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Abstract

We consider a basic problem in unsupervised learning: learning an unknownPoisson Binomial Distri-
bution over {0, 1, . . . , n}. A Poisson Binomial Distribution (PBD) is a sumX = X1 + · · · + Xn of n
independent Bernoulli random variables which may have arbitrary expectations. We work in a framework
where the learner is given access to independent draws from the distribution and must (with high probability)
output a hypothesis distribution which has total variationdistance at mostǫ from the unknown target PBD.

As our main result we give a highly efficient algorithm which learns toǫ-accuracy using̃O(1/ǫ3) sam-
ples independent ofn. The running time of the algorithm isquasilinearin the size of its input data, i.e.
Õ(log(n)/ǫ3) bit-operations (observe that each draw from the distribution is alog(n)-bit string). This is
nearly optimal since any algorithm must useΩ(1/ǫ2) samples. We also give positive and negative results for
some extensions of this learning problem.
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1 Introduction

We begin by considering a somewhat fanciful scenario: You are the manager of an independent weekly news-
paper in a city ofn people. Each week thei-th inhabitant of the city independently picks up a copy of your
paper with probabilitypi. Of course you do not know the valuesp1, . . . , pn; each week you only see the total
number of papers that have been picked up. For many reasons (advertising, production, revenue analysis, etc.)
you would like to have a detailed “snapshot” of the probability distribution (pdf) describing how many readers
you have each week.Is there an efficient algorithm to construct a high-accuracyapproximation of the pdf from
a number of observations that isindependentof the populationn? We show that the answer is “yes.”

A Poisson Binomial Distribution(henceforth PBD) over the domain[n] = {0, 1, . . . , n} is the familiar
distribution of a sumX =

∑n
i=1 Xi, whereX1, . . . ,Xn are independent Bernoulli (0/1) random variables with

E[Xi] = pi. Thepi’s do not need to be all the same, and thus PBDs generalize the Binomial distributionB(n, p)
and, indeed, comprise a much richer class of distributions.(See Section 1.2.)

As PBDs are one of the most basic classes of discrete distributions they have been intensely-studied in
probability and statistics (see Section 1.2); we note here that tail bounds on PBDs form an important special
case of Chernoff/Hoeffding bounds [Che52, Hoe63, DP09]. Inapplication domains, PBDs have many uses
in research areas such as survey sampling, case-control studies, and survival analysis, see e.g. [CL97] for
a survey of the many uses of these distributions in applications. It is thus natural to study the problem of
learning/estimating an unknown PBD given access to independent samples drawn from the distribution; this is
the problem we consider, and essentially settle in this paper.

We work in a natural PAC-style model of learning an unknown discrete probability distribution which is
essentially the model of [KMR+94]. In this learning framework for our problem, the learneris provided with
independent samples drawn from an unknown PBDX. Using these samples, the learner must with probability
1 − δ output a hypothesis distribution̂X such that the total variation distancedTV (X, X̂) is at mostǫ, where
ǫ, δ > 0 are accuracy and confidence parameters that are provided to the learner.1 A proper learning algorithm in
this framework outputs a distribution that is itself a Poisson Binomial Distribution, i.e. a vector̂p = (p̂1, . . . , p̂n)
which describes the hypothesis PBD̂X =

∑n
i=1 X̂i whereE[X̂i] = p̂i.

1.1 Our results

Our main result is a highly efficient algorithm for learning PBDs from constantlymany samples, i.e. quite
surprisingly, thesample complexity of learning PBDs over[n] is independent ofn. We prove the following:

Theorem 1 (Main Theorem) LetX =
∑n

i=1Xi be an unknown PBD.

1. [Learning PBDs from constantly many samples]There is an algorithm with the following properties:
givenn and access to independent draws fromX, the algorithm uses̃O(1/ǫ3) · log(1/δ) samples fromX,
performsÕ( 1

ǫ3 log n log 1
δ ) bit operations,2 and with probability1 − δ outputs a (succinct description of

a) distributionX̂ over [n] which is such thatdTV (X̂,X) ≤ ǫ.

2. [Properly learning PBDs from constantly many samples]There is an algorithm with the following
properties: givenn and access to independent draws fromX, the algorithm uses̃O(1/ǫ3) · log(1/δ)
samples fromX, performs(1/ǫ)O(log2(1/ǫ)) · Õ(log n log 1

δ ) bit operations, and with probability1 − δ

outputs a (succinct description of a) vectorp̂ = (p̂1, . . . , p̂n) defining a PBDX̂ such thatdTV (X̂,X) ≤ ǫ.

We note that since each sample drawn fromX is alog(n)-bit string, the number of bit-operations performed
by our first algorithm isquasilinearin the length of its input. The sample complexity of both our algorithms is

1[KMR+94] used the Kullback-Leibler divergence as their distancemeasure but we find it more natural to use variation distance.
2We write Õ(·) to hide factors which are polylogarithmic in the argument toÕ(·); thus for exampleÕ(a log b) denotes a quantity

which isO(a log b · logc(a log b)) for some absolute constantc.
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not far from optimal, sinceΩ(1/ǫ2) samples are required even to distinguish the (simpler) Binomial distributions
B(n, 1/2) andB(n, 1/2 + ǫ/

√
n), which have variation distanceΩ(ǫ).

Motivated by these strong learning results for PBDs, we alsoconsider learning a more general class of
distributions, namely distributions of the formX =

∑n
i=1wiXi which areweightedsums of independent

Bernoulli random variables. We give an algorithm which usesO(log n) samples and runs inpoly(n) time if
there are only constantly many different weights in the sum:

Theorem 2 (Learning sums of weighted independent Bernoullirandom variables) LetX =
∑n

i=1 aiXi be
a weighted sum of unknown independent Bernoullis such that there are at mostk different values among
a1, . . . , an. Then there is an algorithm with the following properties: givenn, a1, . . . , an and access to inde-
pendent draws fromX, it usesk log(n) · Õ(1/ǫ2) · log(1/δ) samples from the target distributionX, runs in time
poly(nk · ǫ−k log2(1/ǫ)) · log(1/δ), and with probability1− δ outputs a hypothesis vectorp̂ ∈ [0, 1]n defining in-
dependent Bernoulli random variableŝXi withE[X̂i] = p̂i such thatdTV (X̂,X) ≤ ǫ, whereX̂ =

∑n
i=1 aiX̂i.

Note that setting allai’s to 1 in Theorem 2 gives a weaker result than Theorem 1 in terms of running time
and sample complexity. To complement Theorem 2, we also showthat if there are many distinct weights in the
sum, then even for weights with a very simple structure any learning algorithm must use many samples:

Theorem 3 (Sample complexity lower bound for learning sums of weighted independent Bernoullis) Let
X =

∑n
i=1 i · Xi be a weighted sum of unknown independent Bernoullis (where the i-th weight is simplyi).

LetL be any learning algorithm which, givenn and access to independent draws fromX, outputs a hypothesis
distributionX̂ such thatdTV (X̂,X) ≤ 1/25 with probability at leaste−o(n). ThenL must useΩ(n) samples.

1.2 Related work

Many results in probability theory study approximations tothe Poisson Binomial distribution via simpler distri-
butions. In a well-known result, Le Cam [Cam60] shows that for any PBDX =

∑n
i=1Xi with E[Xi] = pi

dTV (X,Poi(p1 + · · · + pn)) ≤ 2

n∑

i=1

p2i ,

wherePoi(λ) denotes the Poisson distribution with parameterλ. Subsequently many other proofs of this result
and similar ones were given using a range of different techniques; [HC60, Che74, DP86, BHJ92] is a sampling
of work along these lines, and Steele [Ste94] gives an extensive list of relevant references. Significant work
has also been done on approximating PBDs by normal distributions (see e.g. [Ber41, Ess42, Mik93, Vol95])
and by Binomial distributions (see e.g. [Ehm91, Soo96, Roo00]). These results provide structural information
about PBDs that can be well-approximated via simpler distributions, but fall short of our goal of obtaining
approximations of a general, unknown PBD up to anarbitrary accuracy. Indeed, the approximations obtained
in the probability literature (such as, the Poisson, Normaland Binomial approximations) typically depend on the
first few moments of the target PBD, while higher moments are crucial for arbitrary approximation [Roo00].

Taking a different perspective, it is easy to show (see Section 2 of [KG71]) that every PBD is a unimodal
distribution over[n]. The learnability of general unimodal distributions over[n] is well understood: Birgé
[Bir87a, Bir97] has given a computationally efficient algorithm that can learn any unimodal distribution over[n]
to variation distanceǫ from O(log(n)/ǫ3) samples, and has shown that any algorithm must useΩ(log(n)/ǫ3)
samples. (The [Bir87a] lower bound is stated for continuousunimodal distributions, but the arguments are easily
adapted to the discrete case.) Our main result, Theorem 1, shows that the additional PBD assumption can be
leveraged to obtain sample complexityindependent ofn with a computationally highly efficient algorithm.

So, how might one leverage the structure of PBDs to removen from the sample complexity? The first
property one might try to exploit is that a PBD assigns1 − ǫ of its mass toOǫ(

√
n) points. So one could draw

samples from the distribution to (approximately) identifythese points and then try to estimate the probability
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assigned to each such point to within high enough accuracy sothat the overall estimation error isǫ. Clearly, such
an approach, if followed naı̈vely, would givepoly(n) sample complexity. Alternatively, one could run Birgé’s
algorithm on the restricted support of sizeOǫ(

√
n), but that will not improve the asymptotic sample complexity.

A different approach would be to construct a smallǫ-cover (under the total variation distance) of the space of all
PBDs onn variables. Indeed, if such a cover has sizeN , it can be shown (see Lemma 11 of the full paper, or
Chapter 7 of [DL01])) that a target PBD can be learned fromO(log(N)/ǫ2) samples. Still it is easy to argue that
any cover needs to have sizeΩ(n), so this approach too gives alog(n) dependence in the sample complexity.

Our approach, which removesn completely from the sample complexity, requires a refined understanding
of the structure of the set of all PBDs onn variables, in fact one that is more refined than the understanding
provided by the aforementioned results (approximating a PBD by a Poisson, Normal, or Binomial distribution).
We give an outline of the approach in the next section.

1.3 Our approach

The starting point of our algorithm for learning PBDs is a theorem of [DP11, Das08] that gives detailed in-
formation about the structure of a smallǫ-cover (under the total variation distance) of the space of all PBDs
on n variables (see Theorem 4). Roughly speaking, this result says that every PBD is either close to a PBD
whose support is sparse, or is close to a translated “heavy” Binomial distribution. Our learning algorithm ex-
ploits the structure of the cover to close in on the information that is absolutely necessary to approximate an
unknown PBD. In particular, the algorithm has two subroutines corresponding to the (aforementioned) different
types of distributions that the cover maintains. First, assuming that the target PBD is close to a sparsely sup-
ported distribution, it runs Birgé’s unimodal distribution learner over a carefully selected subinterval of[n] to
construct a hypothesisHS; the (purported) sparsity of the distribution makes it possible for this algorithm to
useÕ(1/ǫ3) samples independent ofn. Then, assuming that the target PBD is close to a translated “heavy”
Binomial distribution, the algorithm constructs a hypothesis Translated Poisson DistributionHP [R0̈7] whose
mean and variance match the estimated mean and variance of the target PBD; we show thatHP is close to
the target PBD if the latter is not close to any sparse distribution in the cover. At this point the algorithm has
two hypothesis distributions,HS andHP , one of which should be good; it remains to select one as the final
output hypothesis. This is achieved using a form of “hypothesis testing” for probability distributions. The above
sketch captures the main ingredients of Part (1) of Theorem 1, but additional work needs to be done to get the
proper learning algorithm of Part (2), since neither the sparse hypothesisHS output by Birgé’s algorithm nor
the Translated Poisson hypothesisHS is a PBD. Via a sequence of transformations we are able to showthat the
Translated Poisson hypothesisHP can be converted to a Binomial distributionBin(n′, p) for somen′ ≤ n. For
the sparse hypothesis, we obtain a PBD by searching a (carefully selected) subset of theǫ-cover to find a PBD
that is close to our hypothesisHS (this search accounts for the increased running time in Part(2) versus Part (1)).
We stress that for both the non-proper and proper learning algorithms sketched above, many technical subtleties
and challenges arise in implementing the high-level plan given above, requiring a careful and detailed analysis
which we give in full below. After all, eliminatingn from the sample complexity is surprising and warrants
some non-trivial technical effort.

To prove Theorem 2 we take a more general approach and then specialize it to weighted sums of independent
Bernoullis with constantly many distinct weights. We show that for any classS of target distributions, ifS has
anǫ-cover of sizeN then there is a generic algorithm for learning an unknown distribution fromS to accuracy
ǫ that usesO((logN)/ǫ2) samples. Our approach is rather similar to the algorithm of [DL01] for choosing a
density estimate (but different in some details); it works by carrying out a tournament that matches every pair
of distributions in the cover against each other. Our analysis shows that with high probability someǫ-accurate
distribution in the cover will survive the tournament undefeated, and that any undefeated tournament will with
high probability beO(ǫ)-accurate. We then specialize this general result to show how the tournament can
be implemented efficiently for the classS of weighted sums of independent Bernoullis with constantlymany
distinct weights. Finally, the lower bound of Theorem 3 is proved by a direct information-theoretic argument.
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1.4 Preliminaries

For a distributionX supported on[n] = {0, 1, . . . , n} we writeX(i) to denote the valuePr[X = i] of the pdf,
andX(≤ i) to denote the valuePr[X ≤ i] of the cdf. ForS ⊆ [n] we writeX(S) to denote

∑
i∈S X(i) and

XS to denote the conditional distribution ofX restricted toS.
Recall that thetotal variation distancebetween two distributionsX andY over a finite domainD is

dTV (X,X) := (1/2) · ∑
α∈D

|X(α) − Y (α)| = max
S⊆D

[X(S) − Y (S)].

Fix a finite domainD, and letP denote some set of distributions overD. Given δ > 0, a subsetQ ⊆ P
is said to be aδ-cover ofP (w.r.t. total variation distance) if for every distribution P in P there exists some
distributionQ in Q such thatdTV (P,Q) ≤ δ.

We writeS = Sn to denote the set of all PBDsX =
∑n

i=1 Xi. We sometimes write{Xi} to denote the
PBDX =

∑n
i=1 Xi.

We also define theTranslated Poisson distributionas follows.

Definition 1 ([R0̈7]) We say that an integer random variableY has atranslated Poisson distribution with pa-
rametersµ andσ2, written Y = TP (µ, σ2), if Y = ⌊µ − σ2⌋ + Poisson(σ2 + {µ − σ2}), where{µ − σ2}
represents the fractional part ofµ− σ2.

Translated Poisson distributions are useful to us because known results bound how far they are from PBDs
and from each other. We will use the following results:

Lemma 1 (see (3.4) of [R̈07]) LetJ1, . . . , Jn be a sequence of independent random indicators withE[Ji] = pi.
Then

dTV

(
n∑

i=1

Ji, TP (µ, σ2)

)
≤

√∑n
i=1 p

3
i (1− pi) + 2

∑n
i=1 pi(1− pi)

,

whereµ =
∑n

i=1 pi andσ2 =
∑n

i=1 pi(1− pi).

Lemma 2 (Lemma 2.1 of [BL06]) Letµ1, µ2 ∈ R andσ2
1, σ

2
2 ∈ R+ \{0} be such that⌊µ1−σ2

1⌋ ≤ ⌊µ2−σ2
2⌋.

Then

dTV (TP (µ1, σ
2
1), TP (µ2, σ

2
2)) ≤

|µ1 − µ2|
σ1

+
|σ2

1 − σ2
2|+ 1

σ2
1

.

2 Learning an unknown sum of Bernoullis from poly(1/ǫ) samples

In this section we prove our main result, Theorem 1, by givinga sample- and time-efficient algorithm for learning
an unknown PBDX =

∑n
i=1Xi.

A cover for PBDs. An important ingredient in our analysis is the following theorem, which is an extension of
Theorem 9 of the full version of [DP11]. It defines a cover (in total variation distance) of the spaceS = Sn of
all order-n PBDs:

Theorem 4 (Cover for PBDs) For all ǫ > 0, there exists anǫ-coverSǫ ⊆ S of S such that

1. |Sǫ| ≤ n3 ·O(1/ǫ) + n ·
(
1
ǫ

)O(log2 1/ǫ)
; and

2. The setSǫ can be constructed in time linear in its representation size, i.e. Õ(n3/ǫ)+ Õ(n) ·
(
1
ǫ

)O(log2 1/ǫ)
.

Moreover, if{Yi} ∈ Sǫ, then the collection{Yi} has one of the following forms, wherek = k(ǫ) ≤ C/ǫ is a
positive integer, for some absolute constantC > 0:
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(i) (Sparse Form) There is a valueℓ ≤ k3 = O(1/ǫ3) such that for alli ≤ ℓwe haveE[Yi] ∈
{

1
k2 ,

2
k2 , . . . ,

k2−1
k2

}
,

and for all i > ℓ we haveE[Yi] ∈ {0, 1}.

(ii) (k-heavy Binomial Form) There is a valueℓ ∈ {0, 1, . . . , n} and a valueq ∈
{

1
kn ,

2
kn , . . . ,

kn−1
kn

}
such

that for all i ≤ ℓ we haveE[Yi] = q; for all i > ℓ we haveE[Yi] ∈ {0, 1}; and ℓ, q satisfy the bounds
ℓq ≥ k2 − 1

k andℓq(1− q) ≥ k2 − k − 1− 3
k .

Finally, for every{Xi} ∈ S for which there is noǫ-neighbor inSǫ that is in sparse form, there exists a collection
{Yi} ∈ Sǫ in k-heavy Binomial form such that

(iii) dTV (
∑

iXi,
∑

i Yi) ≤ ǫ; and

(iv) if µ = E[
∑

iXi], µ′ = E[
∑

i Yi], σ2 = Var[
∑

i Xi] andσ′2 = Var[
∑

i Yi], then|µ − µ′| = O(ǫ) and
|σ2 − σ′2| = O(1 + ǫ · (1 + σ2)).

We remark that [Das08] establishes the same theorem, exceptthat the size of the cover isn3 · O(1/ǫ) + n ·(
1
ǫ

)O(1/ǫ2)
. Indeed, this weaker bound is obtained by including in the cover all possible collections{Yi} ∈ S

in sparse form and all possible collections ink-heavy Binomial form, fork = O(1/ǫ) specified by the theorem.
[DP11] obtains a smaller cover by only selecting a subset of the collections in sparse form included in the cover
of [Das08]. Finally, the cover theorem stated in [Das08, DP11] does not include the part of the above statement
following “finally.” We provide a proof of this extension in Section 4.1.

We remark also that our analysis in this paper in fact establishes a slightly stronger version of the above
theorem, with an improved bound on the cover size (as a function ofn) and stronger conditions on the Binomial
Form distributions in the cover. We present this strengthened version of the Cover Theorem in Section 4.2.

The learning algorithm. Our algorithmLearn-PBD has the general structure shown below (a detailed version
is given later).

Learn-PBD

1. RunLearn-SparseX(n, ǫ, δ/3) to get hypothesis distributionHS.
2. RunLearn-PoissonX(n, ǫ, δ/3) to get hypothesis distributionHP .
3. Return the distribution which is the output ofChoose-HypothesisX(HS ,HP , ǫ, δ/3).

Figure 1:Learn-PBD

The subroutineLearn-SparseX is given sample access toX and is designed to find anǫ-accurate hypothesis
if the target PBDX is ǫ-close to some sparse form PBD inside the coverSǫ; similarly, Learn-PoissonX

is designed to find anǫ-accurate hypothesis ifX is not ǫ-close to a sparse form PBD (in this case, Theorem 4
implies thatX must beǫ-close to somek(ǫ)-heavy Binomial form PBD). Finally,Choose-HypothesisX

is designed to choose one of the two hypothesesHS,HP as beingǫ-close toX. The following subsections
describe and prove correctness of these subroutines. We remark that the subroutinesLearn-Sparse and
Learn-Poisson do not return the distributionsHS andHP as a list of probabilities for every point in[n];
rather, they return a succinct description of these distributions in order to keep the running time of the algorithm
logarithmic inn.

2.1 Learning whenX is close to a Sparse Form PBD

Our starting point here is the simple observation that any PBD is a unimodal distribution over the domain
{0, 1, . . . , n} (there is a simple inductive proof of this, or see Section 2 of[KG71]). This will enable us to use
the algorithm of Birgé [Bir97] for learning unimodal distributions. We recall Birgé’s result, and refer the reader
to Section 5 for an explanation of how Theorem 5 as stated below follows from [Bir97].
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Theorem 5 ([Bir97]) For all n, ǫ, δ > 0, there is an algorithm that drawslognǫ3 · Õ(log 1
δ ) samples from an

unknown unimodal distributionX over [n], doesÕ
(
log2 n
ǫ3

log2 1
δ

)
bit-operations, and outputs a (succinct de-

scription of a) hypothesis distributionH over [n] that has the following form:H is uniform over subintervals

[a1, b1], [a2, b2], . . . , [ak, bk], whose union∪k
i=1[ai, bi] = [n], wherek = O

(
logn
ǫ3

)
. In particular, the algorithm

outputs the listsa1 throughak and b1 throughbk, as well as the total probability mass thatH assigns to each
subinterval[ai, bi], i = 1, . . . , k. Finally, with probability at least1− δ, dTV (X,H) ≤ ǫ.

In the rest of this subsection we prove the following:

Lemma 3 For all n, ǫ′, δ′ > 0, there is an algorithmLearn-SparseX(n, ǫ′, δ′) that drawsO( 1
ǫ′3

log 1
ǫ′ log

1
δ′ )

samples from a target PBDX over [n], doeslog n · Õ
(

1
ǫ′3 log

1
δ′

)
-bit operations, and outputs a (succinct de-

scription of a) hypothesis distributionHS over [n] that has the following form: its support is contained in an
explicitly specified interval[a, b] ⊂ [n], where|b − a| = O(1/ǫ′3), and for every point in[a, b] the algorithm
explicitly specifies the probability assigned to that pointby HS. 3 Moreover, the algorithm has the following
guarantee: SupposeX is ǫ′-close to some sparse form PBDY in the coverSǫ′ of Theorem 4. Then, with proba-
bility at least1− δ′, dTV (X,HS) ≤ c1ǫ

′, for some absolute constantc1 ≥ 1, and the support ofHS is a subset
of the support ofY .

Proof: The AlgorithmLearn-SparseX(n, ǫ′, δ′) works as follows: It first drawsM = 32 log(8/δ′)/ǫ′2

samples fromX and sorts them to obtain a list of values0 ≤ s1 ≤ · · · ≤ sM ≤ n. In terms of these samples, let
us definêa := s⌈2ǫ′M⌉ andb̂ := s⌊(1−2ǫ′)M⌋. We claim the following:

Claim 4 With probability at least1 − δ′/2, we haveX(≤ â) ∈ [3ǫ′/2, 5ǫ′/2] andX(≤ b̂) ∈ [1 − 5ǫ′/2, 1 −
3ǫ′/2].

Proof of Claim 4: We only show thatX(≤ â) ≥ 3ǫ′/2 with probability at least1 − δ′/8, since the arguments
for X(≤ â) ≤ 5ǫ′/2, X(≤ b̂) ≤ 1 − 3ǫ′/2 andX(≤ b̂) ≥ 1 − 5ǫ′/2 are identical. Given that each of these
conditions is met with probability at least1− δ′/8, the union bound establishes our claim.

To show thatX(≤ â) ≥ 3ǫ′/2 is satisfied with probability at least1 − δ′/8 we argue as follows: Let
α′ = max{i | X(≤ i) < 3ǫ′/2}. Clearly,X(≤ α′) < 3ǫ′/2 while X(≤ α′ + 1) ≥ 3ǫ′/2. Given this, of
M samples drawn fromX an expected number of at most3ǫ′M/2 samples are≤ α′. It follows then from the
Chernoff bound that the probability that more than7

4ǫ
′M samples are≤ α′ is at moste−(ǫ′/4)2M/2 ≤ δ′/8.

Hence,̂a ≥ α′ + 1, which implies thatX(≤ â) ≥ 3ǫ′/2. �

If b̂ − â > (C/ǫ′)3, whereC is the constant in the statement of Theorem 4, the algorithm outputs “fail”,
returning the trivial hypothesis which puts probability mass1 on the point0. Otherwise, the algorithm runs
Birgé’s unimodal distribution learner (Theorem 5) on the conditional distributionX[â,b̂], and outputs the result
of Birgé’s algorithm. SinceX is unimodal, it follows thatX[â,b̂] is also unimodal, hence Birgé’s algorithm is
appropriate for learning it. The way we apply Birgé’s algorithm to learnX[â,b̂] given samples from the original

distributionX is the obvious one: we draw samples fromX, ignoring all samples that fall outside of[â, b̂], until
the rightO(log(1/δ′) log(1/ǫ′)/ǫ′3) number of samples fall inside[â, b̂], as required by Birgé’s algorithm for
learning a distribution of support of size(C/ǫ′)3 with probability 1 − δ′/4. Once we have the right number
of samples in[â, b̂], we run Birgé’s algorithm to learn the conditional distribution X[â,b̂]. Note that the number

of samples we need to draw fromX until the rightO(log(1/δ′) log(1/ǫ′)/ǫ′3) number of samples fall inside
[â, b̂] is still O(log(1/δ′) log(1/ǫ′)/ǫ′3), with probability at least1− δ′/4. Indeed, sinceX([â, b̂]) = 1−O(ǫ′),
it follows from the Chernoff bound that with probability at least1 − δ′/4, if K = Θ(log(1/δ′) log(1/ǫ′)/ǫ′3)
samples are drawn fromX, at leastK(1−O(ǫ′)) fall inside [â, b̂].

3In particular, our algorithm will output a list of pointers,mapping every point in[a, b] to some memory location where the probability
assigned to that point byHS is written.
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Analysis: It is easy to see that the sample complexity of our algorithm is as promised. For the running time,
notice that, if Birgé’s algorithm is invoked, it will return two lists of numbersa1 throughak and b1 through
bk, as well as a list of probability massesq1, . . . , qk assigned to each subinterval[ai, bi], i = 1, . . . , k, by the
hypothesis distributionHS, wherek = O(log(1/ǫ′)/ǫ′). In linear time, we can compute a list of probabilities
q̂1, . . . , q̂k, representing the probability assigned byHS to every point of subinterval[ai, bi], for i = 1, . . . , k.
So we can represent our output hypothesisHS via a data structure that maintainsO(1/ǫ′3) pointers, having
one pointer per point inside[a, b]. The pointers map points to probabilities assigned byHS to these points.
Thus turning the output of Birgé’s algorithm into an explicit distribution over[a, b] incurs linear overhead in our
running time, and hence the running time of our algorithm is also as promised. Moreover, we also note that the
output distribution has the promised structure, since in one case it has a single atom at0 and in the other case it
is the output of Birgé’s algorithm on a distribution of support of size(C/ǫ′)3.

It only remains to justify the last part of the lemma. LetY be the sparse-form PBD thatX is close to;
say thatY is supported on{a′, . . . , b′} whereb′ − a′ ≤ (C/ǫ′)3. SinceX is ǫ′-close toY in total variation
distance it must be the case thatX(≤ a′ − 1) ≤ ǫ′. SinceX(≤ â) ≥ 3ǫ′/2 by Claim 4, it must be the
case that̂a ≥ a′. Similar arguments give that̂b ≤ b′. So the interval[â, b̂] is contained in[a′, b′] and has
length at most(C/ǫ′)3. This means that Birgé’s algorithm is indeed used correctly by our algorithm to learn
X[â,b̂], with probability at least1 − δ′/2 (that is, unless Claim 4 fails). Now it follows from the correctness of
Birgé’s algorithm (Theorem 5) and the discussion above, that the hypothesisHS output when Birgé’s algorithm
is invoked satisfiesdTV (HS,X[â,b̂]) ≤ ǫ′, with probability at least1 − δ′/2, i.e. unless either Birgé’s algorithm

fails, or we fail to get the right number of samples landing inside[â, b̂]. To conclude the proof of the lemma we
note that:

2dTV (X,X[â,b̂]) =
∑

i∈[â,b̂]

|X[â,b̂](i)−X(i)| +
∑

i/∈[â,b̂]

|X[â,b̂](i)−X(i)|

=
∑

i∈[â,b̂]

∣∣∣ 1

X([â, b̂])
X(i) −X(i)

∣∣∣+
∑

i/∈[â,b̂]

X(i)

=
∑

i∈[â,b̂]

∣∣∣ 1

1−O(ǫ′)
X(i) −X(i)

∣∣∣ +O(ǫ′)

=
O(ǫ′)

1−O(ǫ′)

∑

i∈[â,b̂]

∣∣∣X(i)
∣∣∣ +O(ǫ′) = O(ǫ′).

So the triangle inequality gives:dTV (HS ,X) = O(ǫ′), and Lemma 3 is proved.

2.2 Learning whenX is close to ak-heavy Binomial Form PBD

Lemma 5 For all n, ǫ′, δ′ > 0, there is an algorithmLearn-PoissonX(n, ǫ′, δ′) that drawsO(log(1/δ′)/ǫ′2)
samples from a target PBDX over[n], runs in timeO(log n · log(1/δ′)/ǫ′2), and returns two parameterŝµ and
σ̂2. Moreover, the algorithm has the following guarantee: SupposeX is not ǫ′-close to any Sparse Form PBD
in the coverSǫ′ of Theorem 4. LetHP be the translated Poisson distribution with parametersµ̂ and σ̂2, i.e.
HP = TP (µ̂, σ̂2). Then with probability at least1 − δ′ we havedTV (X,HP ) ≤ c2ǫ

′, for some absolute
constantc2 ≥ 1.

Our proof plan is to exploit the structure of the cover of Theorem 4. In particular, ifX is notǫ′-close to any
Sparse Form PBD in the cover, it must beǫ′-close to a PBD in Heavy Binomial Form with approximately the
same mean and variance asX, as specified by the final part of the cover theorem. Now, giventhat a PBD in
Heavy Binomial Form is just a translated Binomial distribution, a natural strategy is to estimate the mean and
variance of the target PBDX and output as a hypothesis a translated Poisson distribution with these parameters.
We show that this strategy is a successful one.

7



We start by showing that we can estimate the mean and varianceof the target PBDX.

Lemma 6 For all n, ǫ, δ > 0, there exists an algorithmA(n, ǫ, δ) with the following properties: given access to
a PBDX over [n], it produces estimateŝµ and σ̂2 for µ = E[X] andσ2 = Var[X] respectively such that with
probability at least1− δ:

|µ− µ̂| ≤ ǫ · σ and |σ2 − σ̂2| ≤ ǫ · σ2

√
4 +

1

σ2
.

The algorithm usesO(log(1/δ)/ǫ2) samples and runs in timeO(log n log(1/δ)/ǫ2).

Proof of Lemma 6: We treat the estimation ofµ andσ2 separately. For both estimation problems we show
how to useO(1/ǫ2) samples to obtain estimateŝµ and σ̂2 achieving the required guarantees with probability
at least2/3. Then a routine procedure allows us to boost the success probability to 1 − δ at the expense of a
multiplicative factorO(log 1/δ) on the number of samples. While we omit the details of the routine boosting
argument, we remind the reader that it involves running the weak estimatorO(log 1/δ) times to obtain estimates
µ̂1, . . . , µ̂O(log 1/δ) and outputting the median of these estimates, and similarlyfor estimatingσ2.

We proceed to specify and analyze the weak estimators forµ andσ2 separately:

• Weak estimator forµ: LetZ1, . . . , Zm be independent samples fromX, and letµ̂ =
∑

i Zi

m . Then

E[µ̂] = µ and Var[µ̂] =
1

m
Var[X] =

1

m
σ2.

So Chebyshev’s inequality implies that

Pr[|µ̂ − µ| ≥ tσ/
√
m] ≤ 1

t2
.

Choosingt =
√
3 andm = 3/ǫ2, the above imply that|µ̂− µ| ≤ ǫσ with probability at least2/3.

• Weak estimator forσ2: Let Z1, . . . , Zm be independent samples fromX, and letσ̂2 =
∑

i(Zi−
1
m

∑
i Zi)2

m−1
be the unbiased sample variance (note the use of Bessel’s correction). Then it can be checked [Joh03] that

E[σ̂2] = σ2 and Var[σ̂2] = σ4

(
2

m− 1
+

κ

m

)
,

whereκ is the kurtosis of the distribution ofX. To boundκ in terms ofσ2 suppose thatX =
∑n

i=1 Xi,
whereE[Xi] = pi for all i. Then

κ =
1

σ4

∑

i

(1− 6pi(1− pi))(1 − pi)pi (see [NJ05])

≤ 1

σ4

∑

i

|1− 6pi(1− pi)|(1 − pi)pi

≤ 1

σ4

∑

i

(1− pi)pi =
1

σ2
.

SoVar[σ̂2] = σ4
(

2
m−1 + κ

m

)
≤ σ4

m (4 + 1
σ2 ). So Chebyshev’s inequality implies that

Pr

[
|σ̂2 − σ2| ≥ t

σ2

√
m

√
4 +

1

σ2

]
≤ 1

t2
.

Choosingt =
√
3 andm = 3/ǫ2, the above imply that|σ̂2 − σ2| ≤ ǫσ2

√
4 + 1

σ2 with probability at least

2/3.
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Proof of Lemma 5: Suppose now thatX is not ǫ′-close to any PBD in sparse form inside the coverSǫ′ of
Theorem 4. Then there exists a PBDZ in k = k(ǫ′)-heavy Binomial form insideSǫ′ that is within total variation
distanceǫ′ from X. We use the existence of such aZ to obtain lower bounds on the mean and variance ofX.
Indeed, suppose that the distribution ofZ is Bin(ℓ, q) + t, i.e. a Binomial with parametersℓ, q that is translated
by t. Then Theorem 4 certifies that the following conditions are satisfied by the parametersℓ, q, t, µ = E[X]
andσ2 = Var[X]:

(a) ℓq ≥ k2 − 1
k ;

(b) ℓq(1− q) ≥ k2 − k − 1− 3
k ;

(c) |t+ ℓq − µ| = O(ǫ′); and

(d) |ℓq(1− q)− σ2| = O(1 + ǫ · (1 + σ2)).

In particular, conditions (b) and (d) above imply that

σ2 = Ω(k2) = Ω(1/ǫ′2) ≥ θ2 (1)

for some universal constantθ. Hence we can apply Lemma 6 withǫ = ǫ′/
√

4 + 1
θ2 andδ = δ′ to obtain—from

O(log(1/δ′)/ǫ′2) samples and with probability at least1− δ′—estimateŝµ andσ̂2 of µ andσ2 respectively that
satisfy

|µ− µ̂| ≤ ǫ′ · σ and |σ2 − σ̂2| ≤ ǫ′ · σ2. (2)

Now letY be a random variable distributed according to the translated Poisson distributionTP (µ̂, σ̂2). We
conclude the proof of Lemma 5 by showing thatY andX are withinO(ǫ′) in total variation distance.

Claim 7 If X andY are as above, thendTV (X,Y ) ≤ O(ǫ′).

Proof of Claim 7: We make use of Lemma 1. Suppose thatX =
∑n

i=1Xi, whereE[Xi] = pi for all i.
Lemma 1 implies that

dTV (X,TP (µ, σ2)) ≤

√∑
i p

3
i (1− pi) + 2

∑
i pi(1− pi)

≤
√∑

i pi(1 − pi) + 2∑
i pi(1− pi)

≤ 1√∑
i pi(1− pi)

+
2∑

i pi(1− pi)
=

1

σ
+

2

σ2
= O(ǫ′). (3)

It remains to bound the total variation distance between thetranslated Poisson distributionsTP (µ, σ2) and
TP (µ̂, σ̂2). For this we use Lemma 2. Lemma 2 implies

dTV (TP (µ, σ2), TP (µ̂, σ̂2)) ≤ |µ− µ̂|
min(σ, σ̂)

+
|σ2 − σ̂2|+ 1

min(σ2, σ̂2)

≤ ǫ′σ

min(σ, σ̂)
+

ǫ′ · σ2 + 1

min(σ2, σ̂2)

≤ ǫ′σ

σ/
√
1− ǫ′

+
ǫ′ · σ2 + 1

σ2/(1 − ǫ′)

= O(ǫ′) +
1− ǫ′

σ2

= O(ǫ′) +O(ǫ′2)

= O(ǫ′). (4)
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The claim follows from (3), (4) and the triangle inequality.This concludes the proof of Lemma 5 as well.�

As a final remark, we note that the algorithm described above does not need to know a priori whether or notX is
ǫ′-close to a PBD in sparse form inside the coverSǫ′ of Theorem 4. The algorithm simply runs the estimator of

Lemma 6 withǫ = ǫ′/
√

4 + 1
θ2 andδ′ = δ and outputs whatever estimatesµ̂ andσ̂2 the algorithm of Lemma 6

produces.

2.3 Hypothesis testing

Our hypothesis testing routineChoose-HypothesisX runs a simple “competition” to choose a winner be-
tween two candidate hypothesis distributionsH1 andH2 over[n] that it is given in the input either explicitly, or
in some succinct way. We show that if at least one of the two candidate hypotheses is close to the target distribu-
tionX, then with high probability over the samples drawn fromX the routine selects as winner a candidate that
is close toX. This basic approach of running a competition between candidate hypotheses is quite similar to
the “Scheffé estimate” proposed by Devroye and Lugosi (see[DL96b, DL96a] and Chapter 6 of [DL01]), which
in turn built closely on the work of [Yat85], but there are some small differences between our approach and
theirs; the [DL01] approach uses a notion of the “competition” between two hypotheses which is not symmetric
under swapping the two competing hypotheses, whereas our competition is symmetric. We obtain the following
lemma, postponing all running-time analysis to the next section.

Lemma 8 There is an algorithmChoose-HypothesisX(H1,H2, ǫ
′, δ′) which is given oracle access toX,

two hypothesis distributionsH1,H2 for X, an accuracy parameterǫ′, and a confidence parameterδ′. It makes
m = O(log(1/δ′)/ǫ′2) draws fromX and returns someH ∈ {H1,H2}. If one ofH1,H2 hasdTV (Hi,X) ≤ ǫ′

then with probability1− δ′ theH thatChoose-Hypothesis returns hasdTV (H,X) ≤ 6ǫ′.

Proof: Let W be the support ofX. To set up the competition betweenH1 andH2, we define the following
subset ofW:

W1 = W1(H1,H2) := {w ∈ W H1(w) > H2(w)} . (5)

Let thenp1 = H1(W1) andq1 = H2(W1). Clearly,p1 > q1 anddTV (H1,H2) = p1 − q1.
The competition betweenH1 andH2 is carried out as follows:

1. If p1 − q1 ≤ 5ǫ′, declare a draw and return eitherHi. Otherwise:

2. Drawm = O
(
log(1/δ′)

ǫ′2

)
sampless1, . . . , sm from X, and letτ = 1

m |{i | si ∈ W1}| be the fraction of

samples that fall insideW1.

3. If τ > p1 − 3
2ǫ

′, declareH1 as winner and returnH1; otherwise,

4. if τ < q1 +
3
2ǫ

′, declareH2 as winner and returnH2; otherwise,

5. declare a draw and return eitherHi.

It is not hard to check that the outcome of the competition does not depend on the ordering of the pair of
distributions provided in the input; that is, on inputs(H1,H2) and(H2,H1) the competition outputs the same
result for a fixed sequence of sampless1, . . . , sm drawn fromX.

The correctness ofChoose-Hypothesis is an immediate consequence of the following claim. (In fact
for Lemma 8 we only need item (i) below, but item (ii) will be handy later in the proof of Lemma 11.)

Claim 9 Suppose thatdTV (X,H1) ≤ ǫ′. Then:
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(i) If dTV (X,H2) > 6ǫ′, then the probability that the competition betweenH1 andH2 does not declareH1

as the winner is at moste−mǫ′2/2. (Intuitively, if H2 is very bad then it is very likely thatH1 will be
declared winner.)

(ii) If dTV (X,H2) > 4ǫ′, the probability that the competition betweenH1 andH2 declaresH2 as the winner
is at moste−mǫ′2/2. (Intuitively, ifH2 is only moderately bad then a draw is possible but it is very unlikely
thatH2 will be declared winner.)

Proof: Let r = X(W1). The definition of the total variation distance implies that|r − p1| ≤ ǫ′. Let us
define the0/1 (indicator) random variables{Zj}mj=1 asZj = 1 iff sj ∈ W1. Clearly, τ = 1

m

∑m
j=1Zj

andE[τ ] = E[Zj] = r. Since theZj ’s are mutually independent, it follows from the Chernoff bound that
Pr[τ ≤ r − ǫ′/2] ≤ e−mǫ′2/2. Using|r − p1| ≤ ǫ′ we get thatPr[τ ≤ p1 − 3ǫ′/2] ≤ e−mǫ′2/2. Hence:

• For part (i): IfdTV (X,H2) > 6ǫ′, from the triangle inequality we get thatp1− q1 = dTV (H1,H2) > 5ǫ′.
Hence, the algorithm will go beyond step 1, and with probability at least1− e−mǫ′2/2, it will stop at step
3, declaringH1 as the winner of the competition betweenH1 andH2.

• For part (ii): If p1− q1 ≤ 5ǫ′ then the competition declares a draw, henceH2 is not the winner. Otherwise
we havep1 − q1 > 5ǫ′ and the above arguments imply that the competition betweenH1 andH2 will
declareH2 as the winner with probability at moste−mǫ′2/2.

This concludes the proof of Claim 9 and of Lemma 8.

2.4 Proof of Theorem 1

We first treat Part (1) of the theorem, where the learning algorithm may output any distribution over[n] and not
necessarily a PBD. Our algorithm has the structure outlinedin Figure 1 with the following modifications: (a) if
the target total variation distance isǫ, the second argument of bothLearn-Sparse andLearn-Poisson is
set to ǫ

12max{c1,c2}
, wherec1 andc2 are respectively the constants from Lemmas 3 and 5; (b) we replace the third

step withChoose-HypothesisX(HS , ĤP , ǫ/8, δ/3), whereĤP is defined in terms ofHP as described be-
low. If Choose-Hypothesis returnsHS , thenLearn-PBDalso returnsHS , while if Choose-Hypothesis
returnsĤP , thenLearn-PBD returnsHP . We proceed to the definition of̂HP .

Definition of ĤP : For every pointi whereHS(i) = 0, we let ĤP (i) = HP (i). For the pointsi where
HS(i) 6= 0, in Theorem 7 of Section 6 we describe an efficient deterministic algorithm that numerically ap-
proximatesHP (i) to within an additive±ǫ/24s, wheres = O(1/ǫ3) is the cardinality of the support ofHS.
We defineĤP (i) to equal the approximation toHP (i) that is output by the algorithm of Theorem 7. Observe
thatĤP satisfiesdTV (ĤP ,HP ) ≤ ǫ/24, and therefore|dTV (ĤP ,X) − dTV (X,HP )| ≤ ǫ/24. In particular, if
dTV (X,HP ) ≤ ǫ

12 , thendTV (X, ĤP ) ≤ ǫ
8 , and ifdTV (X, ĤP ) ≤ 6ǫ

8 , thendTV (X,HP ) ≤ ǫ.
We do not useHP directly inChoose-Hypothesisbecause of computational considerations. SinceHP

is a translated Poisson distribution, we cannot compute itsvaluesHP (i) exactly, but using approximate values
may causeChoose-Hypothesis to make a mistake. So we usêHP instead ofHP in Choose-Hypothesis;
ĤP is carefully designed both to be close enough toHP so thatChoose-Hypothesiswill select a probability
distribution close to the targetX, and to allow efficient computation of all probabilities that Choose-Hypothesis
needs without much overhead. In particular, we remark that in runningChoose-Hypothesis we do not a
priori compute the value of̂HP at every point; we do instead a lazy evaluation of̂HP , as explained in the
running-time analysis below.

We proceed now to the analysis of our modified algorithmLearn-PBD. The sample complexity bound
and correctness of our algorithm are immediate consequences of Lemmas 3, 5 and 8, taking into account the
precise choice of constants and the distance betweenHP and ĤP . To bound the running time, Lemmas 3
and 5 bound the running time of Steps 1 and 2 of the algorithm, so it remains to bound the running time of
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theChoose-Hypothesis step. Notice thatW1(HS, ĤP ) is a subset of the support of the distributionHS.
Hence to computeW1(HS , ĤP ) it suffices to determine the probabilitiesHS(i) andĤP (i) for every pointi in
the support ofHS. For every suchi, HS(i) is explicitly given in the output ofLearn-Sparse, so we only
need to computêHP (i). Theorem 7 implies that the time needed to computêHP (i) is Õ(log3(1/ǫ) + log n +
|µ̂| + |σ̂2|), where|µ̂| and |σ̂2| are respectively the description complexities (bit lengths) of µ̂ and σ̂2. Since
these parameters are output byLearn-Poisson, by inspection of that algorithm it is easy to see that they are
each at mostO(log n+ log log(1/δ) + log(1/ǫ)). Hence, given that the support ofHS has cardinalityO(1/ǫ3),
the overall time spent computing all probabilities under̂HP is Õ( 1

ǫ3 log n log 1
δ ). After W1 is computed, the

computation of the valuesp1 = HS(W1), q1 = ĤP (W1) andp1 − q1 takes time linear in the data produced by
the algorithm so far, as these computations merely involve adding and subtracting probabilities that have already
been explicitly computed by the algorithm. Computing the fraction of samples fromX that fall insideW1 takes
time O

(
log n · log(1/δ)/ǫ2

)
and the rest ofChoose-Hypothesis takes time linear in the size of the data

that have been written down so far. Hence the overall runningtime of our algorithm isÕ( 1
ǫ3
log n log 1

δ ). This
gives Part (1) of Theorem 1.

Next we turn to Part (2) of Theorem 1, the proper learning result. We explain how to modify the algorithm
of Part (1) to produce a PBD that is withinO(ǫ) of the targetX. We only need to add two post-processing steps
convertingHS andHP to PBDs; we describe and analyze these two steps below. For convenience we writec to
denotemax{c1, c2} ≥ 1 in the following discussion.

1. Locate-Sparse(HS,
ǫ

12c ): This routine searches the sparse-form PBDs inside the cover S ǫ
12c

to iden-
tify a sparse-form PBD that is within distanceǫ6 from HS, or outputs “fail” if it cannot find one. Note
that if there is a sparse-form PBDY that is ǫ

12c -close toX andLearn-Sparse succeeds, thenY
must be ǫ

6 -close toHS, since by Lemma 3 wheneverLearn-Sparse succeeds the output distribu-
tion satisfiesdTV (X,HS) ≤ ǫ

12 . We show that if there is a sparse-form PBDY that is ǫ
12c -close to

X andLearn-Sparse succeeds (an event that occurs with probability1 − δ/3, see Lemma 3), our
Locate-Sparse search routine, described below, will output a sparse-formPBD that isǫ

6 -close toHS.
Indeed, given the preceding discussion, if we searched overall sparse-form PBDs inside the cover, it
would be trivial to meet this guarantee. To save on computation time, we prune the set of sparse-form

PBDs we search over, completing the entire search in time
(
1
ǫ

)O(log2 1/ǫ)
log n log 1/δ.

Here is a detailed explanation and run-time analysis of the improved search: First, note that the description
complexity ofHS is poly(1/ǫ) · Õ(log n log(1/δ)) asHS is output by an algorithm with this running
time. Moreover, given a sparse-form PBD inS ǫ

12c
, we can compute all probabilities in the support of the

distribution in timepoly(1/ǫ) log n. Indeed, by part (i) of Theorem 4 a sparse-form PBD hasO(1/ǫ3)
non-trivial Bernoulli random variables and those each use probabilitiespi that are integer multiples of
some value which isΩ(ǫ2). So an easy dynamic programming algorithm can compute all probabilities
in the support of the distribution in timepoly(1/ǫ) log n, where thelog n overhead is due to the fact that
the support of the distribution is some interval in[n]. Finally, we argue that we can restrict our search
to only a small subset of the sparse-form PBDs inS ǫ

12c
. For this, we note that we can restrict our search

to sparse-form PBDs whose support is a superset of the support of HS. Indeed, the final statement of
Lemma 3 implies that, ifY is an arbitrary sparse-form PBD that isǫ12c -close toX, then with probability
1 − δ/3 the outputHS of Learn-Sparsewill have support that is a subset of the support ofY . Given

this, we only need to try
(
1
ǫ

)O(log2 1/ǫ)
sparse-form PBDs in the cover to find one that is close toHS.

Hence, the overall running time of our search is
(
1
ǫ

)O(log2 1/ǫ)
Õ(log n log 1/δ).

2. Locate-Binomial(µ̂, σ̂2, n): This routine tries to compute a Binomial distribution thatis O(ǫ)-close
to HP (recall thatHP ≡ TP (µ̂, σ̂2). Analogous toLocate-Sparse, we will show that ifX is not
ǫ

12c -close to any sparse-form distribution insideS ǫ
12c

andLearn-Poisson succeeds (for convenience
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we call these conditions our “working assumptions” in the following discussion), then the Binomial dis-
tribution output by our routine will beO(ǫ)-close toHP and thusO(ǫ)-close toX.

Let µ̂ andσ̂2 be the parameters output byLearn-Poisson, and letµ andσ2 be the (unknown) mean
and variance of the targetX. Our routine has several steps. The first two steps eliminatecorner-cases in
the valueŝµ andσ̂2 computed byLearn-Poisson, while the last step defines a Binomial distribution
B(n̂, p̂) with n̂ ≤ n that is close toHP ≡ TP (µ̂, σ̂2) under our working assumptions. (We note that a
significant portion of the work below is to ensure thatn̂ ≤ n, which does not seem to follow from a more
direct approach. Gettinĝn ≤ n is necessary in order for our learning algorithm for order-n PBDs to truly
be proper.) Throughout (a), (b) and (c) below we assume that our working assumptions hold (note that
this assumption is being used every time we employ results such as (1) or (2) from Section 2.2).

(a) Tweakingσ̂2: If σ̂2 ≤ n
4 then setσ2

1 = σ̂2, and otherwise setσ2
1 = n

4 . We note for future reference
that in both cases Equation (2) gives

σ2
1 ≤ (1 +O(ǫ))σ2. (6)

We claim that this setting ofσ2
1 results indTV (TP (µ̂, σ̂2), TP (µ̂, σ2

1)) ≤ O(ǫ). If σ̂2 ≤ n
4 then

this variation distance is zero and the claim certainly holds. Otherwise we have the following (see
Equation (2)):

(
1 +

ǫ

12c

)
σ2 ≥ σ̂2 > σ2

1 =
n

4
≥

n∑

i=1

pi(1− pi) = σ2.

Hence, by Lemma 2 we get:

dTV (TP (µ̂, σ̂2), TP (µ̂, σ2
1)) ≤

|σ̂2 − σ2
1 |+ 1

σ2
1

≤ O(ǫ)σ2 + 1

σ2
= O(ǫ), (7)

where we used the fact thatσ2 = Ω(1/ǫ2) (see (1)).

(b) Tweakingσ2
1: If µ̂2 ≤ n(µ̂ − σ2

1) then setσ2
2 = σ2

1 , and otherwise setσ2
2 = nµ̂−µ̂2

n . We claim that
this results indTV (TP (µ̂, σ2

1), TP (µ̂, σ2
2)) ≤ O(ǫ). If µ̂2 ≤ n(µ̂− σ2

1) then as before the variation
distance is zero and the claim holds. Otherwise, we observe that σ2

1 > σ2
2 andσ2

2 ≥ 0 (the last
assertion follows from the fact that̂µ must be at mostn). So we have (see (2)) that

|µ− µ̂| ≤ O(ǫ)σ ≤ O(ǫ)µ, (8)

which implies
n− µ̂ ≥ n− µ−O(ǫ)σ. (9)

We now observe that

µ2 =

(
n∑

i=1

pi

)2

≤ n

(
n∑

i=1

p2i

)
= n(µ− σ2)

where the inequality is Cauchy-Schwarz. Rearranging this yields

µ(n− µ)

n
≥ σ2. (10)

We now have that

σ2
2 =

µ̂(n− µ̂)

n
≥ (1−O(ǫ))µ(n − µ−O(ǫ)σ)

n
≥ (1−O(ǫ))

(
σ2 −O(ǫ)σ

)
, (11)
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where the first inequality follows from (8) and (9) and the second follows from (10) and the fact that
any PBD overn variables satisfiesµ ≤ n. Hence, by Lemma 2 we get:

dTV (TP (µ̂, σ2
1), TP (µ̂, σ2

2)) ≤
σ2
1 − σ2

2 + 1

σ2
2

≤ (1 +O(ǫ))σ2 − (1−O(ǫ))σ2 +O(ǫ)σ + 1

(1−O(ǫ))σ2 −O(ǫ)σ

≤ O(ǫ)σ2

(1−O(ǫ))σ2
= O(ǫ), (12)

where we used the boundσ2 = Ω(1/ǫ2) (see (1)).

(c) Constructing a Binomial Distribution: We construct a Binomial distributionHB that isO(ǫ)-close
to TP (µ̂, σ2

2). If we do this then we havedTV (HB ,HP ) = O(ǫ) by (7), (12) and the triangle
inequality. The Binomial distributionHB we construct isBin(n̂, p̂), where:

n̂ =

⌊
µ̂2

µ̂− σ2
2

⌋
and p̂ =

µ̂− σ2
2

µ̂
.

Note that by the wayσ2
2 is set in step (b) above we indeed haven̂ ≤ n as claimed in Part 2 of

Theorem 1.
Let us bound the total variation distance betweenBin(n̂, p̂) andTP (µ̂, σ2

2). Using Lemma 1 we
have:

dTV (Bin(n̂, p̂), TP (n̂p̂, n̂p̂(1− p̂)) ≤ 1√
n̂p̂(1− p̂)

+
2

n̂p̂(1− p̂)
. (13)

Notice that

n̂p̂(1− p̂) ≥
(

µ̂2

µ̂− σ2
2

− 1

)(
µ̂− σ2

2

µ̂

)(
σ2
2

µ̂

)
= σ2

2 − p̂(1− p̂) ≥ (1−O(ǫ))σ2 − 1 = Ω(1/ǫ2),

where the next-to-last step used (11) and the last used the fact thatσ2 = Ω(1/ǫ2) (see (1). So
plugging this into (13) we get:

dTV (Bin(n̂, p̂), TP (n̂p̂, n̂p̂(1− p̂)) = O(ǫ).

The next step is to compareTP (n̂p̂, n̂p̂(1− p̂)) andTP (µ̂, σ2
2). Lemma 2 gives:

dTV (TP (n̂p̂, n̂p̂(1− p̂)), TP (µ̂, σ2
2)) ≤

|n̂p̂− µ̂|
min(

√
n̂p̂(1− p̂), σ2)

+
|n̂p̂(1− p̂)− σ2

2 |+ 1

min(n̂p̂(1− p̂), σ2
2)

≤ 1√
n̂p̂(1− p̂)

+
2

n̂p̂(1− p̂)
= O(ǫ).

By the triangle inequality we getdTV (Bin(n̂, p̂), TP (µ̂, σ2
2) = O(ǫ), which was our ultimate goal.

Given the aboveLocate-SparseandLocate-Binomial routines, the algorithmProper-Learn-PBD
has the following structure: It first runsLearn-PBD with accuracy parametersǫ, δ. If Learn-PBD returns
the distributionHS computed by subroutineLearn-Sparse, thenProper-Learn-PBD outputs the result
of Locate-Sparse(HS,

ǫ
12c ). If, on the other hand,Learn-PBD returns the translated Poisson distribution

HP = TP (µ̂, σ̂2) computed by subroutineLearn-Poisson, thenProper-Learn-PBD returns the Bino-
mial distribution constructed by the routineLocate-Binomial(µ̂, σ̂2, n). It follows from the correctness of
Learn-PBD and the above discussion that, with probability1 − δ, the output ofProper-Learn-PBD is
within total variation distanceO(ǫ) of the targetX. The number of samples is the same as inLearn-PBD, and

the running time is
(
1
ǫ

)O(log2 1/ǫ) · Õ(log n log 1/δ).
This concludes the proof of Part 2 of Theorem 1, and thus of theentire theorem.
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3 Learning weighted sums of independent Bernoullis

In this section we consider a generalization of the problem of learning an unknown PBD, by studying the
learnability of weighted sums of independent Bernoulli random variablesX =

∑n
i=1wiXi. (Throughout this

section we assume for simplicity that the weights are “known” to the learning algorithm.) In Section 3.1 we show
that if there are only constantly many different weights then such distributions can be learned by an algorithm
that usesO(log n) samples and runs in timepoly(n). In Section 3.2 we show that if there aren distinct weights
then even if those weights have an extremely simple structure – thei-th weight is simplyi – any algorithm must
useΩ(n) samples.

3.1 Learning sums of weighted independent Bernoulli randomvariables with few distinct weights

Recall Theorem 2:

Theorem 2LetX =
∑n

i=1 aiXi be a weighted sum of unknown independent Bernoulli random variables such
that there are at mostk different values in the set{a1, . . . , an}. Then there is an algorithm with the following
properties: givenn, a1, . . . , an and access to independent draws fromX, it useslog(n) · Õ(k · ǫ−2) · log(1/δ)
samples from the target distributionX, runs in timepoly(nk · (k/ǫ)k log2(k/ǫ)) · log(1/δ), and with probability
1− δ outputs a hypothesis vectorp̂ ∈ [0, 1]n defining independent Bernoulli random variablesX̂i withE[X̂i] =
pi such thatdTV (X̂,X) ≤ ǫ, whereX̂ =

∑n
i=1 aiX̂i.

Given a vectora = (a1, . . . , an) of weights, we refer to a distributionX =
∑n

i=1 aiXi (whereX1, . . . ,Xn

are independent Bernoullis which may have arbitrary means)as ana-weighted sum of Bernoullis, and we write
Sa to denote the space of all such distributions.

To prove Theorem 2 we first show thatSa has anǫ-cover that is not too large. We then show that by running
a “tournament” between all pairs of distributions in the cover, using the hypothesis testing subroutine from
Section 2.3, it is possible to identify a distribution in thecover that is close to the targeta-weighted sum of
Bernoullis.

Lemma 10 There is anǫ-coverSa,ǫ ⊂ Sa of size|Sa,ǫ| ≤ (n/k)3k · (k/ǫ)k·O(log2(k/ǫ)) that can be constructed
in timepoly(|Sa,ǫ|).

Proof: Let {bj}kj=1 denote the set of distinct weights ina1, . . . , an, and letnj =
∣∣{i ∈ [n] | ai = bj}

∣∣. With

this notation, we can writeX =
∑k

j=1 bjSj = g(S), whereS = (S1, . . . , Sk) with eachSj a sum ofnj

many independent Bernoulli random variables andg(y1, . . . , yk) =
∑k

j=1 bjyj. Clearly we have
∑k

j=1 nj = n.

By Theorem 4, for eachj ∈ {1, . . . , k} the space of all possibleSj ’s has an explicit(ǫ/k)-coverSj
ǫ/k of size

|Sj
ǫ/k| ≤ n3

j · O(k/ǫ) + n · (k/ǫ)O(log2(k/ǫ)). By independence acrossSj ’s, the productQ =
∏k

j=1 S
j
ǫ/k is an

ǫ-cover for the space of all possibleS’s, and hence the set

{Q =
k∑

j=1
bjSj : (S1, . . . , Sk) ∈ Q}

is anǫ-cover forSa. SoSa has an explicitǫ-cover of size|Q| =∏k
j=1 |S

j
ǫ/k| ≤ (n/k)3k · (k/ǫ)k·O(log2(k/ǫ)).

(We note that a slightly stronger quantitative bound on the cover size can be obtained using Theorem 6
instead of Theorem 4, but the improvement is negligible for our ultimate purposes.)

Lemma 11 Let S be any collection of distributions over a finite set. Supposethat Sǫ ⊂ S is an ǫ-cover of
S of sizeN . Then there is an algorithm that usesO(ǫ−2 logN log(1/δ)) samples from an unknown target
distributionX ∈ S and with probability1− δ outputs a distributionZ ∈ Sǫ that satisfiesdTV (X,Z) ≤ 6ǫ.
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Devroye and Lugosi (Chapter 7 of [DL01]) prove a similar result by having all pairs of distributions in the
cover compete against each other using their notion of a competition, but again there are some small differences:
their approach chooses a distribution in the cover which wins the maximum number of competitions, whereas our
algorithm chooses a distribution that is never defeated (i.e. won or achieved a draw against all other distributions
in the cover).

Proof: The algorithm performs a tournament by running the competition Choose-HypothesisX(Hi,Hj, ǫ,
δ/(2N)) for every pair of distinct distributionsHi,Hj in the coverSǫ. It outputs a distributionY ⋆ ∈ Sǫ that
was never a loser (i.e. won or achieved a draw in all its competitions). If no such distribution exists inSǫ then
the algorithm outputs “failure.”

SinceSǫ is anǫ-cover ofS, there exists someY ∈ Sǫ such thatdTV (X,Y ) ≤ ǫ. We first argue that with
high probability this distributionY never loses a competition against any otherY ′ ∈ Sǫ (so the algorithm does
not output “failure”). Consider anyY ′ ∈ Sǫ. If dTV (X,Y ′) > 4ǫ, by Lemma 9(ii) the probability thatY loses
to Y ′ is at most2e−mǫ2/2 = O(1/N). On the other hand, ifdTV (X,Y ′) ≤ 4δ, the triangle inequality gives that
dTV (Y, Y

′) ≤ 5ǫ and thusY draws againstY ′. A union bound over allN distributions inSǫ shows that with
probability1− δ/2, the distributionY never loses a competition.

We next argue that with probability at least1− δ/2, every distributionY ′ ∈ Sǫ that never loses hasY ′ close
to X. Fix a distributionY ′ such thatdTV (Y

′,X) > 6ǫ; Lemma 9(i) implies thatY ′ loses toY with probability
1− 2e−mǫ2/2 ≥ 1− δ/(2N). A union bound gives that with probability1− δ/2, every distributionY ′ that has
dTV (Y

′,X) > 6ǫ loses some competition.
Thus, with overall probability at least1 − δ, the tournament does not output “failure” and outputs some

distributionY ⋆ such thatdTV (X,Y ⋆) is at most6ǫ. This proves the lemma.

Proof of Theorem 2: We claim that the algorithm of Lemma 11 has the desired samplecomplexity and can be
implemented to run in the claimed time bound. The sample complexity bound follows directly from Lemma 11.
It remains to argue about the time complexity. Note that the running time of the algorithm ispoly(|Sa,ǫ|) times
the running time of a competition. We will show that a competition betweenH1,H2 ∈ Sa,ǫ can be carried out by
an efficient algorithm. This amounts to efficiently computing the probabilitiesp1 = H1(W1) andq1 = H2(W1).
Note thatW =

∑k
j=1 bi · {0, 1, . . . , nj}. Clearly, |W| ≤ ∏k

j=1(nj + 1) = O((n/k)k). It is thus easy to see
thatp1, q1 can be efficiently computed as long as there is an efficient algorithm for the following problem: given
H =

∑k
j=1 bjSj ∈ Sa,ǫ andw ∈ W, computeH(w). Indeed, fix any suchH,w. We have that

H(w) =
∑

m1,...,mk

k∏
j=1

Pr
H
[Sj = mj],

where the sum is over allk-tuples(m1, . . . ,mk) such that0 ≤ mj ≤ nj for all j andb1m1 + · · · + bkmk = w
(as noted above there are at mostO((n/k)k) suchk-tuples). To complete the proof of Theorem 2 we note that
PrH [Sj = mj ] can be computed inO(n2

j) time by standard dynamic programming. �

We close this subsection with the following remark: In recent work [DDS11] the authors have given a
poly(ℓ, log(n), 1/ǫ)-time algorithm that learns anyℓ-modal distribution over[n] (i.e. a distribution whose pdf
has at mostℓ “peaks” and “valleys”) usingO(ℓ log(n)/ǫ3 + (ℓ/ǫ)3 log(ℓ/ǫ) log log(ℓ/ǫ)) samples. It is natural
to wonder whether this algorithm could be used to efficientlylearn a sum ofn weighted independent Bernoulli
random variables withk distinct weights, and thus give an alternate algorithm for Theorem 2, perhaps with bet-
ter asymptotic guarantees. However, it is easy to constructa sumX =

∑n
i=1 aiXi of n weighted independent

Bernoulli random variables withk distinct weights such thatX is 2k-modal. Thus a naive application of the
[DDS11] result would only give an algorithm with sample complexity exponential ink, rather than the quasi-
linear sample complexity of our current algorithm. If the2k-modality of the above-mentioned example is the
worst case (which we do not know), then the [DDS11] algorithmwould give apoly(2k, log(n), 1/ǫ)-time algo-
rithm for our problem that usesO(2k log(n)/ǫ3) + 2O(k) · Õ(1/ǫ3) examples (so comparing with Theorem 2,
exponentially worse sample complexity as a function ofk, but exponentially better running time as a function of
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n). Finally, in the context of this question (how many modes can there be for a sum ofn weighted independent
Bernoulli random variables withk distinct weights), it is interesting to recall the result ofK.-I. Sato [Sat93]
which shows that for anyN there are two unimodal distributionsX,Y such thatX + Y has at leastN modes.

3.2 Sample complexity lower bound for learning sums of weighted independent Bernoullis

Recall Theorem 3:

Theorem 3LetX =
∑n

i=1 i·Xi be a weighted sum of unknown independent Bernoulli random variables (where
the i-th weight is simplyi). LetL be any learning algorithm which, givenn and access to independent draws
fromX, outputs a hypothesis distribution̂X such thatdTV (X̂,X) ≤ 1/25 with probability at leaste−o(n). Then
L must useΩ(n) samples.

Proof of Theorem 3: We define a probability distribution over possible target probability distributionsX as
follows: A subsetS ⊂ {n/2 + 1, . . . , n} of size|S| = n/100 is drawn uniformly at random from all

( n/2
n/100

)

possible outcomes.. The vectorp = (p1, . . . , pn) is defined as follows: for eachi ∈ S the valuepi equals
100/n = 1/|S|, and for all otheri the valuepi equals 0. Thei-th Bernoulli random variableXi hasE[Xi] = pi,
and the target distribution isX = Xp =

∑n
i=1 iXi.

We will need two easy lemmas:

Lemma 12 Fix anyS, p as described above. For anyj ∈ {n/2 + 1, . . . , n} we haveXp(j) 6= 0 if and only if
j ∈ S. For anyj ∈ S the valueXp(j) is exactly(100/n)(1 − 100/n)n/100−1 > 35/n (for n sufficiently large),
and henceXp({n/2 + 1, . . . , n}) > 0.35 (again forn sufficiently large).

The first claim of the lemma holds because any set ofc ≥ 2 numbers from{n/2 + 1, . . . , n} must sum to more
thann. The second claim holds because the only way a drawx from Xp can havex = j is if Xj = 1 and all
otherXi are 0 (here we are usinglimx→∞(1− 1/x)x = 1/e).

The next lemma is an easy consequence of Chernoff bounds:

Lemma 13 Fix any p as defined above, and consider a sequence ofn/2000 independent draws fromXp =∑
i iXi. With probability1 − e−Ω(n) the total number of indicesj ∈ [n] such thatXj is ever 1 in any of the

n/2000 draws is at mostn/1000.

We are now ready to prove Theorem 3. LetL be a learning algorithm that receivesn/2000 samples. Let
S ⊂ {n/2 + 1, . . . , n} andp be chosen randomly as defined above, and set the target toX = Xp.

We consider an augmented learnerL′ that is given “extra information.” For each point in the sample, instead
of receiving the value of that draw fromX the learnerL′ is given the entire vector(X1, . . . ,Xn) ∈ {0, 1}n. Let
T denote the set of elementsj ∈ {n/2 + 1, . . . , n} for which the learner is ever given a vector(X1, . . . ,Xn)
that hasXj = 1. By Lemma 13 we have|T | ≤ n/1000 with probability at least1 − e−Ω(n); we condition on
the event|T | ≤ n/1000 going forth.

Fix any valueℓ ≤ n/1000. Conditioned on|T | = ℓ, the setT is equally likely to be anyℓ-element subset of
S, and all possible “completions” ofT with an additionaln/100−ℓ ≥ 9n/1000 elements of{n/2+1, . . . , n}\T
are equally likely to be the true setS.

Let H denote the hypothesis distribution over[n] that algorithmL outputs. LetR denote the set{n/2 +
1, . . . , n} \ T ; note that since|T | = ℓ ≤ n/1000, we have|R| ≥ 499n/1000. Let U denote the set{i ∈
R : H(i) ≥ 30/n}. SinceH is a distribution we must have|U | ≤ n/30. Each element inS \ U “costs”
at least5/n in variation distance betweenX andH. SinceS is a uniform random extension ofT with at
mostn/100 − ℓ ∈ [9n/1000, n/100] unknown elements ofR and |R| ≥ 499n/1000, an easy calculation
shows thatPr[|S \ U | > 8n/1000] is 1 − e−Ω(n). This means that with probability1 − e−Ω(n) we have
dTV (X,H) ≥ 8n

1000 · 5
n = 1/25, and the theorem is proved. �
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4 Extensions of the Cover Theorem of [DP11]

4.1 Proof of Theorem 4

We only need to argue that theǫ-covers constructed in [Das08] and [DP11] satisfy the part of the theorem fol-
lowing “finally;” we will refer to this part of the theorem as the last part in the following discussion. Moreover,
in order to avoid reproducing here the involved constructions of [Das08] and [DP11], we will assume that the
reader has some familiarity with these constructions. Nevertheless, we will try to make our proof self-contained.

First, we claim that we only need to establish the last part ofTheorem 4 for the cover obtained in [Das08].
Indeed, theǫ-cover of [DP11] is just a subset of theǫ/2-cover of [Das08], which includes only a subset of the
sparse form distributions in theǫ/2-cover of [Das08]. Moreover, for every sparse form distribution in theǫ/2-
cover of [Das08], theǫ-cover of [DP11] includes at least one sparse form distribution that isǫ/2-close in total
variation distance. Hence, if theǫ/2-cover of [Das08] satisfies the last part of Theorem 4, it follows that the
ǫ-cover of [DP11] also satisfies the last part of Theorem 4.

We proceed to argue that the cover of [Das08] satisfies the last part of Theorem 4. The construction of
the ǫ-cover in [Das08] works roughly as follows: Given an arbitrary collection of indicators{Xi}ni=1 with
expectationsE[Xi] = pi for all i, the collection is subjected to two filters, called theStage 1and theStage 2
filters (see respectively Sections 5 and 6 of [Das08]). Usingthe same notation as [Das08] let us denote by{Zi}i
the collection output by the Stage 1 filter and by{Yi}i the collection output by the Stage 2 filter. The collection
output by the Stage 2 filter is included in theǫ-cover of [Das08], satisfies thatdTV (

∑
i Xi,

∑
i Yi) ≤ ǫ, and is

in either the heavy Binomial or the sparse form.
Let (µZ , σ

2
Z) and(µY , σ

2
Y ) denote respectively the (mean, variance) pairs of the variablesZ =

∑
i Zi and

Y =
∑

i Yi. We argue first that the pair(µZ , σ
2
Z) satisfies|µ − µZ | = O(ǫ) and|σ2 − σ2

Z | = O(ǫ · (1 + σ2)),
whereµ andσ2 are respectively the mean and variance ofX =

∑
iXi. Next we argue that, if the collection

{Yi}i output by the Stage 2 filter is in heavy Binomial form, then(µY , σ
2
Y ) also satisfies|µ − µY | = O(ǫ) and

|σ2 − σ2
Y | = O(1 + ǫ · (1 + σ2)).

• Proof for(µZ , σ
2
Z): The Stage 1 filter only modifies the indicatorsXi with pi ∈ (0, 1/k) ∪ (1 − 1/k, 1),

for some well-chosenk = O(1/ǫ) (as in the statement of Theorem 4). For convenience let us define
L = {i pi ∈ (0, 1/k)} andH = {i pi ∈ (1 − 1/k, 1)} as in [Das08]. The filter of Stage 1 rounds the
expectations of the indicators indexed byL to some value in{0, 1/k} so that no expectation is altered by
more than an additive1/k, and the sum of these expectations is not modified by more thanan additive
1/k. Similarly, the expectations of the indicators indexed byH are rounded to some value in{1−1/k, 1}.
See the details of how the rounding is performed in Section 5 of [Das08]. Let us then denote by{p′i}i the
expectations of the indicators{Zi}i resulting from the rounding. We argue that the mean and variance of
Z =

∑
i Zi is close to the mean and variance ofX. Indeed,

|µ− µZ | =
∣∣∣∣∣
∑

i

pi −
∑

i

p′i

∣∣∣∣∣ =
∣∣∣∣∣
∑

i∈L∪H

pi −
∑

i∈L∪H

p′i

∣∣∣∣∣ ≤ O(1/k) = O(ǫ). (14)

Similarly,

|σ2 − σ2
Z | =

∣∣∣∣∣
∑

i

pi(1− pi)−
∑

i

p′i(1− p′i)

∣∣∣∣∣

=

∣∣∣∣∣
∑

i∈L

pi(1− pi)−
∑

i∈L

p′i(1− p′i)

∣∣∣∣∣+
∣∣∣∣∣
∑

i∈H

pi(1− pi)−
∑

i∈H

p′i(1− p′i)

∣∣∣∣∣ .

We proceed to bound the two terms of the above summation separately. Since the argument is symmetric
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for L andH we only doL. We have
∣∣∣∣∣
∑

i∈L

pi(1− pi)−
∑

i∈L

p′i(1− p′i)

∣∣∣∣∣ =
∣∣∣∣∣
∑

i∈L

(pi − p′i)(1− (pi + p′i))

∣∣∣∣∣

=

∣∣∣∣∣
∑

i∈L

(pi − p′i)−
∑

i∈L

(pi − p′i)(pi + p′i)

∣∣∣∣∣

≤
∣∣∣∣∣
∑

i∈L

(pi − p′i)

∣∣∣∣∣+
∣∣∣∣∣
∑

i∈L

(pi − p′i)(pi + p′i)

∣∣∣∣∣

≤ 1

k
+
∑

i∈L

|pi − p′i|(pi + p′i)

≤ 1

k
+

1

k

∑

i∈L

(pi + p′i)

≤ 1

k
+

1

k

(
2
∑

i∈L

pi + 1/k

)

≤ 1

k
+

1

k

(
2

1− 1/k

∑

i∈L

pi(1− 1/k) + 1/k

)

≤ 1

k
+

1

k

(
2

1− 1/k

∑

i∈L

pi(1− pi) + 1/k

)

≤ 1

k
+

1

k2
+

2

k − 1

∑

i∈L

pi(1− pi).

Using the above (and a symmetric argument for index setH) we obtain:

|σ2 − σ2
Z | ≤

2

k
+

2

k2
+

2

k − 1
σ2 = O(ǫ)(1 + σ2). (15)

• Proof for (µY , σ
2
Y ): After the Stage 1 filter is applied to the collection{Xi}, the resulting collection of

random variables{Zi} has expectationsp′i ∈ {0, 1} ∪ [1/k, 1 − 1/k], for all i. The Stage 2 filter has
different form depending on the cardinality of the setM = {i | p′i ∈ [1/k, 1 − 1/k]}. In particular, if
|M| ≥ k3 the output of the Stage 2 filter is in heavy Binomial form, while if if |M| < k3 the output of
the Stage 2 filter is in sparse form. As we are only looking to provide a guarantee for the distributions in
heavy Binomial form, it suffices to only consider the former case next.

– |M| ≥ k3: Let {Yi} be the collection produced by Stage 2 and letY =
∑

i Yi. Then Lemma 6.1
in [Das08] implies that

|µZ − µY | = O(ǫ) and |σ2
Z − σ2

Y | = O(1).

Combining this with (14) and (15) gives

|µ− µY | = O(ǫ) and |σ2 − σ2
Y | = O(1 + ǫ · (1 + σ2)).

This concludes the proof of Theorem 4.
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4.2 Improved Version of Theorem 4

In our new improved version of the Cover Theorem, thek-heavy Binomial Form distributions in the cover are
actually Binomial distributionsBin(ℓ, q) (rather than translated Binomial distributions as in the original version)
for someℓ ≤ n and someq which is of the form (integer)/ℓ (rather thanq of the form (integer)/(kn) as in the
original version). This gives an improved bound on the coversize. For clarity we state in full the improved
version of Theorem 4 below:

Theorem 6 (Cover for PBDs, stronger version)For all ǫ > 0, there exists anǫ-coverSǫ ⊆ S of S such that

1. |Sǫ| ≤ n2 + n ·
(
1
ǫ

)O(log2 1/ǫ)
; and

2. The setSǫ can be constructed in time linear in its representation size, i.e. Õ(n2) + Õ(n) ·
(
1
ǫ

)O(log2 1/ǫ)
.

Moreover, if{Zi} ∈ Sǫ, then the collection{Zi} has one of the following forms, wherek = k(ǫ) ≤ C/ǫ is a
positive integer, for some absolute constantC > 0:

(i) (Sparse Form) There is a valueℓ ≤ k3 = O(1/ǫ3) such that for alli ≤ ℓwe haveE[Zi] ∈
{

1
k2 ,

2
k2 , . . . ,

k2−1
k2

}
,

and for all i > ℓ we haveE[Zi] ∈ {0, 1}.

(ii) (Binomial Form) There is a valuēℓ ∈ {0, 1, . . . , n} and a valueq̄ ∈
{

1
n ,

2
n , . . . ,

n−1
n

}
such that for all

i ≤ ℓ̄ we haveE[Zi] = q̄; for all i > ℓ̄ we haveE[Zi] = 0; and ℓ̄, q̄ satisfy the bounds̄ℓq̄ ≥ k2 − 2− 1
k

and ℓ̄q̄(1− q̄) ≥ k2 − k − 3− 3
k .

Finally, for every{Xi} ∈ S for which there is noǫ-neighbor inSǫ that is in sparse form, there exists a collection
{Zi} ∈ Sǫ in Binomial form such that

(iii) dTV (
∑

iXi,
∑

i Zi) ≤ ǫ; and

(iv) if µ = E[
∑

iXi], µ̄ = E[
∑

i Zi], σ2 = Var[
∑

i Xi] and σ̄2 = Var[
∑

i Zi], then|µ − µ̄| = 2 +O(ǫ) and
|σ2 − σ̄2| = O(1 + ǫ · (1 + σ2)).

Proof: Suppose thatX = {Xi} ∈ S is a PBD that is notǫ1-close to any Sparse Form PBD in the coverSǫ1 of
Theorem 4, whereǫ1 = Θ(ǫ) is a suitable (small) constant multiple ofǫ (more on this below). Letµ, σ2 denote
the mean and variance of

∑
iXi. Parts (iii) and (iv) of Theorem 4 imply that there is a collection {Yi} ∈ Sǫ1

in k-heavy Binomial Form that is close to
∑

iXi both in variation distance and in its meanµ′ and varianceσ′2.
More precisely, letℓ, q be the parameters defining{Yi} as in part (ii) of Theorem 4 and letµ′, σ′2 be the mean
and variance of

∑
i Yi; so we haveµ′ = ℓq + t for some integer0 ≤ t ≤ n− ℓ andσ′2 = ℓq(1− q) ≥ Ω(1/ǫ21)

from part (ii). This implies that the bounds|µ − µ′| = O(ǫ1) and |σ2 − σ′2| = O(1 + ǫ1 · (1 + σ2)) of (iv)
are at least as strong as the bounds given by Equation (2) (here we have used the fact thatǫ1 is a suitably small
constant multiple ofǫ), so we may use the analysis of Section 2.2. The analysis of Section 2.2 (Claim 7 and
Lemma 2) gives thatdTV (X,TP (µ′, σ′2)) ≤ O(ǫ1).

Now the analysis ofLocate-Binomial (from Section 2.4) implies thatTP (µ′, σ′2) is O(ǫ1)-close to a
Binomial distributionBin(n̂, p̂). We first observe that in Step 2.a of Section 2.4, the varianceσ′2 = ℓq(1 − q)
is at mostn/4 and so theσ2

1 that is defined in Step 2.a equalsσ′2. We next observe that by the Cauchy-Schwarz
inequality we haveµ′2 ≤ n(µ′ − σ′2), and thus the valueσ2

2 defined in Step 2.b of Section 2.4 also equalsσ′2.
Thus we have that the distributionBin(n̂, p̂) resulting fromLocate-Binomial is defined by

n̂ =

⌊
(ℓq + t)2

ℓq2 + t

⌋
and p̂ =

ℓq2 + t

ℓq + t
.

So we have established thatX is O(ǫ1)-close to the Binomial distributionBin(n̂, p̂). We first establish
that the parameterŝn, p̂ and the corresponding mean and varianceµ̂ = n̂p̂, σ̂2 = n̂p̂(1 − p̂) satisfy the bounds
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claimed in parts (ii) and (iv) of Theorem 6. To finally prove the theorem we will takēℓ = n̂ andq̄ to bep̂ rounded
to the nearest integer multiple of1/n, and we will show that the Binomial distributionBin(ℓ̄, q̄) satisfies all the
claimed bounds.

If t = 0 then it is easy to see that̂n = ℓ and p̂ = q and all the claimed bounds in parts (ii) and (iv) of
Theorem 6 hold as desired forn̂, p̂, µ̂ andσ̂2. Otherwiset ≥ 1 and we have

µ̂ = n̂p̂ ≥
(
(ℓq + t)2

ℓq2 + t
− 1

)
·
(
ℓq2 + t

ℓq + t

)
≥ ℓq + t− 1 ≥ ℓq ≥ k2 − 1/k,

and similarly

σ̂2 = n̂p̂(1− p̂) ≥
(
(ℓq + t)2

ℓq2 + t
− 1

)
·
(
ℓq2 + t

ℓq + t

)
·
(
ℓq − ℓq2

ℓq + t

)
= ℓq(1− q)− p̂(1− p̂) ≥ k2 − k − 2− 3

k
,

so we have the bounds claimed in (ii). Similarly, we have

µ′ = ℓq + t =

(
(ℓq + t)2

ℓq2 + t

)
·
(
ℓq2 + t

ℓq + t

)
≥ µ̂ = n̂p̂ ≥ µ′ − 1

so from part (iv) of Theorem 4 we get the desired bound|µ − µ̂| ≤ 1 + O(ǫ) of Theorem 6. Recalling that
σ′2 = ℓq(1− q), we have shown above thatσ̂2 ≥ σ′2 − 1; we now observe that

σ′2 =

(
(ℓq + t)2

ℓq2 + t

)
·
(
ℓq2 + t

ℓq + t

)
·
(
ℓq − ℓq2

ℓq + t

)
≥ n̂p̂(1− p̂) = σ̂2,

so from part (iv) of Theorem 4 we get the desired bound|σ2 − σ̂2| ≤ O(1 + ǫ(1 + σ2)) of Theorem 6.
Finally, we takeℓ̄ = n̂ and q̄ to be p̂ rounded to the nearest multiple of1/n as described above;Z =

Bin(ℓ̄, q̄) is the desired Binomial distribution whose existence is claimed by the theorem, and the parameters
µ̄, σ̄2 of the theorem arēµ = ℓ̄q̄, σ̄2 = ℓ̄q̄(1 − q̄). Passing fromBin(n̂, p̂) to Bin(ℓ̄, q̄) changes the mean and
variance of the Binomial distribution by at most 1, so all theclaimed bounds from parts (ii) and (iv) of Theorem 6
indeed hold. To finish the proof of the theorem it remains onlyto show thatdTV (Bin(ℓ̄, p̂),Bin(ℓ̄, q̄)) ≤ O(ǫ).
Similar to Section 2.2 this is done by passing through Translated Poisson distributions. We show that

dTV (Bin(ℓ̄, p̂), TP (ℓ̄p̂, ℓ̄p̂(1− p̂))), dTV (TP (ℓ̄p̂, ℓ̄p̂(1− p̂)), TP (ℓ̄q̄, ℓ̄q̄(1− q̄))), and

dTV (TP (ℓ̄q̄, ℓ̄q̄(1− q̄)),Bin(ℓ̄, q̄))

are each at mostO(ǫ), and invoke the triangle inequality.

1. BoundingdTV (Bin(ℓ̄, p̂), TP (ℓ̄p̂, ℓ̄p̂(1− p̂))): Using Lemma 1, we get

dTV (Bin(ℓ̄, p̂), TP (ℓ̄p̂, ℓ̄p̂(1− p̂))) ≤ 1√
ℓp̂(1− p̂)

+
2

ℓp̂(1− p̂)
.

Sinceℓ̄p̂ = n̂p̂ ≥ k2 − 1/k = Ω(1/ǫ2) we have that the RHS above is at mostO(ǫ).

2. BoundingdTV (TP (ℓ̄p̂, ℓ̄p̂(1− p̂)), TP (ℓ̄q̄, ℓ̄q̄(1− q̄))): Let σ̃2 denotemin{ℓ̄p̂(1− p̂), ℓ̄q̄(1− q̄)}. Since
|q̄− p̂| ≤ 1/n, we have that̄ℓq̄(1− q̄) = ℓ̄p̂(1− p̂)±O(1) = Ω(1/ǫ2) soσ̃ = Ω(1/ǫ). We use Lemma 2,
which tells us that

dTV (TP (ℓ̄p̂, ℓ̄p̂(1− p̂)), TP (ℓ̄q̄, ℓ̄q̄(1 − q̄))) ≤ |ℓ̄p̂− ℓ̄q̄|
σ̃

+
|ℓ̄p̂(1− p̂)− ℓ̄q̄(1− q̄)|+ 1

σ̃2
. (16)

Since|p̂ − q̄| ≤ 1/n, we have that|ℓ̄p̂ − ℓ̄q̄| = ℓ̄|p̂ − q̂| ≤ ℓ̄/n ≤ 1, so the first fraction on the RHS
of (16 isO(ǫ). The second fraction is at most(O(1) + 1)/σ̃2 = O(ǫ2), so we getdTV (TP (ℓ̄p̂, ℓ̄p̂(1 −
p̂)), TP (ℓ̄q̄, ℓ̄q̄(1− q̄))) ≤ O(ǫ) as desired.

3. BoundingdTV (TP (ℓ̄q̄, ℓ̄q̄(1 − q̄)),Bin(ℓ̄, q̄)): We use Lemma 1 similar to the first case above, together
with the lower bound̃σ = Ω(1/ǫ), to get the desiredO(ǫ) upper bound.

This concludes the proof of Theorem 6.
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5 Birgé’s theorem: Learning unimodal distributions

Here we briefly explain how Theorem 5 follows from [Bir97]. Weassume that the reader is moderately familiar
with the paper [Bir97].

Birgé (see his Theorem 1 and Corollary 1) upper bounds the expected variation distance between the target
distribution (which he denotesf ) and the hypothesis distribution that is constructed by hisalgorithm (which
he denoteŝfn; it should be noted, though, that his “n” parameter denotes the number of samples used by the
algorithm, while we will denote this by “m”, reserving “n” for the domain{1, . . . , n} of the distribution).
More precisely, [Bir97] shows that this expected variationdistance is at most that of the Grenander estimator
(applied to learn a unimodal distribution when the mode is known) plus a lower-order term. For our Theorem 5
we take Birgé’s “η” parameter to beǫ. With this choice ofη, by the results of [Bir87a, Bir87b] bounding the
expected error of the Grenander estimator, ifm = O(log(n)/ǫ3) samples are used in Birgé’s algorithm then
the expected variation distance between the target distribution and his hypothesis distribution is at mostO(ǫ).
To go from expected errorǫ to an ǫ-accurate hypothesis with probability1 − δ, we run the above-described
algorithmO(log(1/δ)) times so that with probability at least1−δ some hypothesis obtained isǫ-accurate. Then
we use our hypothesis testing procedure of Lemma 8, or, more precisely, the extension provided in Lemma 11,
to identify anO(ǫ)-accurate hypothesis. (The use of Lemma 11 is why the runningtime of Theorem 5 depends
quadratically onlog(1/δ).)

It remains only to argue that a single run of Birgé’s algorithm on a sample of sizem = O(log(n)/ǫ3) can be
carried out inÕ(log2(n)/ǫ3) bit operations (recall that each sample is alog(n)-bit string). His algorithm begins
by locating anr ∈ [n] that approximately minimizes the value of his functiond(r) (see Section 3 of [Bir97]) to
within an additiveη = ǫ (see Definition 3 of his paper); intuitively thisr represents his algorithm’s “guess” at
the true mode of the distribution. To locate such anr, following Birgé’s suggestion in Section 3 of his paper, we
begin by identifying two consecutive points in the sample such thatr lies between those two sample points. This
can be done usinglogm stages of binary search over the (sorted) points in the sample, where at each stage of the
binary search we compute the two functionsd− andd+ and proceed in the appropriate direction. To compute
the functiond−(j) at a given pointj (the computation ofd+ is analogous), we recall thatd−(j) is defined as
the maximum difference over[1, j] between the empirical cdf and its convex minorant over[1, j]. The convex
minorant of the empirical cdf (overm points) can be computed iñO((log n)m) bit-operations (where thelog n
comes from the fact that each sample point is an element of[n]), and then by enumerating over all points in the
sample that lie in[1, j] (in timeO((log n)m)) we can computed−(j). Thus it is possible to identify two adjacent
points in the sample such thatr lies between them in timẽO((log n)m). Finally, as Birgé explains in the last
paragraph of Section 3 of his paper, once two such points havebeen identified it is possible to again use binary
search to find a pointr in that interval whered(r) is minimized to within an additiveη. Since the maximum
difference betweend− andd+ can never exceed 1, at mostlog(1/η) = log(1/ǫ) stages of binary search are
required here to find the desiredr.

Finally, once the desiredr has been obtained, it is straightforward to output the final hypothesis (which Birgé
denotesf̂n. As explained in Definition 3, this hypothesis is the derivative of F̃ r

n , which is essentially the convex
minorant of the empirical cdf to the left ofr and the convex majorant of the empirical cdf to the right ofr. As
described above, given a value ofr these convex majorants and minorants can be computed inÕ((log n)m)
time, and the derivative is simply a collection of uniform distributions as claimed. This concludes our sketch of
how Theorem 5 follows from [Bir97].

6 Efficient Evaluation of the Poisson Distribution

In this section we provide an efficient algorithm to compute an additive approximation to the Poisson probability
mass function. This seems like a basic operation in numerical analysis, but we were not able to find it explicitly
in the literature.

Before we state our theorem we need some notation. For a positive integern, denote by|n| its description
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complexity (bit complexity), i.e.|n| = ⌈log2 n⌉. We represent a positive rational numberq as q1
q2

, whereq1, q2
are relatively prime positive integers. The description complexity of q is defined to be|q| = |q1|+ |q2|. We are
now ready to state our theorem for this section:

Theorem 7 There is an algorithm that, on input a rational numberλ > 0, and integersk ≥ 0 and t > 0,
produces an estimatêpk such that

|p̂k − pk| ≤
1

t
,

wherepk = λke−λ

k! is the probability that the Poisson distribution of parameter λ assigns to integerk. The
running time of the algorithm is̃O(|t|3 + |k| · |t|+ |λ| · |t|).

Proof: Clearly we cannot just computee−λ, λk andk! separately, as this will take time exponential in the
description complexity ofk andλ. We follow instead an indirect approach. We start by rewriting the target
probability as follows

pk = e−λ+k ln(λ)−ln(k!).

Motivated by this formula, let
Ek := −λ+ k ln(λ)− ln(k!).

Note thatEk ≤ 0. Our goal is to approximateEk to within high enough accuracy and then use this approxima-
tion to approximatepk.

In particular, the main part of the argument involves an efficient algorithm to compute an approximation̂̂Ek

toEk satisfying ∣∣∣̂̂Ek − Ek

∣∣∣ ≤ 1

4t
≤ 1

2t
− 1

8t2
. (17)

This approximation has bit complexitỹO(|k|+ |λ|+ |t|) and can be computed in timẽO(|k| · |t|+ |λ|+ |t|3).
We first show how to use such an approximation to complete the proof. We claim that it suffices to approxi-

matee
̂̂
Ek to within an additive error12t . Indeed, ifp̂k is the result of this approximation, then:

p̂k ≤ e
̂̂
Ek +

1

2t
≤ eEk+

1
2t
− 1

8t2 +
1

2t
≤ eEk+ln(1+ 1

2t
) +

1

2t

≤ eEk

(
1 +

1

2t

)
+

1

2t
≤ pk +

1

t
;

and similarly

p̂k ≥ e
̂̂
Ek − 1

2t
≥ eEk−( 1

2t
− 1

8t2
) − 1

2t
≥ eEk−ln(1+ 1

2t
) − 1

2t

≥ eEk

/(
1 +

1

2t

)
− 1

2t
≥ eEk

(
1− 1

2t

)
− 1

2t
≥ pk −

1

t
.

We will need the following lemma:

Lemma 14 Letα ≤ 0 be a rational number. There is an algorithm that computes an estimateêα such that

∣∣∣êα − eα
∣∣∣ ≤ 1

2t

and has running timẽO(|α| · |t|+ |t|2).
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Proof: Sinceeα ∈ [0, 1], the point of the additive grid{ i
4t}4ti=1 closest toeα achieves error at most1/(4t).

Equivalently, in a logarithmic scale, consider the grid{ln i
4t}4ti=1 and letj∗ := argminj

{∣∣∣α− ln( j
4t)
∣∣∣
}

. Then,

we have that ∣∣∣∣
j∗

(4t)
− eα

∣∣∣∣ ≤
1

4t
.

The idea of the algorithm is to approximately identify the point j∗, by computing approximations to the points of

the logarithmic grid combined with a binary search procedure. Indeed, consider the “rounded” grid{l̂n i
4t}4ti=1

where eacĥln( i
4t) is an approximation toln( i

4t ) that is accurate to within an additive116t . Notice that, for
i = 1, . . . , 4t:

ln

(
i+ 1

4t

)
− ln

(
i

4t

)
= ln

(
1 +

1

i

)
≥ ln

(
1 +

1

4t

)
> 1/8t.

Given that our approximations are accurate to within an additive1/16t, it follows that the rounded grid{l̂n i
4t}4ti=1

is monotonic ini.
The algorithm does not construct the points of this grid explicitly, but adaptively as it needs them. In

particular, it performs a binary search in the set{1, . . . , 4t} to find the pointi∗ := argmini

{∣∣∣α− l̂n( i
4t )
∣∣∣
}

. In

every iteration of the search, when the algorithm examines the pointj, it needs to compute the approximation

gj =
̂ln( j

4t) and evaluate the distance|α−gj|. It is known that the logarithm of a numberx with a binary fraction
of L bits and an exponent ofo(L) bits can be computed to within a relative errorO(2−L) in time Õ(L) [Bre75].
It follows from this thatgj hasO(|t|) bits and can be computed in timẽO(|t|). The subtraction takes linear
time, i.e. it usesO(|α| + |t|) bit operations. Therefore, each step of the binary search can be done in time
O(|α|) + Õ(|t|) and thus the overall algorithm hasO(|α| · |t|) + Õ(|t|2) running time.

The algorithm outputsi
∗

4t as its final approximation toeα. We argue next that the achieved error is at most
an additive1

2t . Since the distance between two consecutive points of the grid {ln i
4t}4ti=1 is more than1/(8t) and

our approximations are accurate to within an additive1/16t, a little thought reveals thati∗ ∈ {j∗−1, j∗, j∗+1}.
This implies thati

∗

4t is within an additive1/2t of eα as desired, and the proof of the lemma is complete.

We now proceed to describe how to approximatee
̂̂
Ek . Recall that we want to output an estimatep̂k such

that |p̂k − e
̂̂
Ek | ≤ 1/(2t). We distinguish the following cases:

• If
̂̂
Ek ≥ 0, we outputp̂k := 1. Indeed, given that

∣∣∣̂̂Ek−Ek

∣∣∣ ≤ 1
4t andEk ≤ 0, if

̂̂
Ek ≥ 0 then

̂̂
Ek ∈ [0, 1

4t ].

Hence, becauset ≥ 1, e
̂̂
Ek ∈ [1, 1 + 1/2t], so1 is within an additive1/2t of the right answer.

• Otherwise,p̂k is defined to be the estimate obtained by applying Lemma 14 forα :=
̂̂
Ek. Given the bit

complexity of
̂̂
Ek, the running time of this procedure will bẽO(|k| · |t|+ |λ| · |t|+ |t|3).

Hence, the overall running time is̃O(|k| · |t|+ |λ| · |t|+ |t|3).
We now show how to computê̂Ek. There are several steps to our approximation:

1. (Stirling’s Asymptotic Approximation): Recall Stirling’s asymptotic approximation (see e.g. [Whi80]
p.193):

ln k! = k ln(k)− k + (1/2) · ln(2π) +
m∑

j=2

Bj · (−1)j

j(j − 1) · kj−1
+O(1/km).

whereBk are the Bernoulli numbers. We define an approximation ofln k! as follows:

l̂n k! := k ln(k)− k + (1/2) · ln(2π) +
m0∑

j=2

Bj · (−1)j

j(j − 1) · kj−1
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for m0 := ⌈ |t|
|k|⌉+ 1.

2. (Definition of an approximate exponent̂Ek): Define Êk := −λ + k ln(λ) − l̂n(k!). Given the above
discussion, we can calculate the distance ofÊk to the true exponentEk as follows:

|Ek − Êk| ≤ | ln(k!)− l̂n(k!)| ≤ O(1/km0) (18)

≤ 1

10t
. (19)

So we can focus our attention to approximatinĝEk. Note thatÊk is the sum ofm0 + 2 = O( log tlog k ) terms.
To approximate it within error1/(10t), it suffices to approximate each summand within an additive error

of O(1/(t · log t)). Indeed, we so approximate each summand and our final approximation
̂̂
Ek will be the

sum of these approximations. We proceed with the analysis:

3. (Estimating2π): Since2π shows up in the above expression, we should try to approximate it. It is known
that the firstℓ digits of π can be computed exactly in timeO(log ℓ · M(ℓ)), whereM(ℓ) is the time to
multiply two ℓ-bit integers [Sal76, Bre76]. For example, if we use the Sch¨onhage-Strassen algorithm for
multiplication [SS71], we getM(ℓ) = O(ℓ · log ℓ · log log ℓ). Hence, choosingℓ := ⌈log2(12t · log t)⌉,
we can obtain in timẽO(|t|) an approximation̂2π of 2π that has a binary fraction ofℓ bits and satisfies:

|2̂π − 2π| ≤ 2−ℓ ⇒ (1− 2−ℓ)2π ≤ 2̂π ≤ (1 + 2−ℓ)2π.

Note that, with this approximation, we have
∣∣∣ln(2π) − ln(2̂π)

∣∣∣ ≤ ln(1− 2−ℓ) ≤ 2−ℓ ≤ 1/(12t · log t).

4. (Floating-Point Representation): We will also need accurate approximations toln 2̂π, ln k andlnλ. We
think of 2̂π andk as multiple-precision floating point numbers base2. In particular,

• 2̂π can be described with a binary fraction ofℓ+ 3 bits and a constant size exponent; and

• k ≡ 2⌈log k⌉ · k
2⌈log k⌉ can be described with a binary fraction of⌈log k⌉, i.e. |k|, bits and an exponent

of lengthO(log log k), i.e.O(log |k|).

Also, sinceλ is a positive rational number,λ = λ1

λ2
, whereλ1 andλ2 are positive integers of at most

|λ| bits. Hence, fori = 1, 2, we can think ofλi as a multiple-precision floating point number base
2 with a binary fraction of|λ| bits and an exponent of lengthO(log |λ|). Hence, if we chooseL =
⌈log2(12(3k + 1)t2 · k · λ1 · λ2)⌉ = O(|k| + |λ| + |t|), we can represent all numberŝ2π, λ1, λ2, k as
multiple precision floating point numbers with a binary fraction of L bits and an exponent ofO(logL)
bits.

5. (Estimating the logs): It is known that the logarithm of a numberx with a binary fraction ofL bits and an
exponent ofo(L) bits can be computed to within a relative errorO(2−L) in time Õ(L) [Bre75]. Hence,

in time Õ(L) we can obtain approximationŝln 2̂π, l̂n k, l̂n λ1, l̂nλ2 such that:

• |l̂n k − ln k| ≤ 2−Lln k ≤ 1
12(3k+1)t2

; and similarly

• |l̂nλi − lnλi| ≤ 1
12(3k+1)t2

, for i = 1, 2;

• |̂ln 2̂π − ln 2̂π| ≤ 1
12(3k+1)t2

.
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6. (Estimating the terms of the series): To complete the analysis, we also need to approximate each term of
the formcj =

Bj

j(j−1)·kj−1 up to an additive error ofO(1/(t · log t)). We do this as follows: We compute

the numbersBj andkj−1 exactly, and we perform the division approximately.

Clearly, the positive integerkj−1 has description complexityj · |k| = O(m0 · |k|) = O(|t| + |k|), since
j = O(m0). We computekj−1 exactly using repeated squaring in timeÕ(j · |k|) = Õ(|t| + |k|). It is
known [Fil92] that the rational numberBj hasÕ(j) bits and can be computed iñO(j2) = Õ(|t|2) time.
Hence, the approximate evaluation of the termcj (up to the desired additive error of1/(t log t)) can be
done inÕ(|t|2 + |k|), by a rational division operation (see e.g. [Knu81]). The sum of all the approximate
terms takes linear time, hence the approximate evaluation of the entire truncated series (comprising at
mostm0 ≤ |t| terms) can be done iñO(|t|3 + |k| · |t|) time overall.

Let
̂̂
Ek be the approximation arising if we use all the aforementioned approximations. It follows from the

above computations that ∣∣∣̂̂Ek − Êk

∣∣∣ ≤ 1

10t
.

7. (Overall Error): Combining the above computations we get:
∣∣∣̂̂Ek − Ek

∣∣∣ ≤ 1

4t
.

The overall time needed to obtain̂̂Ek wasÕ(|k| · |t|+ |λ|+ |t|3) and the proof of the theorem is complete.

7 Conclusion and open problems

While we have essentially settled the sample and time complexity of learning an unknown Poisson Binomial
Distribution to high accuracy, several natural goals remain for future work. One goal is to obtain a proper learn-
ing algorithm which is as computationally efficient as our non-proper algorithm. Another goal is to understand
the sample complexity of learninglog-concavedistributions over[n] (a distributionX over [n] is log-concave
if p2i ≥ pi+1pi−1 for every i, wherepj denotesPr[X = j]). Every PBD over[n] is log-concave (see Sec-
tion 2 of [KG71]), and every log-concave distribution over[n] is unimodal; thus this class lies between the
class of PBDs (now known to be learnable from̃O(1/ǫ3) samples) and the class of unimodal distributions (for
whichΩ(log(n)/ǫ3) samples are necessary). Can log-concave distributions over [n] be learned frompoly(1/ǫ)
samples independent ofn? If not, what is the dependence of the sample complexity onn?
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