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Abstract

A k-modal probability distribution over the domain, ...,n} is one whose histogram has at maést
“peaks” and “valleys.” Such distributions are natural gatizations of monotonek( = 0) and unimodal
(k = 1) probability distributions, which have been intensivelydied in probability theory and statistics.

In this paper we consider the problemlefirning an unknownk-modal distribution. The learning al-
gorithm is given access to independent samples drawn frerh-thodal distributionp, and must output a
hypothesis distributiopp such that with high probability the total variation distantwetweerp andp is at
moste.

We give an efficient algorithm for this problem that runs ingipoly (k, log(n), 1/¢). Fork < O(/Togn),
the number of samples used by our algorithm is very cIos@(mHnO(log(l/e)) factor) to being information-
theoretically optimal. Prior to this work computationadifficient algorithms were known only for the cases
k=0,1.

A novel feature of our approach is that our learning algonitbrucially uses a newproperty testing
algorithm as a key subroutine. The learning algorithm ulsegtoperty tester to efficiently decompose the
k-modal distribution intd: (near)-monotone distributions, which are easier to learn.
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1 Introduction

This paper considers a natural unsupervised learning gmobivolving k-modaldistributions over the discrete
domain{1,...,n}. A distribution isk-modal if the plot of its probability density function (pdfias at most
k “peaks” and “valleys” (see Sectidn 2.1 for a precise debniti Such distributions arise both in theoretical
(see e.g.[[CKC83, Kem91L, CT04]) and applied (see €.9. [Mudd490,/ FPP98]) research; they naturally
generalize the simpler classes of monotdne-(0) and unimodal§ = 1) distributions that have been intensively
studied in probability theory and statistics (see the dismn of related work below).

Our main aim in this paper is to give an efficient algorithml&arningan unknownk-modal distributiorp
to total variation distance, given access only to independent samples drawn froAs described below there
is an information-theoretic lower bound Qfk log(n/k) /€*) samples for this learning problem, so an important
goal for us is to obtain an algorithm whose sample compldgigs close as possible to this lower bound (and
of course we want our algorithm to be computationally effitie.e. to run in time polynomial in the size of
its input sample). Our main contribution in this paper is apatationally efficient algorithm that has nearly
optimal sample complexity for small (but super-constaaiues ofk.

1.1 Background and related work

There is a rich body of work in the statistics and probabliigratures on estimating distributions under various
kinds of “shape” or “order” restrictions. In particular, maresearchers have studied the risk of different esti-
mators for monotone and unimodal distributions; see formgta the works ofi[Rao069, Weg[70, Gro85, Bir87a,
Bir87b,/Bir97], among many others. In the language of commporial learning theory, these and related papers
from the probability/statistics literature mostly deakhlwinformation-theoretic upper and lower bounds on the
sample complexity of learning monotone and unimodal digtidons. It should be noted that some of these
works do give computationally efficient algorithms for tresesk = 0 andk = 1; in particular we mention the
result of Birgé [Bir87b], which gives a computationallyfiefent O(log(n)/€*)-sample algorithm for learning
any unknowmmonotondistribution over{n]. (Birgé [Bir874)] also showed that this sample complexitsgsgmp-
totically optimal, as we discuss below; we describe Begégorithm in more detail in Sectign 2.2, and indeed
use it as an ingredient of our approach throughout this paptowever, for these relatively simple = 0, 1
classes of distributions the main challenge is in devetpgemple-efficient estimators, and the algorithmic as-
pects are typically rather straightforward (as is the cagBir87b]). In contrast, much more challenging and
interesting algorithmic issues arise for the general \sabfé which we consider in this paper.

1.2 Our Results
Our main result is a highly efficient algorithm for learning @nknownk-modal distribution ovefn|:

Theorem 1 Letp be any unknow-modal distribution ovefn]. There is an algorithm that udbs
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samples fronp, runs for poly(k,logn,1/¢e,log(1/0)) bit-operations, and with probability — § outputs a
(succinct description of a) hypothesis distributigover[n] such that the total variation distance betweeand
p is at moste.

As alluded to earlier, Birgé [Bir87a] gave a sample comipyebower bound for learning monotone distri-
butions. The lower bound in [Bir87a] is stated for continsi@istributions but the arguments are easily adapted
to the discrete case| [Bir87a] shows that (for 1/nQ(1)E any algorithm for learning an unknown monotone

we write O(+) to hide factors which are polylogarithmic in the argumen©tg); thus for example)(a log b) denotes a quantity
which isO((alogb) - (log(alogb))©) for some absolute constant

2For ¢ sufficiently small the generic upper bound of Theofém 8, Wisiays that any distribution ovét] can be learned to variation
distancer usingO(n/€*) samples, provides a better bound.



distribution over[n] to total variation distance must useQ2(log(n)/e®) samples. By a simple construction
which concatenatek copies of the monotone lower bound construction over ialeref lengthn /&, using the
monotone lower bound it is possible to show:

Proposition 1 Any algorithm for learning an unknowitmodal distribution ovefr] to variation distance (for
e > 1/nM) must us&(k log(n/k)/e*) samples.

Thus our learning algorithm is nearly optimally efficientiig sample complexity; more precisely, for<
O(v/Iogn) (ande as bounded above), our sample complexity in Thedrem 1 is pisyially optimal up to a
factor of O(log(1/e€)). Since each draw from a distribution oVet is alog(n)-bit string, Propositiofil1 implies
that the running time of our algorithm is optimal up to polymal factors. We note that to the best of our
knowledge, prior to this work no learning algorithm fetmodal distributions was known that even had running
time fixed polynomial im.

1.3 Our Approach

As mentioned in Section_1.1 Birgé gave a highly efficientoalpm for learning amonotonedistribution in
[Bir87b]. Since ak-modal distribution is simply a concatenation /of+ 1 monotone distributions (first non-
increasing, then non-decreasing, then non-increasimg), étis natural to try to use Birgé’s algorithm as a
component of an algorithm for learnikigmodal distributions, and indeed this is what we do.

The most naive way to use Birgé’s algorithm would be to gwélqsossible(%) locations of thek “modes”
of p. While such an approach can be shown to have good sample exitypthe resulting2(n*) running time
is grossly inefficient. A “moderately naive” approach, whive analyze in Sectidn 3.1, is to partitipn into
roughly k& /e intervals each of weight roughly/k, and run Birgé’s algorithm separately on each such interva
Since the target distribution ismodal, at mosk of the intervals can be non-monotone; Birgé’s algorithm ca
be used to obtain asraccurate hypothesis on each monotone interval, and eudails badly on the (at most)
k non-monotone intervals, the resulting total contributiowards the overall error from those failures is at most
O(e). This approach is much more efficient than the totally naiyeregch, giving running time polynomial in
k, log n, and1/e, but its sample complexity turns out to be polynomially veotisan theO (k log(n)/e?) that we
are shooting for. (Roughly speaking, this is because theoapp involves running Birgeé® (log(n)/e)-sample
algorithm#k /e times, so it uses at leallog(n)/e* samples.)

Our main learning result is achieved by augmenting the “metteéy naive” algorithm sketched above with a
new property testingalgorithm. We give a property testing algorithm for the daling problem: given samples
from a k-modal distributionp, output “yes” if p is monotoneand “no” if p is e-far from every monotone dis-
tribution. Crucially, our testing algorithm us€¥k2/¢?) samplesndependent of, for this problem. Roughly
speaking, by using this algorith(%/¢) times we are able to identifi/+ 1 intervals that (i) collectively contain
almost all ofp’s mass, and (ii) are each (close to) monotone and thus caaraidd using Birgé’s algorithm.
Thus the overall sample complexity of our approach is (rty)gtk/€)? (for the k/e runs of the tester) plus
klog(n)/€* (for the k runs of Birgé’s algorithm), which gives Theorém 1 and isymelose to optimal fok not
too large.

1.4 Discussion

Our learning algorithm highlights a novel way that propdésting algorithms can be useful for learning. Much
research has been done on understanding the relation lmepregerty testing algorithms and learning algo-
rithms, see e.g.[ [GGR93, KROO] and the lengthy suriey [Rhn@& Goldreich has noted [Gol], an often-
invoked motivation for property testing is that (inexpemsitesting algorithms can be used as a “preliminary
diagnostic” to determine whether it is appropriate to rumarg expensive) learning algorithm. In contrast, in
this work we are using property testing rather differerdly,an inexpensive way of decomposing a “complex”
object (ak-modal distribution) which we do nat priori know how to learn, into a collection of “simpler” ob-
jects (monotone or near-monotone distributions) which lmarearned using existing techniques. We are not



aware of prior learning algorithms that successfully usmerty testers in this way; we believe that this high-
level approach to designing learning algorithms, by usimperty testers to decompose “complex” objects into
simpler objects that can be efficiently learned, may findriuapplications elsewhere.

2 Preliminaries

2.1 Notation and Problem Statement

Forn € Z*, denote byn] the set{1,...,n}; fori,j € Z*,: < j, denote byfi, j] the set{i,i + 1,...,j}. For
v=(v(l),...,v(n)) € R" denote by||v|[y = > ., |v(?)| its L-norm.

We consider discrete probability distributions over, which are functiong : [n] — [0,1] such that
Yo p(i) = 1. ForS C [n] we write p(S) to denote}", ¢ p(i). ForS C [n], we write ps to denote the
conditional distributionover S that is induced by. We use the notatio®® for the cumulative distribution
function (cdfjcorresponding tg, i.e. P : [n] — [0, 1] is defined byP(j) = S27_, p(i).

A distributionp over[n] is non-increasing (resp. non-decreasing)(if+ 1) < p(i) (resp.p(i + 1) > p(1)),
for all i € [n — 1]; p is monotondf it is either non-increasing or non-decreasing. We calbaampty interval
I = [a,b] C [2,n — 1] amax-interval ofp if p(i) = cforalli € I andmax{p(a — 1),p(b + 1)} < ¢
in this case, we say that the poimtis aleft max pointof p. Analogously, amin-interval ofp is an interval
I = [a,b] C [2,n — 1] with p(i) = cforall i € T andmin{p(a — 1),p(b + 1)} > ¢; the pointa is called a
left min pointof p. If I = [a, ] is either a max-interval or a min-interval (it cannot be hotle say that/ is
an extreme-intervabf p, anda is called aleft extreme poinbf p. Note that any distribution uniquely defines
a collection of extreme-intervals (hence, left extrement®)i We say thap is k-modalif it has at mostk
extreme-intervals.

Let p, ¢ be distributions ovejn] with corresponding cdf®, Q. Thetotal variation distancebetweery and
qis drv(p,q) = maxgcy, [p(S) — q(S)| = (1/2) - |p — qll:. The Kolmogorov distancéetweenp andg is
defined asik (p, ¢) := max;cp, |[P(j) — Q(j)| - Note thatdk (p, q) < drv(p,q)-

Learning k-modal Distributions. Given independent samples from an unkndwmodal distributiorp € M~
ande > 0, the goal is to output a hypothesis distributiosuch that with probability —é we havedry (p, h) < e.
We say that such an algorithp learnsp to accuracye and confidencé. The parameters of interest are the
number of samples and the running time required by the akgori

2.2 Basic Tools

We will need three tools from probability theory.

Our first tool says thaf(1/¢?) samples suffice to learn any distribution within ereawith respect to the
Kolmogorov distance This fundamental fact is known as thBvoretzky-Kiefer-Wolfowitz (DKW) inequality
(IDKW56]). Givenm independent samples, . .., s,,, drawn fromp : [n] — [0, 1], the empirical distribution
Pm @ [n] = [0,1] is defined as follows: for all € [n], pu(i) = [{j € [m] | s; = i}|/m. The DKW inequality
states that formn = Q((1/€2) - In(1/6)), with probability 1 — & the empirical distributior,,, will be e-close top
in Kolmogorov distance. This sample bound is asymptotiogitimal and independent of the support size.

Theorem 2 ([DKW56,IMas90]) For all € > 0, it holds: Pr[di (p, pm) > €] < 2e72me”.

Our second tool, due to Birgé [Bir87b], provides a samggneal and computationally efficient algorithm
to learn monotone distributions in total variation disendBefore we state the relevant theorem, we need a
definition. We say that a distributignis -close to being non-increasing (resp. non-decreasinggretexists a
non-increasing (resp. non-decreasing) distributi@uch thatlty (p, ¢) < §. We are now ready to state Birgé’s
result:

Theorem 3 ([Bir87b], Theorem 1) (semi-agnostic learner) There is an algorithm with the following per-
formance guarantee: Givem independent samples from a distributiprover [n] which isopt-close to being
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non-increasingL* performsO(m -log n+m'/? - (log n)%/3) bit-operations and outputs a (succinct description
of a) hypothesis distributiop over [n] that satisfies

E[drv (p,p)] < 2-opt + O((logn/(m + 1))1/3).

The aforementioned algorithm partitions the domaihin O(m!/3 - (log n)?/?) intervals and outputs a hypoth-
esis distribution that is uniform within each of these intds.

By takingm = Q(logn/e?), one obtains a hypothesis such ti&tiry (p, p)] < 2 - opt + €. We stress
that Birgé’s algorithm for learning non-increasing distitions [Bir87b] is in fact “semi-agnostic”, in the sense
that it also learns distributions that are close to beinginoreasing; this robustness will be crucial for us later
(since in our final algorithm we will use Birgé's algorithmm alistributions identified by our tester, that are
close to monotone but not necessarily perfectly monotoflels semi-agnostic property is not explicitly stated
in [Bir87b] but it can be shown to follow easily from his retul We show how the semi-agnostic property
follows from Birgé’s results in Appendik]A. Lek' denote the corresponding semi-agnostic algorithm for
learning non-decreasing distributions.

Our final tool is a routine to ddwypothesis testing.e. to select a high-accuracy hypothesis distribution
from a collection of hypothesis distributions one of whickshhigh accuracy. The need for such a routine
arises in several places; in some cases we know that a digtribis monotone, but do not know whether it is
non-increasing or non-decreasing. In this case, we canatimdgorithmsL" and L+ and then choose a good
hypothesis using hypothesis testing. Another need for tingsis testing is to “boost confidence” that a learning
algorithm generates a high-accuracy hypothesis. Oualwi@irsion of the algorithm for Theorem 1 generates an
e-accurate hypothesis with probability at le@gt0; by running itO(log(1/6)) times using a hypothesis testing
routine, it is possible to identify af(¢)-accurate hypothesis with probability- 5. Routines of the sort that we
require have been given in e.g. [DL01] and [DDS]; we use thieviong theorem from[[DDS]:

Theorem 4 There is an algorithnChoose- Hypot hesi s?(hy, ha, €’,¢') which is given oracle access 9
two hypothesis distributions,, h, for p, an accuracy parameter, and a confidence parametéf. It makes
m = O(log(1/4")/€"%) draws fromp and returns a hypothesis € {h1, ho}. If one ofhy, hy hasdry (h, p) < €
then with probabilityl — ¢’ the hypothesi# that Choose- Hypot hesi s returns hasiry (h, p) < 6¢€’.

For the sake of completeness, we describe and analyzéhihese- Hypot hesi s algorithm in AppendixB.

3 Learning k-modal Distributions

In this section, we present our main result: a nearly saroptamal and computationally efficient algorithm to
learn an unknowr-modal distribution. In Sectidn 3.1 we present a simplengy algorithm with a suboptimal
sample complexity. In Sectidn 3.2 we present our main reshith involves a property testing algorithm as a
subroutine.

3.1 Warm-up: A simple learning algorithm.

In this subsection, we give an algorithm that runs in tipogy (k, log n, 1/¢,log(1/6)) and learns an unknown
k-modal distribution to accuracyand confidencé. The sample complexity of the algorithm is suboptimal as a
function ofe, by a polynomial factor.

In the following figure we give the algorithrhearn — kmodal — simple which produces am-accurate
hypothesis with confidence/10 (see Theorernl5). We explain how to boost the confidende-ta) after the
proof of the theorem.



Lear n- knodal - si npl e
Inputs: e > 0; sample access tomodal distributiorp over[n]

1. Fix7 := €2/(100k). Drawr = ©(1/72) samples fronp and letp denote the resulting empirical
distribution.

2. Greedily partition the domaifr] into ¢ atomic intervalsZ := {I;}{_, as follows: I; := [1, j1],
wherej; := min{j € [n] | p([1,J]) > €¢/(10k)}. Fori > 1, if U§-:llj = [1, 7], thenl;}, :=
[7: + 1, ji+1], wherej; 1 is defined as follows: Ip([j; + 1,n]) > €/(10k), thenj; 41 := min{j €
[n] | p([Gi + 1,5]) = €/(10k)}, otherwise jiyy = n.

3. Construct a set dflight intervalsZ’ := {I/}¢_, and ase{b; }!_, of t < ¢ heavy pointss follows:
For each interval; = [a,b] € Z, if p(I) > ¢/(5k) definel] := [a,b — 1] and makeb a heavy
point. (Note that it is possible to havg = ().) Otherwise, defing; := I,.

Fix &' := ¢/(500k).

4. Drawm = (k/e*) -log(n) - ©(log(1/4")) sampless = {s;}™, from p. For each light interval/,
i € [€], run bothL‘s andL's on the conditional distributiop;, using the samples iaN I;. Let
P, bl be the corresponding conditional hypothesis distribtion

5. Drawm’ = O((k/e*) - log(1/d")) sampless’ = {s/}7, from p. For each light interval,
i € [¢], run Choose- Hypot hesi s?(3},, 5}, €,0") using the samples isl N I;. Denote byp;,
the returned conditional distribution di

6. Output the hypothesis = 5>7_, 5(1}) - i + Y5, P(b;) - 1y,

The algorithmLearn — kmodal — simple works as follows: We start by partitioning the domait} into
consecutive intervals of mass approximately. To do this, we make use of the DKW inequality, with accuracy
parameter roughly?/k. (Some care is needed in this step, since there may be “hemimgts in the support
of the distribution; however, we gloss over this technisalie for the sake of this intuitive explanation.) If this
step is successful, we have partitioned the domain into ef etk /e) consecutive intervals of probability mass
roughlye/k. Our next step is to apply Birgé’s monotone learning alfonito each interval.

A caveat comes from the fact that not all such intervals agranieed to be monotone (or even close to
being monotone). However, since our input distributiongstemed to bé&-modal, all but (at most} of these
intervals are monotone. Call a non-monotone interval “b&lhce all intervals have probability mass at most
e/k and there are at mostbad intervals, these intervals contribute at mast the total mass. So even though
Birgé’s algorithm gives no guarantees for bad intervdlese intervals do not affect the error by more than

Let us now focus on the monotone intervals. For each suchvalfeve do not know if it is monotone
increasing or monotone decreasing. To overcome this diffiowre run both monotone algorithnis: and L™
for each interval and then use hypothesis testing to chd@sedrrect candidate distribution.

Also, note that since we have/e intervals, we need to run each instance of both the monotaraihg
algorithms and the hypothesis testing algorithm with canfiel — O(e/k), so that we can guarantee that the
overall algorithm has confidenc®'10. Note that Theorerh]3 and Markov’s inequality imply that if heaw
Q(log n/e*) samples from a non-increasing distributigrthe hypothesig output byL+ satisfiesity (p, p) < €
with probability 9/10. We can boost the confidence te- § with an overhead 00 (log(1/6) loglog(1/4)) in
the sample complexity:

Fact 2 Let p be a non-increasing distribution oven]. There is an algorithrdiﬂ; with the following perfor-
mance guarantee: Giveiiog n/e*)-O(log(1/4))) samples fromp, L+s performsO ((log? n/€?) - log(1/4)) bit-
operations and outputs a (succinct description of a) hypsithdistributiorp over|n| that satisfieglry (p, p) < €



with probability at leastl — 6.

The algorithmL+s runsL+ O(log(1/6)) times and performs a tournament among the candidate hypothe
ses usingChoose- Hypot hesi s. Let LT; denote the corresponding algorithm for learning non-desing
distributions with confidencé. We postpone further details on these algorithms to Appe@di

Theorem 5 The algorithmLear n- knodal - si npl e uses'“og” e, (log %) +0 (%i) samples, performs
poly(k,logn, 1/¢) bit-operations, and learns A-modal distribution to accuracy(e) with probability 9/10.

Proof: We first prove that with probabilitg /10 (over its random samples), algoritHrear n- knodal - si npl e
outputs a hypothesit such thatity (h,p) < O(e).

Sincer = ©(1/7%) samples are drawn in Step 1, the DKW inequality implies thih wrobability of
failure at mostl /100, for each intervall C [n] we have|p(I) — p(I)| < 27. For the rest of the analysis of
Lear n- knodal - si npl e we condition on this “good” event.

Since every atomic intervdl € Z hasp(I) > ¢/(10k) (except potentially the rightmost one), it follows that
the number’ of atomic intervals constructed in Step 2 satisfies 10 - (k/¢). By the construction in Steps 2
and 3, every light interval’ € 7’ hasp(I’) < ¢/(5k), which impliesp(I’) < ¢/(5k) + 27. Note also that every
heavy pointh hasp(b) > ¢/(10k) and the number of heavy pointés at most/.

Since the light intervals and heavy points form a partitiérird, we can writep = Z§:1P(I§) “pry

22:1 p(b;) - 1y, Therefore, we can bound the variation distance as follows:
¢ t
drv(h.p) < 22 pUI7) — p(L)| + 2, [P(b;) = p(bs)| + Z pL3) - drv (B, pry).
Jj= Jj=

By the DKW inequality, each term in the first two sums is bouhffem above by27. Hence the contribution
of these terms to the sumis at ma@st- (¢ +¢) < 47 - £ < 2¢/5.

We proceed to bound the contribution of the third term. Sineek-modal, at mosk of the light intervals
Ij’. are not monotone fgv. Call these intervals “bad”. Even though we have not idemtiffee bad intervals, we
know that all such intervals are light. Therefore, theiat@robability mass underis at most - (¢/(5k) + 27).
This implies that the contribution of bad intervals to thedhterm of the variation distance is at mast.
(Note that this statement holds true independent of the kemspve draw in Step 4.) It remains to bound the
contribution of monotone intervals to the third term.

Let ¢/ < ¢ be the number of monotone light intervals and assume aftemnang the indices that they are
7:= {I’ _,. To bound the variation distance, it suffices to show thal wibbability at leas19,/20 (over the
samples drawn in Steps 4-5) it holds

Z p(I;) - drv (pr,pry) = O(€) 1)

Note first that we do not have a lower bound on the probabiliagsrof the intervals i@, We partition this setin
two subsets: the subsEt containing those intervals whose probability mass updsiat most?/(20k); and its
complementZ”. Itis clear that the contribution aF to the above expression can be at most/(20k) < €/2.
We further partition the sef” of remaining intervals intd = [log(5/€¢)] groups. Fori € [b], the set(I”)
consists of those intervals i that have mass underin the range[2~" - (¢/5k), 27" - (¢/5k)]. (Note that

these intervals collectively cover all intervalsr, since each such interval has weight betwegt{20k) and
¢/(4k) —recall that every light interval’ € 7’ satisfiegp(I’) < ¢/(5k) + 27 < €/(4k).) We have:

Claim 3 With probability at least19/20 (over the sample,s’), for eachi € [r] and each monotone light
interval I’ € (I"); we havedry (pr/, prr) = O(2i/3 . ¢).



Proof: Since in Step 4 we draw samples, and each intengl € (T"); hasp(I}) € [27 - (¢/5k),27"" - (¢/5k)],
a standard coupon collector argument [NS60] tells us théit prbbability99 /100, for each(i, j) pair, the inter-
. —q 3 N 3 H H /3 3
\fal I; will get at leas2™" - (log(n)/¢”) - Q(log(1/4")) many samples. Let's rewrite this Asg(n)/(2/3 - €)3) -
Q(log(1/4")) samples. We condition on this event.
Fix an intervall} € (Z");. We first show that with failure probability at most(500%) after Step 4, either
~

Py orﬁ? will be (2¢/2 - €)-accurate. Indeed, by Fadt 2 and taking into account the eunftsamples that landed
J J
in 17, with probability 1 — €/(500k) overs, drv (P}, pr) < 2i/3¢, wherew; =/ if py/ is non-increasing and
j J J
a; =7 otherwise. By a union bound over all (at méshany)(i, j) pairs, it follows that with probability at least
49/50, for each intervall; € (Z"); one of the two candidate hypothesis distribution$2i¢¢)-accurate. We

condition on this event. .
Consider Step 5. For afixed intendgl€ (Z”);, Theoreni # implies that the algorith@noose- Hypot hesi s

will output a hypothesis that is- (27/%¢)-close topy, with probality 1 — ¢/(500k). By a union bound, it follows

that with probability at least9,/50, the above condition holds for all monotone light intervatgler considera-
tion. Therefore, except with failure probability /20, the statement of the Claim holds. |

Assuming the claim[{1) follows by exploiting the fact that intervalsI’ such thaip(I?) is small we can

afford worse error on the variation distance. More pregjdet w; = ](f”)i\, the number of intervals i@)i,
and note thaEﬁ.’zl w; < £. Hence, we can bound the LHS 6f (1) from above by

b ) ) b X
S w; - (€/5k) - 27023 - €) < O(1) - (262 /5k) - 3 w; - 2723
i=1 =1

Sincezi’:1 w; < £, the above expression is maximized for = ¢ andw; = 0, ¢ > 1, and the maximum value
is at mostO(1) - (2¢2/5k) - £ = O(e). This proves[(lL).

It is clear that the algorithm has the claimed sample conifgleXhe running time is also easy to analyze,
as it is easy to see that every step can be performed in polghtime (in fact, nearly linear time) in the sample
size. This completes the proof of Theorem 5. [ |

To get anO(e)-accurate hypothesis with probability— ¢, we can simply rurLear n- knodal - si npl e
O(log(1/0)) times and then perform a tournament using Thedrem 4. Thisases the sample complexity by

a O(log(1/6)) factor. The running time increases by a factor(flog?(1/6)). We postpone the details for
AppendixC.

3.2 Main Result: Learning k-modal distributions using testing

Here is some intuition to motivate oérmodal distribution learning algorithm and give a highdkemea of why
the dominant term in its sample complexity(§k log(n/k) /).

Let p denote the target-modal distribution to be learned. As discussed aboven@t{in terms of time
and sample complexity) algorithms are known for learningcaatone distribution ovelr], so if the locations
of the kK modes ofp were known then it would be straightforward to learvery efficiently by running the
monotone distribution learner ovér+ 1 separate intervals. But it is clear that in general we cahope to
efficiently identify the modes gb exactly (for instance it could be the case that) = p(a + 2) = 1/n while
pla+1) = 1/n+ 1/2™). Still, it is natural to try to decompose titemodal distribution into a collection of
(nearly) monotone distributions and learn those. At a hegtell that is what our algorithm does, using a novel
property testingalgorithm.

More precisely, we give a distribution testing algorithrttwihe following performance guarantee: lget
be ak-modal distribution ovefn]. Given an accuracy parameterour tester takepoly(k/7) samples fromy
and outputs “yes” with high probability if is monotone and “no” with high probability if is 7-far from every
monotone distribution. (We stress that the assumptiongtisat-modal is essential here, since an easy argument
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given in [BKR04] shows thaﬂ(nl/z) samples are required to test whether a general distribatien [n] is
monotone versu®(1)-far from monotone.)

With some care, by running the above-described te3tér/¢) times with accuracy parameter we can
decompose the domajn] into

e at mostk + 1 “superintervals,” which have the property that the condisil distribution ofp over each
superinterval is almost monotone-¢lose to monotone);

e at mostk + 1 “negligible intervals”, which have the property that eactedas probability mass at most
O(e/k) underp (so ignoring all of them incurs at moék(e) total error); and

e at mostk + 1 “heavy” points, which each have mass at l€aét/k) underp.

We can ignore the negligible intervals, and the heavy pantseasy to handle; however some care must be
taken to learn the “almost monotone” restrictiong alver each superinterval. A naive approach, using a generic
log(n)/e3-sample monotone distribution learner that has no perfoomguarantees if the target distribution is
not monotone, leads to an inefficient overall algorithm. ISan approach would require that(the closeness
parameter used by the tester) be at mg¢the sample complexity of the monotone distribution legyniee.

7 < €3/log(n). Since the sample complexity of the testepisy(k/7) and the tester is ruh/e times, this
approach would lead to an overall sample complexity thahecaeptably high.

Fortunately, instead of using a generic monotone disiohuearner, we can use the semi-agnostic mono-
tone distribution learner of Birgé (Theorérh 3) that candiamleviations from monotonicity far more efficiently
than the above naive approach. Recall that given draws frdmst@bution ¢ over [n] that isT-close to mono-
tone, this algorithm use®(log(n)/e*) samples and outputs a hypothesis distribution thé2is+ ¢)-close to
monotone. By using this algorithm we can take the accuracynpeterr for our tester to b&(e) and learn the
conditional distribution ofy over a given superinterval to accura®ye) usingO(log(n)/e*) samples from that
superinterval. Since there aker 1 superintervals overall, a careful analysis shows @h@tlog(n)/e3) samples
suffice to handle all the superintervals.

We note that the algorithm also requires an additional agdiboly (k/e) samples (independent of besides
this dominant term (for example, to run the tester and taregt accurate weights with which to combine the
various sub-hypotheses). The overall sample complexitpehgeve is stated in Theordrh 6 below.

Theorem 6 (Main) The algorithni_ear n- knodal usesO (klog(n/k)/e* + (k3 /€®) - log(k/e) - loglog(k/€))
samples, performpoly(k,logn, 1/¢) bit-operations, and learns any-modal distribution to accuracy and
confidence/10.

Theoreni 1 follows from Theoren 6 by runnihg@ar n- knodal O(log(1/4)) times and using hypothesis
testing to boost the confidencelo- . We give details in Appendix]C.

Algorithm Lear n- knodal makes essential use of an algorithim for testing whether &-modal dis-
tribution over[n] is non-decreasing. Algorithrit” (e, §) usesO(log(1/8)) - (k/e)?> samples from &-modal
distributionp over[n], and behaves as follows:

¢ (Completeness) I is non-decreasing, théR' outputs “yes” with probability at leagt— §;

e (Soundness) Ip is e-far from non-decreasing, théf' outputs “yes” with probability at most

Let T+ denote the analogous algorithm for testing whethérraodal distribution ovefr] is non-increasing
(we will need both algorithms). The description and prootofrectness foil'! is postponed to the following
subsection (Sectidn 3.4).



3.3 Algorithm Lear n- knodal and its analysis

Algorithm Lear n- knodal is given below with its analysis following.

Lear n- knodal
Inputs: e > 0; sample access tomodal distributiorp over[n]

1. FixT := ¢/(100k). Drawr = ©(1/72) samples fronp and letp denote the empirical distributiop.

2. Greedily partition the domaifr] into ¢ atomic intervalsZ := {I;}{_, as follows: I; := [1, j1],
wherej; := min{j € [n] | p([1,4]) > €/(10k)}. Fori > 1, if U;zllj = [1,7;], thenl;y; =
[4i + 1, jix1], whereyj;1; is defined as follows: Ip([j; + 1,n]) > ¢/(10k), theng;1; := min{j €
[n] | p([7i + 1,7]) > €/(10k)}, otherwisej; 1 := n.

3. Setr’ := ¢/(2000k). Drawr’ = O((k3/e3) -log(1/7") loglog(1/7")) sampless from p to use in
Steps 4-5.

4. Run bothT™ (e, 7") and T+ (e, ') overp ; , forj=1,2,..., tofind the leftmost atomic interva

=177

I;, such that botfl'" and T+ return “no” overp, ;, , .
=177

LetI;, = [a;,,b;,]. We consider two cases:
Case LiIf play,, bj,] > 2¢/(10k), definel} = [a;,,bj, — 1] andb;, is aheavypoint.
Case 2:If play, , bj,] < 2¢/(10k) then definel} = I;,.

Call I]’-1 anegligibleinterval. If j; > 1 then define the firguperintervalS; to beu{;_llli, and set

ar € {1,}} to bea; =1 if T" returned “yes” orp_;,-1, and to ben; =/ if T* returned “yes” or
=1 "7

Y T
Ui, I

7

5. Repeat Step 3 starting with the next inter¥al,, i.e. find the leftmost atomic intervdl},, such
that bothT"T and T+ return “no” overp i, .- Continue doing this until all intervals through

i=j1+17¢
have been used.
LetSy,..., S, be the superintervals obtained through the above procesan. ., a;) € {1,]}

be the corresponding string of bits.

6. Drawm = O(k - log(n/k)/e3) sampless’ from p. For each superintervd;, i € [t], run A% on
the conditional distributiong, of p using the samples isl N S;. Let ps, be the hypothesis thiis
obtained.

7. Output the hypothesis = 57, p(Si) - bs, + >_; P({b;}) - 1.

We are now ready to prove Theoréin 6.

Proof:[of Theoreni 6] Before entering into the proof we record tweeatvations; we state them explicitly here
for the sake of the exposition.

Fact 4 LetR C [n]. If pg is neither non-increasing nor non-decreasing, ttfeoontains at least one left extreme
point.

Fact 5 Suppose thaR C [n] does not contain a left extreme point. For any, if TT(¢,7) and T (e, 7) are
both run onpg, then the probability that both calls return “no” is at most

Proof: By Factldpy, is either non-decreasing or non-increasingpfis non-decreasing thefi will output
“no” with probability at mostr, and similarly, ifpr is non-increasing thef* will output “no” with probability
at mostr. [ |



Sincer = ©(1/72) samples are drawn in the first step, the DKW inequality ingplfeat with probability of
failure at mostl /100 each intervall C [n] has|p(I) — p(I)| < 27. For the rest of the proof we condition on
this good event.

Since every atomic intervdl € 7 hasp(I) > €/(10k) (except potentially the rightmost one), it follows
that the number of atomic intervals constructed in Step 2 satisfies 10 - (k/¢). Moreover, by the DKW
inequality, each atomic intervd) hasp(I;) > 8¢/(100k).

Note that in Case (1) of Step 4,jfa;,, b;,] > 2¢/(10k) then it must be the case th&®,, ) > ¢/(10k) (and
thusp(b;,) > 8¢/(100k)). In this case, by definition of how the intervg| was formed, we must have thgf =
[aj,,bj, — 1] satisfiep(1],) < ¢/(10k). So both in Case 1 and Case 2, we now havejhH}) < 2¢/(10k),
and thusp(I},) < 22¢/(100k). Entirely similar reasoning shows that every negligibleeial constructed in
Steps 4 and 5 has mass at meit/(100k) underp.

In Steps 4-5 we invoke the testéfs and TT on the conditional distributions of (unions of contiguous)
atomic intervals. Note that we need enough samples in etemyiainterval, since otherwise the testers provide
no guarantees. We claim that with probability at 1€¥5t100 over the sample of Step 3,eachatomic interval
getsb = Q ((k/e)? - log(1/7")) samples. This follows by a standard coupon collector'sment, which we now
provide. As argued above, each atomic interval has prababibass(2(e/k) underp. So, we havé = O(k/¢)
bins (atomic intervals), and we want each bin to contaballs (samples). It is well-known_[NSB0] that after
taking©(¢ - log ¢ + ¢ - b - log log ¢) samples fronp, with probability 99/100 each bin will contain the desired
number of balls. The claim now follows by our choice of parter® Conditioning on this event, any execution
of the testersI'™ (e, 7/) and T+ (e, 7') in Steps 4 and 5 will have the guaranteed completeness amdirsess
properties.

In the execution of Steps 4 and 5, there are a total of at fostasions whefl'" (¢, 7/) and T+ (e, 7') are
both run over some union of contiguous atomic intervals. Byt and a union bound, the probability that
(in any of these instances the interval does not containt @X&feme point and yet both calls return “no”) is at
most(10k/e)7" < 1/200. So with failure probability at most/200 for this step, each time Step 4 identifies a
group of consecutive intervalg, . .., I;4, such that botiI'" and T+ output “no”, there is a left extreme point
in Ufi;[l Sincep is k-modal, it follows that with failure probability at mo$y200 there are at mogt + 1 total
repetitions of Step 4, and hence the numbet superintervals obtained is at mds# 1.

We moreover claim that with very high probability each of theuperintervalsS; is very close to non-
increasing or non-decreasing (with its correct orientaen bya;):

Claim 6 With failure probability at most /100, eachi € [¢] satisfies the following: ifi; =7 thenpyg, is e-close
to a non-decreasing distribution anddf =/ thenpg, is e-close to a non-increasing distribution.

Proof: There are at mog¢ < 20k /e instances when eith@ or TT is run on a union of contiguous intervals.
For any fixed execution of'* over an intervall, the probability thafl outputs “yes” whilep; is e-far from
every non-increasing distribution ov&is at mostr’, and similarly forTT. A union bound and the choice of
conclude the proof of the claim. [ |

Thus we have established that with overall failure proligtalt most5/100, after Step 5 the intervah| has
been partitioned into:

1. Aset{S;};_, of ¢ < k + 1 superintervals, withp(S;) > 8¢/(100k) and ps, beinge-close to either
non-increasing or non-decreasing according to the vallé af.

2. Aset{I/}t_ of t' <k + 1 negligible intervals, such tha(I/) < 22¢/(100k).
3. Aset{b;}l_, of " < k + 1 heavy points, each with(b;) > 8¢/(100k).

We condition on the above good events, and bound from ab@vexpected total variation distance (over the
samples’). In particular, we have the following lemma:

Lemma 7 We have thaEg [dty (h,p)] < O(e).
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Proof: (of Lemmd.T) By the discussion preceding the lemma statertientiomair|n| has been partitioned into
a set of superintervals, a set of negligible intervals anet @asheavy points. As a consequence, we can write

t”

p= élp(Sj) s+ 2 P({b}) - Lo + ép(fj'-) Py

Therefore, we can bound the total variation distance asvist

t " t t
dTv(h,p) < Zl ‘ﬁ(Sj) —p(Sj)\ + Zl ‘ﬁ(b]) —p(bj)‘ + le(fj,) + le(Sj) : dTv(ﬁSj7ij)'

J= J= J= J=
Recall that each term in the first two sums is bounded fromebg2r. Hence, the contribution of these terms
to the RHS is at mos27 - (2k + 2) < ¢/10. Since each negligible intervd] hasp(I}) < 22¢/(100k), the
contribution of the third sum is at most- 22¢/(100k) < e/4. It thus remains to bound the contribution of the
last sum.

We will show that

ES/ < O(E)

t
le(sj) ’ dTV(ﬁSpij)
‘]:

Denoten; = |S;|. Clearly,>}_, n; < n. Since we are conditioning on the good events (1)-(3), each
superinterval ig-close to monotone with a known orientation (non-incregsin non-decreasing) given fy.
Hence we may apply Theordm 3 for each superinterval.

Recall that in Step 5 we draw a totalaf samples. Letn;, i € [t] be the number of samples that landSin
observe thatn; is a binomially distributed random variable with; ~ Bin(m, p(S;)). We apply Theorernl3 for
eache-monotone interval, conditioning on the valuernf, and get

dry (Bs,»ps,) < 26 + O ((logng/(my + 1))
Hence, we can bound from above the desired expectationles/$ol
t t
le(Sj) -Ey [dTV(ﬁSjaij)] < <Zl 2€ - p(S})) + O <le(sj) . (log ”j)1/3 . ES/[(mj + 1)—1/3]> .
J= J= J=

Since}_, p(S;) < 1, to prove the lemma, it suffices to show that the second tebausded, i.e. that

ilpwj) - (logn;)* - By[(m; + 1)) = Oe).
p2

To do this, we will first need the following claim:
Claim 8 For a binomial random variableX ~ Bin(m, q) it holdsE[(X + 1)~'/3] < (mq)~/3.

Proof: Jensen’s inequality implies th&(X + 1)~/3] < (E[1/(X + 1)])*/3. We claim thatB[1/(X + 1)] <
1/E[X]. This can be shown as follows: We first recall tHafX] = m - q. For the expectation of the inverse, we
can write:

/ey = £ (Mea-or - 2 (T




The claim now follows by the monotonicity of the mapping— z'/3. |
By Claim[8, applied tam; ~ Bin(m,p(S;)), we have thalEy [(m; + 1)~Y/3] < m~Y3 . (p(S;))~1/3.
Therefore, our desired quantity can be bounded from above by

L op(S;) - (log”j)l/g — O(e) - i 1\2/3 log V8
321 ml/3. (p(Sj))l/?) - O( ) 321 (p(SJ)) <k : log(n/kz)> :

We now claim that the second term in the RHS above is upperdsaliby 2. Indeed, this follows by an
application of Holder's inequality for the vectofs(S;)%/%)" _, and((%)w);:l, with Holder conjugates
3/2 and3. That is,

/3 1/3
¢ W2/3 log nj 1/3 ¢ _ ’ < log nj
S0 () < (EJ’(S”) X logtnm ) <7

J=1

The first inequality is Holder and the second uses the faatt Yh'_, p(S;) < 1 andy>._, log(n;) < t -
log(n/t) < (k+ 1) -log(n/k). This last inequality is a consequence of the concavity efidigarithm and the
fact thatzj n; < n. This completes the proof of the Lemma. |

By applying Markov’s inequality and a union bound, we gettthéth probability 9/10 the algorithm
Lear n- knmodal outputs a hypothesis that hasity (h, p) < O(e) as required.

It is clear that the algorithm has the claimed sample conifgleXhe running time is also easy to analyze,
as it is easy to see that every step can be performed in polghtime (in fact, nearly linear time) in the sample
size. This completes the proof of Theorem 6. |

3.4 Testing whether ak-modal distribution is monotone

In this section we describe and analyze the testing algorith. Given sample access tdcamodal distribution
q over[n] andT > 0, our testefT'" usesO(k? /72) many samples from and has the following properties:

e If ¢ is non-decreasingl'" outputs “yes” with probability at leagt/3.

e If ¢ is 7-far from non-decreasingl'T outputs “no” with probability at least/3.

(The algorithmT (7, §) is obtained by repeating® O(log(1/4)) times and taking the majority vote.)

Tester TT(r)
Inputs: T > 0; sample access tomodal distributiong over [n]

1. Fix§ := 7/(100k). Drawr = ©(1/6%) sampless from ¢ and letg be the resulting empirica
distribution.

2. Ifthere existt < b < ¢ € sU {1,n} such that

7 _ _Q(a,b)) gb+1,d)  _ (7/4k) | (7/4k)
E(a’b’c)'_(b—aﬂ)_ c—b) ~(—atl) (c_b)

(2)

then output “no”, otherwise output “yes”.

The idea behind testéf! is simple. It is based on the observation that i§ a non-decreasing distribution,
then for any two consecutive intervals, b] and [b + 1, ¢] the average of over [b + 1, ] must be at least as
large as the average gfover|a, b]. Thus any non-decreasing distribution will pass a test¢hatks “all” pairs
of consecutive intervals looking for a violation. Our arsdyshows that in fact such a test is complete as well
as sound if the distribution is guaranteed to be-modal. The key ingredient is the structural Lemma 9 below,
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which is proved using a procedure (reminiscent of Myersoniirg [Mye81]) to convert &-modal distribution
to a non-decreasing distribution.
The following theorem establishes correctness of therteste

Theorem 7 The algorithmT™ usesO(k? /72) samples fromy, performspoly(k/7) - log n bit operations and
satisfies the desired completeness and soundness prepertie

Proof: The upper bound on the sample complexity is straightforwsirtte only Step 1 uses samples. It is also
easy to see that a straightforward implementation of therékgn runs in timepoly(k/7) - log n. Below we
prove that the algorithm has the claimed soundness and etenglks properties.
Let us say that the sampdas goodif every intervall C [n] has|q(I)—q(I)| < 26. By the DKW inequality,
with probability at leas/3 the sample is good. Assuming thatis good, we have thdbr anya < b < ¢ € [n]
the quantity
a(la.b)  q(b+1,d)

E =
@) =G ar D~ =)
differs from its empirical valué=(a, b, c) (i.e. the LHS of [2)) by at mos(a, b, ¢) := ﬁ + (0%5) That is,
|E(a,b,c) — E(a, b,c)| < ~(a,b,c). (3)

We first show completeness. ¢fis non-decreasing the average probability value in any\atéa, b] is
a non-decreasing function ef That is,for all a < b < ¢ € [n] it holds E(a,b,c) < 0. Therefore, with
probability at leas®/3, it hoIdsE(a, b,c) < ~(a,b,c) and the tester says “yes”.

For soundness, we need the following lemma:

Lemma 9 Letq be ak-modal distribution ovefn| that is-far from being non-decreasing. Thérere exista
triple of pointsa < b < ¢ € [n] such that

(7/2k) (7/2k)
b—at1) " c=b)

We first show how the soundness follows from the lemma. gF@k-modal distribution that is-far from
non-decreasing, we will argue that if the sample is good there exists a triple, < s, < s. € sU{l,n}
such thatF (s, sp, s¢) satifsiesR).

By Lemmd9, there exists a tripte< b < ¢ € [n] satisfying [(4).

We first note that at least one sample must have landéd b, for otherwise the DKW inequality would
give thatg([a, b]) < 26; this in turn would imply thatF'(a, b, ¢) < 26/(b — a + 1), a contradiction, as it violates
(4). We now define the points,, s, s. as follows: (i)s,, is the leftmost point of the sample fa, b], (i) s; is the
rightmost point of the sample ifa, b]; and (i) s.. is either the leftmost point of the sample[in+ 1, n], or the
rightmost point: of the interval, ifg([c + 1, n]) = 0. We will now argue that these points satisfy (2). Consider
the intervals,, s;]. Then, we have that

/q\([saﬂsb]) >/q\([8a78b]) _ /q\([CL?b]) > q([CL?b]) . 20
sp—8Sq+1 " b—a+1 b—a+1"b—a+1 b—a+1

E(a,b,c) > (4)

(5)

where the first inequality uses the fact that, sp] C [a, b], the equality uses the definition efandb, and the
final inequality follows by an application of the DKW ineqitglfor the interval[a, b]. An analogous argument
can be applied for the intervédy, s.|. Indeed, we have that

é\([sb + 1730]) < /q\([sb + 1730]) _ /q\([b + 170]) < q([b + 176]) 20
= +
Se—sp+1 — c—b c—b - c—b c—b

(6)

where the first inequality follows from the fact that, s.] 2 [b + 1, ¢], the equality uses the definition find
¢, and the final inequality follows by an application of the DKeéquality for the intervalb + 1, ¢].
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A combination of [(#),[(b),[{B) yields the desired result.hii$ remains to prove Lemrha 9.
Proof:[Lemmal9] We prove the contrapositive. Lebe ak-modal distribution such that for all < b < ¢ € [n]

(r/2K)  (z/20)

E(a’b’c)é(b—a%—l) (c—1b)

(7)

We will show thatq is T-close to being non-decreasing by constructing a non-detrg distributiony that is
T-close tog. The construction off proceeds irk stages where in each stage, we reduce the number of modes
by at least one and incur error in variation distance at mg@ht That is, we iteratively construct a sequence of
distributions{¢1*_, ¢® = ¢ and¢®) = g, such that for ali € [k] we have thay is (k — i)-modal and

dry (¢, q") < 7/k.

Consider the graph (histogram) of the discrete dengityhe x-axis represents the points of the domain
and they-axis the corresponding probabilities. We first informaligscribe how to obtaig(® from ¢. The
construction ofy“t1) from ¢( is identical. Letj be the leftmost left-extreme point (mode) gfand assume
that it is a local maximum with height (probability mags)). (A symmetric argument works for the case that it
is a local minimum.) The idea of the proof is based on the falhg simple process (reminiscent of Myerson’s
ironing process| [Mye81]): We start with the horizontal line= ¢(j) and move it downwards until we reach
a heighthy < ¢(j) so that the total mass “cut-off” equals the mass “missingthi right ; then make the
distribution “flat” in the corresponding interval (henceducing the number of modes by at least one). The
resulting distribution ig") and equation({7) implies thatry (¢, q) < 7/k.

We now proceed with the formal argument, assuming as abatehd leftmost left-extreme poiritof ¢ is
a local maximum. We say that the lige= h intersectsa point: € [n] in the domain ofy if ¢(i) > h. The
liney = h, h € [0,q(y)], intersects the graph @fat a unique interval (h) C [n] that containsj. Suppose
I(h) = [a(h),b(h)], wherea(h),b(h) € [n] depend om. By definition this means that(a(h)) > h and
g(a(h) — 1) < h. Recall that the distribution is non-decreasing in the intervgl, j] and thatj > a(h). The
term “the mass cut-off by the ling = 4" means the quantityl(h) = ¢ (I(h)) — h - (b(h) — a(h) + 1), i.e. the
“mass of the interval (h) above the line”.

The heighth of the liney = h defines the pointa(h),b(h) € [n] as described above. We consider values
of h such thatg is unimodal (increasing then decreasing) o¥gr). In particular, letj’ be the leftmost mode
of ¢ to the right ofj, i.e. j/ > j andj’ is a local minimum. We consider values/ofc (¢(j'),q(j)). For such
values, the interval (h) is indeed unimodal (agh) < j'). Forh € (q(j'), q(j)) we define the point(h) > 5’
as follows: It is the rightmost point of the largest intereahtaining;’ whose probability mass does not exceed
h. That is, all points irjj’, ¢(h)] have probability mass at mostandq(c(h) + 1) > h (or ¢(h) = n).

Consider the interval (h) = [b(h)+1, ¢(h)]. This interval is non-empty, siné¢h) < j' < c¢(h). (Note that
J(h) is not necessarily a unimodal interval; it contains at leastmode’, but it may also contain more modes.)
The term “the mass missing to the right of the line- »” means the quantity3(h) = h-(c(h)—b(h))—q (J(h)).

Consider the functio'(h) = A(h) — B(h) over[q(j'),¢(j)]. This function is continuous in its domain;
moreover, we have that (¢(j)) = A(q(j)) — B (¢(j)) < 0, asA(q(j)) = 0, andC (q(j")) = A(q(j")) -
B(q(j")) > 0, asB(q(j')) = 0. Therefore, by the intermediate value theorem, there ®@stalueh, €
(q(5"),q(7)) such thatd(ho) = B(ho).

The distributiong ") is constructed as follows: We move the mass= A(hg) from I(hg) to J(hg). Hence,
it follows thatdry (¢, q) < 27'. We also claim thay(!) has at least one mode less thanindeed,¢(!) is
non-decreasing ifl, a(h) — 1] and constant ifu(h), c(h)]. (All the points in the latter interval have probability
mass exactlyzg.) Recalling thaty™ (a(h)) = hy > ¢V (a(h) — 1) = q(a(h) — 1), we deduce thag™) is
non-decreasing ift, ¢(h)].

We will now argue that”’ < 7/(2k) which completes the proof of the lemma. To this end we use our
starting assumption, equatidd (7). Recall that we hé{i,) = B(ho) = 7/, which can be written as

q([a(h), b(R)]) — ho - (b(h) — a(h) +1) = ho - (c(h) — b(h)) — q([b(h) + 1,c(R)]) = ".
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From this, we get

q(lah),b(h)])  q(b(h) +1,c(h)]) _ 7’ n 7’
(b(h) — a(h) +1) (c(h) —b(h)) (b(h) —a(h) +1) = (c(h) —b(h))
Combining with [T) proves Lemnid 9. [ |
This completes the proof of Theorér 7. |

4 Conclusions and future work

At the level of techniques, this work illustrates the vidhibf a new general strategy for developing efficient
learning algorithms, namely by using “inexpensive” prapdesters to decompose a complex object (for us
these objects ark-modal distributions) into simpler objects (for us these mronotone distributions) that can
be more easily learned. It would be interesting to applyphisdigm in other contexts such as learning Boolean
functions.

At the level of the specific problem we consider — learnkamodal distributions — our results show that
k-modality is a useful type of structure which can be strorefgloited by sample-efficient and computationally
efficient learning algorithms. Our results motivate thedgtof computationally efficient learning algorithms
for distributions that satisfy other kinds of “shape radions.” Possible directions here include multivariate
k-modal distributions, log-concave distributions, momatdnazard rate distributions and more.

Finally, at a technical level, any improvement in the sangal@plexity of our property testing algorithm of
Sectior3.# would directly improve the “extraneous” adeitD((k/¢)?) term in the sample complexity of our
algorithm. We suspect that it may be possible to improve estirig algorithm (although we note that it is easy
to give anQ2(v/k) lower bound using standard constructions).
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A Birgé’s algorithm as a semi-agnostic learner

In this section we briefly explain why Birgé’s algorithm [B¥E] also works in the semi-agnostic setting. To do
this, we need to explain his approach. For this, we will némdftllowing theorem, which gives a tight bound
on the number of samples required to learn an arbitraryiloligion with respect taeotal variation distance

Theorem 8 (Folklore) Letp be any distribution ovefrn|. We haveE[dry (p, pm)] < 24/n/m.

Let p be a non-increasing distribution ovpr]. (The analysis for the non-decreasing case is identical.)
Conceptually, we view algorithrht as working in three steps:

¢ In the first step, it partitions the sét|] into a carefully chosen sdt, ..., I, of consecutive intervals,
with £ = O(m'/3 - (logn)?/3). Consider thelatteneddistributionp; over [n] obtained fromp by av-
eraging the weight thap assigns to each interval over the entire interval. Thatas,;f € [¢] and
i € 1, pp(i) = Ztelj p(t)/|1;]. Then a simple argument given in [Bir87b] gives that, (ps,p) =

O ((logn/(m + 1))"/%) .

e Letp, be thereduceddistribution corresponding teand the partitionly, ..., I,. Thatis,p, is a distribu-
tion over[¢] with p,.(i) = p(I;) for i € [¢]. In the second step, the algorithm usesitheamples to learn
pr. (Note thatp, is not necessarily monotone.) After samples, one obtains a hypothegissuch that

Eldrv (pr,5))] = O («/E/m) = O ((logn/(m +1))!/3). The first equality follows from Theorefd 8
(sincep, is distribution over elements) and the second inequality follows from the chofae

e Finally, the algorithm outputs the flattened hypothggis  over[n] corresponding t@,, i.e. obtained by
Py, by subdividing the mass of each interval uniformly withir tinterval. It follows from the above two

steps thak[drv ((r) . p5)] = O ((logn/(m +1))'/3).

e The combination of the first and third steps yields ®atry ((5,) 7, p)] = O ((logn/(m + 1))/3).

The above arguments are entirely due to Bifgé [Bir87b]. \&& explain how his analysis can be extended
to show that his algorithm is in fact a semi-agnostic leaa®claimed in Theoref 3. To avoid clutter in the
expressions below let us fix:= O ((log n/(m + 1))*/3).

The second and third steps in the algorithm description@bos used to learn the distributippto variation
distance). Note that these steps do not use the assumptiom isaton-increasing. The following claim, which
generalizes Step 1 above, says that i6 7-close to non-increasing, the flattened distributign(defined as
above) is(27 + 6)-close top. Therefore, it follows that, for such a distributign algorithmL+ succeeds with
expected (total variation distance) er(@r + ) + ¢.

We have:

Claim 10 Letp be a distribution ovefr| that isT-close to non-increasing. Then, the flattened distribugign
(obtained frormp by averaging its weight on every intervBl) satisfiesdty (ps,p) < (27 + 6).

Proof: Let p* be the non-increasing distribution thatrisclose top. Let 7; denote thel-distance betweep
andp' in the intervall;. Then, we have that

l
Z T < T (8)
j=1

By Birgé’s arguments, it follows that the flattened distitibn (pi)f corresponding t* is é-close top*,
hence(r + §)-close top. That is,

drv ((pi)f,p) <7496 9)
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We want to show that
dry <(P¢)f7pf) <7 (10)

Assuming[(1D) holds, we can conclude by the triangle inétyuidiat

drv (p,pf) <27 +0

as desired.
Observe that, by assumptiop,and p* have L-distance at most; in each/; interval. In particular, this
implies that, for allj € [¢], it holds

p(I;) = pH(IL)| < 7.

Now note that, within each intervdl;, p; and (p*); are both uniform. Hence, the contribution Bfto the
variation distance betweery and(p*) is at mostp(I;) — p*(1;)|.
Therefore, by[(B) we deduce
drv(ps, (P)) < 7

which completes the proof of the claim. |

B Hypothesis Testing

Our hypothesis testing routiméhoose- Hypot hesi s? runs a simple “competition” to choose a winner be-
tween two candidate hypothesis distributidnsandh, over[n] that it is given in the input either explicitly, or
in some succinct way. We show that if at least one of the twalickte hypotheses is close to the target distri-
butionp, then with high probability over the samples drawn frptine routine selects as winner a candidate that
is close top. This basic approach of running a competition between caelihypotheses is quite similar to the
“Scheffé estimate” proposed by Devroye and Lugosi (se€9ftl/ DL96a] and Chapter 6 af [DLO1]), which in
turn built closely on the work of [Yat85], but there are somwal differences between our approach and theirs;
the [DLO1] approach uses a notion of the “competition” bedwénvo hypotheses which is not symmetric under
swapping the two competing hypotheses, whereas our caimpat symmetric.

We now prove Theoreim 4.

Proof:[of Theorem[4] Le®V be the support 0. To set up the competition betweén andh,, we define the
following subset ofV:

Wy = Wl(hl,hg) = {w S W|h1(w) > hg(w)} . (11)

Let thenp; = hi(W1) andq = ha(Wh). Clearly,p; > ¢ anddry (h1, ha) = p1 — q1.
The competition betweely, andh- is carried out as follows:

1. If p1 — q1 < 5€, declare a draw and return eithigr Otherwise:

2. Drawm = O (%) samplessy, ..., s, from p, and letr = L|{i | s; € W;}| be the fraction of
samples that fall insid&V); .

3. fr>p — %e’, declareh; as winner and returh;; otherwise,
4. ifr < g1+ %e’, declarehsy as winner and returhsy; otherwise,

5. declare a draw and return either

18



It is not hard to check that the outcome of the competitionsdus depend on the ordering of the pair of
distributions provided in the input; that is, on inputs;, ko) and (hg, hi) the competition outputs the same
result for a fixed sequence of samplgs. . ., s,,, drawn fromp.

The correctness @thoose- Hypot hesi s is an immediate consequence of the following lemma.

Lemma 11 Suppose thadry (p, h1) < €. Then:

(i) If drv(p, he) > 6€, then the probability that the competition betwéanand i, does not declaré; as
the winner is at most—m<*/2, (Intuitively, if ho is very bad then it is very likely that; will be declared
winner.)

(i) If drv(p, he) > 4€, the probability that the competition betweknand h, declareshs as the winner is
at moste—m<"*/2, (Intuitively, if hs is only moderately bad then a draw is possible but it is verijkaly
that ho will be declared winner.)

Proof: Letr = p(Wy). The definition of the total variation distance implies that- p;| < €. Let us
define the0/1 (indicator) random variable$Z;}, asZ; = 1iff s; € Wy. Clearly,r = L > i1 Z;
andE[r] = E[Z;] = r. Since theZ;’s are mutually independent, it follows from the Chernofiubd that
Pr[r <r—¢€/2] < e—me?/2, Using|r — p1| < € we get thafPr[r < p; — 3€'/2] < e—me?/2,

e For part (i): Ifdry (p, ho) > 6€, from the triangle inequality we get that — ¢1 = drv (hy, he) > 5€.
Hence, the algorithm will go beyond Step 1, and with prolighdt leastl — e=m<?/2 it will stop at Step
3, declaringh; as the winner of the competition betweknandhs.

e For part (ii): If p; — g1 < 5¢’ then the competition declares a draw, hehgés not the winner. Otherwise
we havep; —q; > 5¢’ and the above arguments imply that the competition betiwe@mdh, will declare
h, as the winner with probability at most™<*/2,

This concludes the proof of Lemrhal11.

The proof of the theorem is now complete. |

C Using the Hypothesis Tester

In this section, we explain in detail how we use the hypothéssting algorithmChoose- Hypot hesi s
throughout this paper. In particular, the algorit@moose- Hypot hesi s is used in the following places:

e In Step 4 of algorithrr_ear n- knodal - si npl e we need an algorithris (resp.L's) that learns a
non-increasing (resp. non-increasing) distribution imitbtal variation distanceand confidencé’. Note
that the corresponding algorithrig andL" provided by Theorem 3 have confiderf&0. To boost the
confidence of.* (resp.LT) we run the algorithn© (log(1/6")) times and us€hoose- Hypot hesi s in
an appropriate tournament procedure to select among tligdea® hypothesis distributions.

e In Step 5 of algorithmLear n- knodal - si npl e we need to select among two candidate hypothesis
distributions (with the promise that at least one of themlase to the true conditional distribution). In
this case, we ru@hoose- Hypot hesi s once to select between the two candidates.

e Also note that both algorithmisear n- knodal - si npl e andLear n- knodal generate aan-accurate
hypothesis with probability/10. We would like to boost the probability of successlte §. To achieve
this we again run the corresponding algorithiiflog(1/4)) times and us€hoose- Hypot hesi sin an
appropriate tournament to select among the candidate Inggistdistributions.
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We now formally describe the “tournament” algorithm to bicibe confidence ta — J.

Lemma 12 Letp be any distribution over a finite s&v. Suppose thab, is a collection ofN distributions over
W such that there exists€ D, with drv (p, ¢) < e. Then there is an algorithm that us€ge =2 log N log(1/4))
samples fromp and with probabilityl — § outputs a distributiorp’ € D, that satisfiesity (p, p’) < 6e.

Devroye and Lugosi (Chapter 7 of [DLIO1]) prove a similar feby having all pairs of distributions in the
cover compete against each other using their notion of a etitigm, but again there are some small differences:
their approach chooses a distribution in the cover whiclsihie maximum number of competitions, whereas our
algorithm chooses a distribution that is never defeated \{ion or achieved a draw against all other distributions
in the cover). Instead we follow the approach from [DDS].

Proof: The algorithm performs a tournament by running the comipatithoose- Hypot hesi sP(h;, hj, €,
d/(2N)) for every pair of distinct distributions;, /; in the collectionD,. It outputs a distribution* € D, that
was never a loser (i.e. won or achieved a draw in all its coitiges). If no such distribution exists i, then
the algorithm outputs “failure.”

By definition, there exists somec D, such thatity (p, q) < e. We first argue that with high probability this
distribution g never loses a competition against any otfiee D. (so the algorithm does not output “failure”).
Consider anyy’ € D.. If dry(p,q') > 4e, by LemmalTlL(ii) the probability thaf loses toq’ is at most
2e~me*/2 = O(1/N). On the other hand, ity (p,¢") < 44, the triangle inequality gives thaty (¢, q") < 5e
and thusy draws againsg’. A union bound over allV distributions inD, shows that with probability — §/2,
the distributiong never loses a competition.

We next argue that with probability at lealst- /2, every distribution; € D, that never loses has small
variation distance fromp. Fix a distributiong’ such thatdry (¢', p) > 6¢; Lemmal1l(i) implies that’ loses
to ¢ with probability 1 — 2e~me/2 > 1 — 0/(2N). A union bound gives that with probability — /2, every
distribution¢’ that hasiry (¢, p) > 6¢ loses some competition.

Thus, with overall probability at leadt — ¢, the tournament does not output “failure” and outputs some
distributiong* such thatlty (p, ¢*) is at moste. This proves the lemma. |

We now explain how the above lemma is used in our context: Ggpe perfornO(log(1/4)) runs of
a learning algorithm that constructs aaccurate hypothesis with probability at le@gt 0. Then, with failure
probability at most /2, at least one of the hypotheses generateetisse to the true distribution in variation dis-
tance. Conditioning on this good event, we have a colleatiodistributions with cardinalityO(log(1/4)) that
satisfies the assumption of the lemma. Hence, uSirigl/e?) - loglog(1/4) - log(1/6)) samples we can learn
to accuracy6e and confidencé — §/2. The overall sample complexity 3(log(1/4)) times the sample com-
plexity of the (learning algorithm with confidenég10) plus this additionaD ((1/€?) - log log(1/6) - log(1/4))
term.

In terms of running time,we make the following easily vebf@remarks: When the hypothesis testing
algorithm Choose- Hypot hesi s is run on a pair of distributions that are produced by Bsg&gorithm,
its running time is polynomial in the succinct descriptidntiiese distributions, i.e. itbg?(n)/e. Similarly,
whenChoose- Hypot hesi s is run on a pair of outputs dfear n- knodal - si npl e or Lear n- knodal ,
its running time is polynomial in the succinct descriptidntliese distributions. More specifically, in the for-
mer case, the succinct description has bit complesdti - log?(n)/€2) (since the output consists 6f(k/e)
monotone intervals, and the conditional distribution oshemterval is the output of Birgé’s algorithm for
that interval). In the latter case, the succinct descriptias bit complexityO (k - log®(n)/e), since the al-
gorithm Lear n- knodal constructs onlyk monotone intervals. Hence, in both cases, each executation
the testing algorithm performsoly (k,logn, 1/¢) bit operations. Since the tournament invokes the algorithm
Choose- Hypot hesi s O(log?(1/4)) times (for every pair of distributions in our pool 6f(log(1/4)) candi-
dates) the upper bound on the running time follows.
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