {r1, r2, . . . , rm} and V2 =
{c1, c2, . . . , cm′} (and possibly with multiple edges) together with a fixed order of colour classes,
and this correspondance is a bijection. Our convention will be that rows correspond to vertices in
V1 while columns correspond to vertices in V2. Clearly, the biadjacency matrix is an m×m integer
stochastic matrix iff the corresponding graph is l-regular and |V1| = |V2| = m. Under this map
the binary operation ⊕ corresponds to the disjoint union of bipartite graphs, which we define so
that we keep track of the ordering of colour classes, i.e. for G = (V1, V2, E) and G′ = (V ′1 , V

′
2 , E

′)
we have G t G′ = (V1 t V ′1 , V2 t V ′2 , E t E′). Note that this is important as the bipartition of a
disconnected bipartite graph is not unique. Passing to equivalence classes of the integer stochastic
matrices corresponds to forgetting the labels of vertices.

We will make use of another description in terms of permutations. Let p ∈ Slm be a permutation
of the numbers {1, 2, . . . , lm}. To p we can associate an l-regular m by m bipartite graph as
follows. Let V1 = {r1, r2, . . . , rm} and V2 = {c1, c2, . . . , cm} be the two vertex sets, and for each
i ∈ {1, 2, . . . , lm} add an edge joining rd il e with cd p(i)l e

where dxe denotes the smallest integer not
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less than x. In other words, there are e edges joining ri with cj iff e of numbers in the range
{(i− 1)l + 1, . . . , il} are mapped by p into the range {(j − 1)l + 1, . . . , jl}.

It is not hard to see that p, p′ ∈ Slm are mapped to the same graph with labelled vertices iff
p′ = apb with a, b ∈ Sml ≤ Slm regarded as the subgroup whose elements permute the numbers
{li + 1, li + 2, . . . , li + l} among themselves for each 0 ≤ i ≤ m − 1. Reordering the labels of the
vertices amounts to left and right multiplication with an element of Sm ≤ Slm regarded as the
subgroup permuting the m blocks of numbers {li+1, li+2, . . . , li+ l} with i = 0, . . . ,m−1 without
reordering the numbers inside the blocks. The two subgroups generate the normalizer of the former
in Slm, which is isomorphic to Sl o Sm. In the following we will always assume Sl o Sm to be this
subgroup in Slm.

To sum up, equivalence classes of m × m integer stochastic matrices with line sum l are in
bijection with l-regular bipartite graphs with a fixed bipartition into two m-element vertex sets,
which in turn are in bijection with elements of the double coset space (Sl oSm)\Slm/(Sl oSm). Fig.
1 shows the five possible graphs in the l = m = 3 case.

Figure 1: All five 3-regular bipartite graphs on six vertices. Representatives of the corre-
sponding equivalence classes of permutations (from left to right) are: (1)(2)(3)(4)(5)(6)(7)(8)(9),
(1)(2)(3)(4)(5)(67)(8)(9), (1)(2)(34)(5)(6)(7)(8)(9), (1)(2)(34)(57)(68)(9), (1)(24)(37)(5)(68)(9).

6 Algebraically independent generators of the algebra of
LU-invariants for pure states of bosons

Our next aim is to prove that I1,((l)) is free by presenting an algebraically independent generating

set. Let H be a Hilbert space, and l ∈ N, and consider the l-boson state space Sl(H). Invariant
polynomial functions on this space are in bijection with elements of the space

S(Sl(H)⊕ Sl(H∗))U(n,C) '
⊕
m∈N

(Sm(Sl(H))⊗ Sm(Sl(H∗))U(n,C)

'
⊕
m∈N

End(Sm(Sl(H)))U(n,C)

'
⊕
m∈N

EndU(n,C)(S
m(Sl(H)))

(21)

Note that Sm(Sl(H)) can be regarded as a subspace of H⊗lm, and as this space comes equipped
with an inner product induced from that of H, we also have the orthogonal projection H⊗lm →
Sm(Sl(H)). This implies that End(Sm(Sl(H))) can be viewed both as a subspace and as a quotient
of End(Sm(Sl(H))).

Recall that GL(H) acts on H⊗lm by the defining representation on each factor and on this space
there is an action of Slm permuting the factors and these two actions commute. Schur-Weyl duality
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states that the algebra homomorphism CSlm → EndGL(H)(H⊗lm) is surjective, and it is injective
iff dimH ≥ lm. In these formulae we can also write U(H) instead of GL(H).

Therefore we also have a surjection from the group algebra CSlm to the space of degree m
polynomial invariants. Let {e1, . . . , en} be an orthonormal basis of H, and {e∗1, . . . , e∗n} its dual
basis. Vectors of the form

ej1 ∨ ej2 ∨ · · · ∨ ejl :=
1

n!

∑
π∈Sl

ejπ(1)
⊗ ejπ(2)

⊗ · · · ⊗ ejπ(l)
(22)

with 1 ≤ j1 ≤ · · · ≤ jl ≤ n form a basis of Sl(H). Then our surjection is defined on the group
elements as

σ 7→ f[σ] :=

n∑
j1,...,jlm=1

(ej1 ∨ · · · ∨ ejk)(ejl+1
∨ · · · ∨ ej2l) · · · (ej(m−1)l+1

∨ · · · ∨ ejml)·

· (e∗jσ(1) ∨ · · · ∨ e
∗
jσ(l)

) · · · (e∗jσ((m−1)l+1)
∨ · · · ∨ e∗jσ(ml)) (23)

and extended linearly. As the symmetrized product ∨ as well as the product in S(Sl(H)) is com-
mutative, and we sum over every possible lm-tuple of integers (in particular, over permutations
of any fixed lm-tuple), we have that the image of σ under this map is the same as the image of
any element in the double coset [σ] := (Sl o Sm)σ(Sl o Sm). In other words, we have a well-defined
surjection from a vector space freely generated by the double coset space (Sl o Sm)\Slm/(Sl o Sm)
to the space of degree m invariant polynomials.

But the dimension of the two spaces can be seen to be equal, so that this surjection is in fact
an isomorphism if n ≥ lm. Indeed, in this special case eq. (19) reduces to

dm = 〈indSlmSloSm(1 o 1), indSlmSloSm(1 o 1)〉 = |(Sl o Sm)\Slm/(Sl o Sm)| (24)

using the well-known formula |H\G/H| = 〈indGH 1, indGH 1〉 for the number of double cosets.
What we have seen so far is that a basis of I1,((l)) can be labelled by l-regular bipartite graphs or

equivalently by integer stochastic matrices with line sums l up to permutation of rows and columns.
It is not hard to see (and will be proved later in a more general setting) that under these bijections
multiplication of the basis elements corresponds to the disjoint union and to the operation ⊕ defined
above, respectively, implying that any element of the basis can be uniquely written as the product
of basis elements corresponding to connected graphs. Our results are summarized in the following

Theorem 4. I1,((l)) is a free algebra, and an algebraically independent generating set is {fs|s ∈ S}
where S is the set of elements of

⊔
m∈N(Sl o Sm)\Slm/(Sl o Sm) corresponding to connected graphs

by the above bijection.

7 Systems of different kinds of indistinguishable particles

We turn to the local unitary invariants of the most general quantum systems containing various
types of bosonic, fermionic and distinguishable particles.

The starting point is the stable dimension formula of eq. 19. In the present case k is arbitrary
while the partitions λ1, . . . , λk are either of the form (li) or (1li) corresponding to bosons or fermions
(so that li = |λi|).

Let Gm = Sml1 × · · · × Smlk and Hm = (Sl1 × · · · × Slk) o Sm ≤ Gm as before. The degree m
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subspace of Ik,(λ1,...,λk) is

dm = 〈indGmHm(χλ1
× · · · × χλk) o 1, indGmHm(χλ1

× · · · × χλk) o 1〉Gm
= 〈resHmGm indGmHm(χλ1 × · · · × χλk) o 1, (χλ1 × · · · × χλk) o 1〉Hm
=

∑
s∈Hm\Gm/Hm

〈((χλ1 × · · · × χλk) o 1)s, resHmsHm
(χλ1 × · · · × χλk) o 1〉Hms

(25)

by Mackey’s theorem[12] where Hms = Hm∩ sHms
−1 and fs(h) = f(s−1hs) and in the sum s runs

over a system of representatives of the set of double cosets. Note that the inner product indeed
depends on s only through the double coset HmsHm.

Observe that each term in the sum is either 0 or 1, being the inner product of one dimensional
and hence irreducible characters, therefore

dm ≤ |Hm\Gm/Hm| (26)

holds. In the following we will give a set of |Hm\Gm/Hm| invariants spanning the degree m homo-
geneous subspace, and we shall see that when strict inequality holds in eq. (26), some invariants
become zero while the remaining ones form a basis.

Let n = (n1, . . . , nk) be a fixed k-tuple of integers such that ni ≥ mli. First observe that
Sm(Sλ1

(Cn1)⊗ · · · ⊗ Sλk(Cnk)) can be thought of both as a subrepresentation and as a quotient of
(Cn1)⊗ml1 ⊗ · · · ⊗ (Cnk)⊗mlk via symmetrization/antisymmetrization. Hence we have a surjection

End((Cn1)⊗ml1 ⊗ · · · ⊗ (Cnk)⊗mlk)→ End(Sm(Sλ1
(Cn1)⊗ · · · ⊗ Sλk(Cnk))) (27)

which is LUn-equivariant, therefore we also have a surjection

(End((Cn1)⊗ml1 ⊗ · · · ⊗ (Cnk)⊗mlk))LUn → (End(Sm(Sλ1
(Cn1)⊗ · · · ⊗ Sλk(Cnk))))LUn (28)

Here the right hand side can be identified with the degree m homogeneous subspace of Ik,(λ1,...,λk).
Let e1, e2, . . . denote the standard basis of Cn and let us introduce the following notation:

eλ,i1i2...il =
1

l!

∑
π∈Sl

χλ(π)eiπ(1)
⊗ eiπ(2)

⊗ · · · ⊗ eiπ(l)
(29)

so that λ = (l) (λ = (1l)) corresponds to symmetrized (antisymmetrized) tensor products, respec-
tively. Elements of the dual bases will be denoted by e∗1, e

∗
2, e
∗
λ,i1i2...il

etc.
By Schur-Weyl duality we have the surjection

C(Sml1 × · · · × Smlk)→ (End((Cn1)⊗ml1 ⊗ · · · ⊗ (Cnk)⊗mlk))LUn (30)

defined by

(σ1, . . . , σk) 7→
∑

i11,...,i
ml1
1

...
i1k,...,i

mlk
k

(ei11 ⊗ ei21 ⊗ · · · ⊗ eiml11
⊗ · · · ⊗ ei1k ⊗ ei2k ⊗ · · · ⊗ eimlkk

)⊗

⊗ (e∗
i
σ1(1)
1

⊗ e∗
i
σ1(2)
1

⊗ · · · ⊗ e∗
i
σ1(ml1)
1

⊗ · · · ⊗ e∗
i
σk(1)

k

⊗ e∗
i
σk(2)

k

⊗ · · · ⊗ e∗
i
σk(mlk)

k

) (31)
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on k-tuples of permutations and extended linearly. Composing this with the surjection above we
have the following map:

(σ1, . . . , σk) 7→ f[σ1,...,σk] :=
∑

(e
λ1,i11i

2
1...i

l1
1
⊗ e

λ2,i12i
2
2...i

l2
2
⊗ · · · ⊗ e

λk,i1ki
2
k...i

lk
k

) · · ·

(e
λ1,i

(m−1)l1+1
1 i

(m−1)l1+2
1 ...i

ml1
1

⊗ · · · ⊗ e
λk,i

(m−1)lk+1

k i
(m−1)lk+2

k ...i
mlk
k

)·

(e∗
λ1,i

σ1(1)
1 i

σ1(2)
1 ...i

σ1(l1)
1

⊗ e∗
λ2,i

σ2(1)
2 i

σ2(2)
2 ...i

σ2(l2)
2

⊗ · · · ⊗ e∗
λk,i

σk(1)

k i
σk(2)

k ...i
σk(lk)

k

) · · ·

(e∗
λ1,i

σ1((m−1)l1+1)
1 i

σ1((m−1)l1+2)
1 ...i

σ1(ml1)
1

⊗ · · · ⊗ e∗
λk,i

σk((m−1)lk+1)

k i
σk((m−1)lk+2)

k ...i
σk(mlk)

k

) (32)

where the sum is over all possible values of the indices: 1 ≤ i1j , . . . , i
mlj
j ≤ nj (∀j ∈ {1, . . . , k}) and

[σ1, . . . , σk] denotes the double coset Hm(σ1, . . . , σk)Hm.
Note that eλ,i1i2...il does not change (up to sign) upon changing the order of the appearing

indices, and also the factors in each term can be reordered in an arbirary way. Taking into account
that we sum over every possible value of the indices, the first transformation is realized when any of
the σj is multiplied from either side by a permutation in the Young subgroup Sli × · · ·×Sli ≤ Smli
while the latter amounts to simultaneous multiplication of the permutations σ1, . . . , σk from the
left or from the right by the subgroup of Sml1 × · · · × Smlk isomorphic to Sm which permutes
simultaneously the blocks fixed by these Young subgroups. But the subgroup generated by these
is precisely Hm so that indeed we have an up-to-sign well defined invariant for each element of
Hm\Gm/Hm. The sign can be fixed by requiring the invariant to be positive for separable states.

This already implies that when in eq. (26) equality holds, a basis of the degree m homogeneous
subpace is obtained this way. Similarly to the special case considered in sec. 6 we can describe
Hm\Gm/Hm in a purely combinatorial way in terms of certain graphs as follows.

Let (σ1, . . . , σk) ∈ Gm = Sml1 × · · · × Smlk . Now we can draw a bipartite graph with vertices
r1, r2, . . . , rm, c1, c2, . . . , cm and with edges of k different colours, adding an edge of the jth colour
connecting rd ilj e

with c
d
σj(i)

lj
e

for every 1 ≤ i ≤ mlj . In other words, there are e edges of colour j

joining ri with ci′ iff e of numbers in the range {(i−1)lj+1, . . . , ilj} are mapped by σj into the range
{(i′− 1)lj + 1, . . . , i′lj}. Finally we forget the labels of the vertices but keep the order of the colour
classes, and this way obtain a bijection between Hm\Gm/Hm and the set of isomorphism classes
of bipartite graphs with a fixed bipartition into two m-element vertex sets and edges of k different
colours with the subgraph given by edges of colour j being lj-regular. The set of these isomorphism
classes will be denoted by gr(k, (l1, . . . , lk),m), and connected ones by grc(k, (l1, . . . , lk),m)

As an illustration fig. 2 shows the graph obtained in the k = 2, l1 = 2, l2 = 3, m = 3
case from the pair of permutations ((123564), (17896)(2)(3)(4)(5)) ∈ S6 × S9. Note also that the

1, 2

3, 4

5, 6

1, 2

3, 4

5, 6

1, 2, 3

4, 5, 6

7, 8, 9

1, 2, 3

4, 5, 6

7, 8, 9

Figure 2: The regular bipartite graph obtained from (123564) ∈ S6 (left), (17896)(2)(3)(4)(5) ∈ S9

(right) and the combined graph encoding the equivalence class of the pair in the k = 2, l1 = 2,
l2 = 3, m = 3 case. (Colour online)

l1 = l2 = . . . = lk = 1 special case corresponds to distinguishable particles, and the resulting graphs
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can be identified (after merging pairs of vertices along one of the colours) with the graph coverings
of ref. [11].

Alternatively, we can identify the double cosets with orbits of k-tuples of m×m integer stochastic
matrices such that the jth matrix has line sums lj , under simultaneous multiplication from the left
or from the right by permutation matrices.

The next step is to understand multiplication in Ik,λ1,...,λk in terms of graphs, i.e. to find the
structure constants with respect to the basis given above.

Definition 1. Let gr(k, (l1, . . . , lk)) denote the disjoint union
⊔
m∈N gr(k, (l1, . . . , lk),m). This

set comes equipped with an operation t induced by the disjoint union of graphs. Similarly, let
grc(k, (l1, . . . , lk)) denote the disjoint union

⊔
m∈N grc(k, (l1, . . . , lk),m).

Let ? denote the operation defined on
⊔
m∈NHm\Gm/Hm as follows. For (σ1, . . . , σk) ∈ Gm and

(σ′1, . . . , σ
′
k) ∈ Gm′ the usual inclusions Smli × Sm′li ↪→ Smli+m′li of Young subgroups determine

an element (π1, . . . , πk) in Gm+m′ . We define [σ1, . . . , σk] ? [σ′1, . . . , σ
′
k] to be the double coset

[π1, . . . , πk].

It is easy to see that this operation is well defined, and turns
⊔
n∈NHm\Gm/Hm into a com-

mutative monoid (the identity being the only element of H0\G0/H0). In addition, the map
ϕ :

⊔
m∈NHm\Gm/Hm → gr(k, (l1, . . . , lk)) described above becomes this way an isomorphism

of monoids. As gr(k, (l1, . . . , lk)) is freely generated by the subset grc(k, (l1, . . . , lk)), the former is
also freely generated by preimages of connected graphs.

Lemma 5. Let (σ1, . . . , σk) ∈ Gm and (σ′1, . . . , σ
′
k) ∈ Gm′ be arbitrary elements. Then

f[σ1,...,σk] · f[σ′1,...,σ′k] = f[σ1,...,σk]?[σ′1,...,σ
′
k]

(33)

The proof can be found in sec. 10. It follows that we have a surjective homomorphism from the
semigroup algebra Cgr(k, (l1, . . . , lk))→ Ik,(λ1,...,λk) defined by G 7→ fϕ−1(G) and extended linearly.
When equality holds in eq. (26), this is an isomorphism.

We turn now to the case when we have a strict inequality in eq. (26). We will see that this
means only a minor modification in the structure of the inverse limit, namely, to each nonzero term
in eq. (25) corresponds an invariant via eq. (32) forming a basis of the degree m homogeneous
subspace, and for each vanishing term the corresponding invariant is identically zero.

Lemma 6. Let Gm and Hm as above and s = (σ1, . . . , σk) ∈ Gm such that

〈((χλ1
× · · · × χλk) o 1)s, resHmsHm

(χλ1
× · · · × χλk) o 1〉Hms = 0 (34)

holds. Then f[σ1,...,σk] = 0.

For the proof see sec. 10
Now we have everything at hand to state the following:

Theorem 7. Let B := {G ∈ gr(k, (l1, . . . , lk))|fϕ−1(G) 6= 0} and let S denote the subset {G ∈
grc(k, (l1, . . . , lk))|fϕ−1(G) 6= 0} of B. Then

{fϕ−1(G)|G ∈ B} (35)

is a basis of Ik,(λ1,...,λk) and Ik,(λ1,...,λk) is freely generated as an algebra by the set

{fϕ−1(G)|G ∈ S} (36)
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Proof. We have seen that {fϕ−1(G)|G ∈ gr(k, (l1, . . . , lk))} generates Ik,(λ1,...,λk) as a vector space.
Removing the zero vector does not change this property, hence {fϕ−1(G)|G ∈ B} is also a generating
set. The number of degree m elements in {fϕ−1(G)|G ∈ B} is at most the number of double cosets
[s] ∈ Hm\Gm/Hm such that

〈((χλ1 × · · · × χλk) o 1)s, resHmsHm
(χλ1 × · · · × χλk) o 1〉Hms 6= 0 (37)

and this number is equal to dm by eq. (25), therefore must form a basis.
An elementG ofB can be uniquely written as the disjoint union of connected graphs i.e. elements

of S, because an invariant corresponding to a connected graph outside S is zero. By lemma 5 this
means that fϕ−1(G) is in a unique way the product of elements of {fϕ−1(G)|G ∈ S}.

It remains to settle the question whether we have equality or not in eq. (26) for a given k-tuple
(λ1, . . . , λk). Equivalently, we wish to determine if there exist an element s in Gm for some m such
that

〈((χλ1 × · · · × χλk) o 1)s, resHmsHm
(χλ1 × · · · × χλk) o 1〉Hms = 0 (38)

Clearly this cannot happen if (χλ1 × · · · × χλk) o 1 is the restriction of some character of Gm. We
may assume that m ≥ 2 since for m = 0 and m = 1 we have Gm = Hm = Hms.

In the m ≥ 2 case Gm = Sml1 × · · · × Sml2 has exactly 2k distinct one dimensional charac-
ters: we can chose the trivial or the alternating character for each factor. Let X = (X1, . . . , Xk) ∈
{triv, alt}k be such a choice. We wish to find out its value on an element (σ1

1 , . . . , σ
m
1 , σ

1
2 , . . . , σ

m
2 , . . . , σ

1
k, . . . , σ

m
k , π)

of Hm = (Sl1×· · ·×Sl2) oSm ≤ Gm. In the image of this element in Gm the jth factor is a permuta-
tion of m blocks of size lj determined by π ∈ Sm and inside the blocks the permutations σ1

j , . . . , σ
m
j

act. We denote this permutation by σπj . With this notation we have

Xj(σ
π
j ) =


1 if Xj = triv∏m
i=1 sgn(σij) if Xj = alt, |lj | ≡ 0 (mod 2)

sgn(π)
∏m
i=1 sgn(σij) if Xj = alt, |lj | ≡ 1 (mod 2)

(39)

where sgn is the sign of the permutation and therefore the value of the character of Gm we are
looking for is

k∏
j=1

Xj(σ
π
j ) = (sgn(π)){j∈{1,...,k}|Xj=alt,lj≡1 (mod 2)}

k∏
j=1

m∏
i=1

Xj(σ
i
j) (40)

Let Yj = triv if λj = (lj) and Yj = alt if λj = (1lj ). In the special case lj = 1 the two
representations are the same, and we can safely choose any of {triv, alt} for Yj . This freedom will
be used shortly. The value of (χλ1 × · · · × χλk) o 1 on (σ1

1 , . . . , σ
m
1 , . . . , σ

1
k, . . . , σ

m
k , π) is

k∏
j=1

m∏
i=1

Yj(σ
i
j) (41)

The two values coincide for every element iff {j ∈ {1, . . . , k}|Xj = alt, lj ≡ 1 (mod 2)} is even and
for all j ∈ {1, . . . , k} either lj = 1 or Xj = Yj . Note that when for at least one j we have lj = 1
then we can always choose X so that {|j ∈ {1, . . . , k}|Xj = alt, lj ≡ 1 (mod 2)} is even. If lj > 1
for all j ∈ {1, . . . , k} then the condition means that the total number of fermions is even.

On the other hand, when ∀j : lj > 1 and the total number of fermions is odd and m ≥ 3 we can
always find an element s = (σ1, . . . , σk) ∈ Gm such that

〈((χλ1
× · · · × χλk) o 1)s, resHmsHm

(χλ1
× · · · × χλk) o 1〉Hms = 0 (42)
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1 2 3 4 5
1 1 1 1 1 1
2 1 2 2 3 3
3 1 3 5 9 13
4 1 5 12 43 106
5 1 7 31 264 1856
6 1 11 103 2804 65481
7 1 15 383 44524 3925518

1 2 3 4 5
1 1 1 1 1 1
2 1 2 2 3 3
3 1 3 4 9 12
4 1 5 10 43 94
5 1 7 23 264 1613
6 1 11 71 2804 58793
7 1 15 251 44524 3624974

Table 1: Stable dimensions of homogeneous subspaces of the algebra of local unitary invariants of
bosons (left) and fermions (right). The number of particles grows from left to right, while degree
grows downwards.

1 2 3 4 5
1 1 1 1 1 1
2 0 1 1 2 2
3 0 1 3 6 10
4 0 1 6 31 90
5 0 1 16 209 1730
6 0 1 59 2453 63386
7 0 1 243 41098 3855647

1 2 3 4 5
1 1 1 1 1 1
2 0 1 1 2 2
3 0 1 2 6 9
4 0 1 5 31 79
5 0 1 11 209 1501
6 0 1 39 2453 56973
7 0 1 157 41098 3562441

Table 2: Numbers of free generators of the algebra of local unitary invariants of bosons (left) and
fermions (right). The number of particles grows from left to right, while degree grows downwards.

As an important special case we list some values of dm for I1,((l)) and I1,((1l)), that is, for a
system of l bosons and fermions, respectively in table 1. The numbers of homogeneous invariants
in an algebraically independent generating set are listed in 2.

Note that in the case of two particles (either bosons or fermions) dm is the number of partitions
of m. Accordingly, I1,((2)) and I1,((12)) is freely generated by traces of nonnegative integer powers
of the one-particle reduced density matrix.

Note that bipartite entanglement measures introduced previously for bosons[13] and fermions[14]
can be expressed with invariants of the reduced density matrix.

8 Invariants of mixed states

The case of mixed state invariants can be reduced to the results of the previous section using the
same method as in ref. [15, 2]. For k ∈ N, partitions λ1, . . . , λk and dimensions n = (n1, . . . , nk)
we have the isomorphism

Imixed
k,(λ1,...,λk),n

:= S(End(Hk,(λ1,...,λk),n))LUn

' S(Hk+1,(λ1,...,λk,(1)),(n1,...,nk,nE) ⊕H∗k+1,(λ1,...,λk,(1)),(n1,...,nk,nE))
LU(n1,...,nk,nE)

(43)

for large enough nE . We can think of the last subsystem (“environment”) as the purifying system
of mixed states over Hk,(λ1,...,λk),n. We will continue to consider only bosons and fermions, i.e.
we assume that λj has a single row or column for all j. The extra subsystem is described by the
representation of U(nE ,C) corresponding to the partition (1). In particular, in this case we always
have equality in eq. (26). The first few stable dimensions for the k = 1 case are indicated in table
(3) while the numbers of homogeneous invariants in an algebraically independent generating set are
listed in 4.
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1 2 3 4
1 1 1 1 1
2 2 3 4 5
3 3 8 16 31
4 5 25 118 501
5 7 85 1411 19158
6 11 397 30335 1468699
7 15 2183 939789 186406186

Table 3: Stable dimensions of homogeneous subspaces of the algebra of local unitary invariants of
mixed states of bosons or fermions. The number of particles grows from left to right, while degree
grows downwards.

1 2 3 4
1 1 1 1 1
2 1 2 3 4
3 1 5 12 26
4 1 14 96 460
5 1 50 1257 18553
6 1 265 28568 1447330
7 1 1601 904439 184851055

Table 4: Numbers of free generators of the algebra of local unitary invariants of mixed states of
bosons or fermions. The number of particles grows from left to right, while degree grows downwards.

The fact that we have a distinguished subsystem of a single particle makes it possible to give
an alternative description of the graphs labelling invariants in the basis or in the algebraically
independent generating set given above.

Let lj = |λj | as before. Applying the results of the previous section we have that gr(k +
1, (l1, . . . , lk, 1)) encodes elements of a basis of Imixed

k,(λ1,...,λk),n
while the subset gr(k+1, (l1, . . . , lk, 1))

corresponds to a set of free generators. Recall that by definition the edges having the k + 1th
colour give a subgraph which is bipartite and 1-regular, therefore we have a distinguished bijection
between the two colour classes of vertices. We can use this bijection to identify the endpoints of
such edges, and at the same time, in order to be able to recover the original graph we direct first the
remaining edges from the first colour class to the second one. In this way gr(k + 1, (l1, . . . , lk, 1))
can be identified with the set of equivalence classes of finite directed graphs edges of k different
colours such that the subgraph determined by the jth colour is lj-regular (i.e. at each vertex the
indegree and the outdegree are both lj).

This alternative description is illustrated in fig. (3) for a degree 3 invariant of a mixed state of
two bosons or two fermions.

9 Conclusion

In this paper we have studied the algebras of real polynomial invariants under the local unitary
groups U(n1,Cn1)× · · · × U(nk,Cnk) over the representation (Sλ1

Cn1)⊗ · · · ⊗ (SλkCnk). This can
be interpreted as the state space of a composite quantum mechanical system containing various
types of identical particles, possibly obeying non-abelian statistics.

The algebras have the property that as nj → ∞ for all j, the dimension of the homogeneous
subspaces stabilize, making it convenient to work with the inverse limit Ik,(λ1,...,λk) of the algebras (in
the category of graded algebras). The stable dimension is then the dimension of the corresponding
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Figure 3: Example of a graph corresponding to a mixed state invariant (left) obtained by identifying
vertices of a graph of a pure state invariant (right) along the green edges coming from the purifying
system (Colour online)

homogeneous subspace of the inverse limit, for which a formula in terms of induced characters was
derived.

In the most important case when only bosonic and fermionic particles are present, the bound
(26) on the stable dimension was estabilished, which has a combinatorial interpretation in terms
of the number of graphs with a certain property. Curiously the bound is saturated iff the total
number of fermions is even.

We would like to remark that in general eq. (26) does not hold. For example in the simplest case
not covered in sec. 7 we have k = 1 and λ1 = (2, 1). In this case the sequence dm for I1,((2,1)) starts
as 1, 4, 18, 151, 1628, 24164, 431401, . . . which is to be compared with the l = 3 column of table 1.
The simplest such example in the mixed case is Imixed

1,((2,1)) ' I2,((2,1),(1)), here the stable dimensions
are 1, 8, 97, 3267, 190139, 17122837, 2159496487, . . . while the bounds would be the values in column
l = 3 in table 3.

By the definition of the inverse limit, Ik,(λ1,...,λk) comes equipped with surjections onto the
algebra of invariant polynomials over (Sλ1Cn1) ⊗ · · · ⊗ (SλkCnk) for every choice of the dimen-
sions n1, . . . , nk. Elements of the inverse limit can therefore be directly interpreted as polynomial
invariants, although some of these will coincide when projected onto the smaller algebras.

In the case of systems of bosons and fermions we have also given a combinatorial description of
an algebraically independent generating set of the inverse limit in terms of regular graphs, showing
in particular that the inverse limit is free in these cases. This generating set can be interpreted as
a set of polynomials distinguishing between physically different types of nonlocal behaviour which
is minimal in the sense that any polynomial in its elements is nonzero provided the single-particle
Hilbert spaces are large enough.

We belive that these invariants will become a useful tool in the exploration of genuine multipar-
ticle quantum correlations in quantum mechanical systems containing identical particles.

10 The proofs

Proof of lemma 1. For every n ∈ Nk there is a surjection C(Sml1×· · ·×Smlk)→ (End((Cn1)⊗ml1⊗
· · · ⊗ (Cnk)⊗mlk))LUn ' (S2m((Cn1)⊗ml1 ⊗ · · · ⊗ (Cnk)⊗mlk ⊕ ((Cn1)⊗ml1 ⊗ · · · ⊗ (Cnk)⊗mlk))∗)LUn

defined by eq. 31. Composing with the surjective map (S2m((Cn1)⊗ml1 ⊗ · · · ⊗ (Cnk)⊗mlk ⊕
((Cn1)⊗ml1 ⊗ · · · ⊗ (Cnk)⊗mlk))∗)LUn � S(Hk,(λ1,...,λk),n ⊕ H∗k,(λ1,...,λk),n

)LUn = Ik,(λ1,...,λk),n we

obtain a map C(Sml1×· · ·×Smlk)→ Ik,(λ1,...,λk),n that is onto the degree m homogeneous subspace,
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I
(m)
k,(λ1,...,λk),n

. For n ≤ n′ we have the following commutative diagram:

C(Sml1 × · · · × Smlk) // //

����

I
(m)
k,(λ1,...,λk),n

I
(m)
k,(λ1,...,λk),n′

%n,n′

66mmmmmmmmmmmm

(44)

This implies that the restriction of %n,n′ to the degree m homogeneous subspace must also be

surjective. But if (ml1, . . . ,mlk) ≤ n, then dim I
(m)
k,(λ1,...,λk),n

= dim I
(m)
k,(λ1,...,λk),n′

and therefore

%n,n′ restricted to the degree m homogeneous subspace is an isomorphism.

Before proving lemma 2 we introduce some notation and summarize some properties of wreath
products following ref. [9]. For a set X let us denote the set of partition valued functions on X by
P (X), and let

Pm(X) = {% ∈ P (X)|
∑
x

∈ X|%(x)| = m} (45)

For a finite group G the set of conjugacy classes of G will be denoted by G∗. Recall that the set
of conjugacy classes of G o Sm for any finite group G is in bijection with Pm(G∗) as follows: if
x = ((g1, g2, . . . , gm), π) is an element of G o Sm then π can be written as a product of disjoint
cycles, and for any cycle (i1, i2, . . . , ik) we can form the product g1g2 · · · gk which is determined up
to conjugation. The class of x is then labelled by the function % ∈ Pm(G∗) for which the number
of k-s in %(c) is the number of k-cycles of π such that the corresponding cycle-product is in c.

The order of the centralizer of an element x with type % is

Z% =
∏
c∈G∗

z%(c)ζ
l(%(c))
c (46)

where l denotes the length of the partition as usual and ζc is the order of the centralizer in G∗ of
an element in the conjugacy class c.

If γ,χ are characters of G and Sm respectively, then the value of the character γ oχ on an element
with type % is( ∏

c∈G∗

γ(c)l(%(c))

)
χ(λ) (47)

where λ = ∪c∈G∗%(c).
Now we prove the following observation:

Lemma 8. Let A,B be two finite groups, m ∈ N, µ ` m and let α, β be class functions on A and
B, respectively. Then

ind
(AoSm)×(BoSm)
(A×B)oSm (α× β) o χµ =

∑
µ1,µ2`m

〈χµ, χµ1
χµ2
〉Sm(α o χµ1

)× (β o χµ2
) (48)

Proof. We will prove that the inner product of the left side with the characteristic function of any
conjugacy class is the same as that of the right side.

A pair (%A, %B) ∈ Pm(A∗) × Pm(B∗) can therefore be identified with a conjugacy class in
H ′ := (A o Sm) × (B o Sm). The partitions λA = ∪a∈A∗%A(a) and λB = ∪b∈B∗%B(b) depend
only on the conjugacy class of the two permutations in an element of type (%A, %B). Denoting the
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corresponding characteristic function by 1(%A,%B) and similarly for conjugacy classes of A oSm,B oSm
and Sm we can write

〈1(%A,%B),
∑

µ1,µ2`m

〈χµ, χµ1χµ2〉Sm(α o χµ1)× (β o χµ2)H′

=
∑

µ1,µ2`m

〈χµ, χµ1
χµ2
〉Sm〈1%A , α o χµ1

〉AoSm〈1%B , β o χµ2
〉BoSm

=
zλA

∏
a∈A∗ α(a)l(%A(a))

Z%A

zλB
∏
b∈B∗ β(b)l(%B(b))

Z%B

∑
µ1,µ2`m

〈χµ, χµ1
χµ2
〉〈χµ1

, ϕλA〉〈χµ2
, ϕλB 〉

=
zλA

∏
a∈A∗ α(a)l(%A(a))

Z%A

zλB
∏
b∈B∗ β(b)l(%B(b))

Z%B

∑
µ2`m

〈χµχµ2 , ϕλA〉〈χµ2 , ϕλB 〉

=
zλA

∏
a∈A∗ α(a)l(%A(a))

Z%A

zλB
∏
b∈B∗ β(b)l(%B(b))

Z%B
〈ϕλA , ϕλB 〉

(49)

where we have used that irreducible characters of Sm as well as characteristic functions are real.
The last inner product is 0 if λA 6= λB and z−1λAχµ(λA) otherwise.

Now let us look at the left hand side. The value of the induced character at an element x ∈ H ′
is 0 whenever x is not conjugate to any element of H := (A×B) oSm which happens precisely when
the two permutations of x are not conjugate to each other, that is when λA 6= λB .

If λA = λB = λ then we have

〈1(%A,%B), indH
′

H (α× β) o χµ〉H′ = 〈resHH′ 1(%A,%B), (α× β) o χµ〉H
=
∑
%

〈1%, (α× β) o χµ〉H

=
∑
%

1

Z%

 ∏
(a,b)∈A∗×B∗

(α(a)β(b))l(%(a,b))

χµ(λ)

= χµ(λ)
∏
a∈A∗

α(a)l(%A(a))
∏
b∈B∗

α(b)l(%B(b))
∑
%

1

Z%

(50)

where the sums are over those % ∈ Pm(A∗×B∗) for which ∪b∈B∗%(a, b) = %A(a) and ∪a∈A∗%(a, b) =
%B(b) holds.

Comparing eq. (50) with eq. (49) one can see that we need to prove that

1

zλ

∑
%

1

Z%
=

1

Z%A

1

Z%B
(51)

Multiplying both sides by |A|mm!|B|mm! we have on the left hand side the size of the conjugacy
class λ in Sm times the number of x ∈ H whose image in H ′ has type (%A, %B) and on the right
hand side size of the conjugacy class (%A, %B) in H ′ = (A o Sm)× (B o Sm).

An element (a, π1, b, π2) of H ′ can be uniquely written as the product of an element in H
and one in Sm ' {eAm} × {e} × {emB } × Sm ≤ H as follows: (a, π1, b, π1)(eAm , e, eBm , π

−1
1 π2),

uniqueness follows from the fact that the intersection of the two subgroups consists of only the
identity. Therefore every element of H can be reached as the conjugate of some element in H ′ with
an element of the form σ̂ = (eAm , e, eBm , σ) where σ ∈ Sm

It follows that we have a surjection H × Sm → H ′ whose appropriate restrictions

{x ∈ H|the type of x in H ′ is (%A, %B)} × Sm → {y ∈ H ′|y has type (%A, %B)} (52)
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are also surjections.
Finally, σ̂(a, π1, b, π2)σ̂−1 = (a, π1, σ(b), σπ2σ

−1) ∈ H iff π1 = σπ2σ
−1 iff σ ∈ π̃ZSm(π2) for a

fixed π such that ππ2π
−1 = π1, which implies that the inverse image of any element in H ′ has

precisely |ZSm(π2)| = zλ elements, finishing the proof.

Now we extend the above result to k factors instead of just two:

Proof of lemma 2. We prove by induction using the k = 2 case in the induction step. The k = 1
case is easy to check. Assuming the statement to be true for 1, 2, . . . , k − 1 we can write

ind
(A1oSm)×···×(AkoSm)
(A1×···×Ak)oSm (α1 × · · · × αk) o χµ

= ind
(A1oSm)×···×(AkoSm)
(A1×···×Ak−1)oSm×AkoSm ind

(A1×···×Ak−1)oSm×AkoSm
(A1×···×Ak)oSm (α1 × · · · × αk) o χµ

=
∑

µ′k−1,µk`m

〈χµ, χµ′k−1
χµk〉

(
ind

(A1oSm)×···×(Ak−1oSm)
(A1×···×Ak−1)oSm (α1 × · · · × αk−1) o χµ′k−1

)
× (αk o χµk)

=
∑

µ′k−1,µk`m

〈χµχµk , χµ′k−1
〉

∑
µ1,...,µk−1`m

〈χµ′k−1
, χµ1

· · ·χµk−1
〉(α1 o χµ1

)× · · · × (αk−1 o χµk−1
)

=
∑

µ1,...,µk`m

〈χµ, χµ1 · · ·χµk〉Sm(α1 o χµ1)× · · · × (αk o χµk)

(53)

using that irreducible characters of Sm are real and form an orthonormal basis.

Proof of lemma 5. As the map in eq. (32) defining f[σ1,...,σk] factors through S((Cn1)⊗l1) ⊗ · · · ⊗
(Cnk)⊗lk)⊕((Cn1)⊗l1)⊗· · ·⊗(Cnk)⊗lk))∗, we can also work in the symmetric algebra (S((Cn1)⊗l1)⊗
· · · ⊗ (Cnk)⊗lk)⊕ ((Cn1)⊗l1)⊗ · · · ⊗ (Cnk)⊗lk))∗)LUn for some large n. In this algebra the image of
(σ1, . . . , σk) is∑

(ei11 ⊗ · · · ⊗ eil11 ⊗ · · · ⊗ ei1k ⊗ · · · ⊗ eilkk ) · · ·

· · · (e
i
(m−1)l1+1
1

⊗ · · · ⊗ e
i
ml1
1
⊗ · · · ⊗ e

i
(m−1)lk+1

k

⊗ · · · ⊗ e
i
mlk
k

)·

· (e
i
σ1(1)
1

⊗ · · · ⊗ e
i
σ1(l1)
1

⊗ · · · ⊗ e
i
σk(1)

k

⊗ · · · ⊗ e
i
σk(lk)

k

) · · ·

· · · (e
i
σ1((m−1)l1+1)
1

⊗ · · · ⊗ e
i
σ1(ml1)
1

⊗ · · · ⊗ e
i
σk((m−1)lk+1)

k

⊗ · · · ⊗ e
i
σk(mlk)

k

) (54)

where the sum is over the possible values of the indices i11, . . . , i
ml1
1 , . . . , i1k, . . . , i

mlk
k and similarly

for (σ′1, . . . , σ
′
k). It is convenient to denote the indices in the sum corresponding to (σ′1, . . . , σ

′
k) by

iml1+1
1 , . . . , i

(m+m′)l1
1 , . . . , imlk+1

k , . . . , i
(m+m′)lk
k and to regard the permutation σ′j as a bijection from

{mlj + 1,mlj + 2, . . . , (m+m′)lj} to itself. This convention clearly does not affect the definition of
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f[σ′1,...,σ′k] and it is consistent with the definition of ?. Then we have

∑
(ei11 ⊗ · · · ⊗ eil11 ⊗ · · · ⊗ ei1k ⊗ · · · ⊗ eilkk ) · · ·

· · · (e
i
(m−1)l1+1
1

⊗ · · · ⊗ e
i
ml1
1
⊗ · · · ⊗ e

i
(m−1)lk+1

k

⊗ · · · ⊗ e
i
mlk
k

)·

· (e
i
σ1(1)
1

⊗ · · · ⊗ e
i
σ1(l1)
1

⊗ · · · ⊗ e
i
σk(1)

k

⊗ · · · ⊗ e
i
σk(lk)

k

) · · ·

· · · (e
i
σ1((m−1)l1+1)
1

⊗ · · · ⊗ e
i
σ1(ml1)
1

⊗ · · · ⊗ e
i
σk((m−1)lk+1)

k

⊗ · · · ⊗ e
i
σk(mlk)

k

)·

·
∑

(e
i
ml1+1
1

⊗ · · · ⊗ e
i
ml1+l1
1

⊗ · · · ⊗ e
i
mlk+1

k

⊗ · · · ⊗ e
i
mlk+lk
k

) · · ·

· · · (e
i
ml1+(m′−1)l1+1
1

⊗ · · · ⊗ e
i
ml1+m′l1
1

⊗ · · · ⊗ e
i
mlk+(m′−1)lk+1

k

⊗ · · · ⊗ e
i
mlk+m′lk
k

)·

· (e
i
σ1(ml1+1)
1

⊗ · · · ⊗ e
i
σ1(ml1+l1)
1

⊗ · · · ⊗ e
i
σk(mlk+1)

k

⊗ · · · ⊗ e
i
σk(mlk+lk)

k

) · · ·

· · · (e
i
σ1((m+m′−1)l1+1)
1

⊗ · · · ⊗ e
i
σ1((m+m′)l1)
1

⊗ · · · ⊗ e
i
σk((m+m′−1)lk+1)

k

⊗ · · · ⊗ e
i
σk((m+m′)lk)

k

) =

=
∑

(ei11 ⊗ · · · ⊗ eil11 ⊗ · · · ⊗ ei1k ⊗ · · · ⊗ eilkk ) · · ·

· · · (e
i
((m+m′)−1)l1+1
1

⊗ · · · ⊗ e
i
(m+m′)l1
1

⊗ · · · ⊗ e
i
((m+m′)−1)lk+1

k

⊗ · · · ⊗ e
i
(m+m′)lk
k

)·

· (e
i
σ′′1 (1)

1

⊗ · · · ⊗ e
i
σ′′1 (l1)

1

⊗ · · · ⊗ e
i
σ′′
k

(1)

k

⊗ · · · ⊗ e
i
σ′′
k

(lk)

k

) · · ·

· · · (e
i
σ′′1 (((m+m′)−1)l1+1)

1

⊗ · · · ⊗ e
i
σ′′1 ((m+m′)l1)

1

⊗ · · · ⊗ e
i
σ′′
k

(((m+m′)−1)lk+1)

k

⊗ · · · ⊗ e
i
σ′′
k

((m+m′)lk)

k

)

(55)

where σ′′j is the image of (σj , σ
′
j) under the inclusion Sm × S′m ↪→ Sm+m′ . But by the definition of

? we have [σ′′1 , . . . , σ
′′
k ] = [σ1, . . . , σk] ? [σ′1, . . . , σ

′
k].

Proof of lemma 6. The sum in eq. (32) can be rewritten as a nested sum, grouping together

the possible tuples of indices such that the sets of multisets {{i11, . . . , i
|λ1|
1 }, {i|λ1|+1

1 , . . . , i
2|λ1|
1 },

. . . , {i(m−1)|λ1|+1
1 , . . . , i

m|λ1|
1 }},. . . , {{i1k, . . . , i

|λk|
k }, . . . , {i(m−1)|λk|+1

k , . . . , i
m|λk|
k }} and also the sets

{{iσ1(1)
1 , . . . , i

σ1(|λ1|)
1 }, {iσ1(|λ1|+1)

1 , . . . , i
σ1(2|λ1|)
1 }, . . . , {iσ1((m−1)|λ1|+1)

1 , . . . , i
σ1(m|λ1|)
1 }}, . . . , {{i1k, . . .

, i
σ1(|λk|)
k }, . . . , {iσ1((m−1)|λk|+1)

k , . . . , i
σ1(m|λk|)
k }} are kept fixed. The inner sum is therefore over

permutations stabilizing the above structure which is precisely Hms, since Hm and sHms
−1 is the

stabilizer of the first and last k sets, respectively.
Taking into account the sign changes introduced when flipping a pair in a wedge product we

have that the inner sums are proportional to (the projection of)∑
s∈Hms

((χλ1
× · · · × χλk) o 1)s(h)((χλ1

× · · · × χλk) o 1)(h)·

·
[
(ei11 ⊗ · · · ⊗ ei|λ1|1

)⊗ · · · ⊗ (e∗
i
σ1(1)
1

⊗ · · · ⊗ e∗
i
σ1(|λ1|)
1

)⊗ · · ·
]

=

=[. . .]〈((χλ1 × · · · × χλk) o 1)s, resHmsHm
(χλ1 × · · · × χλk) o 1〉Hms

(56)

and therefore vanish by assumption.
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[13] R. Paškauskas, L. You, Phys. Rev. A 64, 042310 (2001)
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