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Abstract

The Ising model on an infinite generic tree is defined as a ther-
modynamic limit of finite systems. A detailed description of the cor-
responding distribution of infinite spin configurations is given. As an
application we study the magnetization properties of such systems and
prove that they exhibit no spontaneous magnetization. Furthermore,
the values of the Hausdorff and spectral dimensions of the underlying
trees are calculated and found to be, respectively, d̄h = 2 and d̄s = 4/3.
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1 Introduction

Since its appearance, the Ising model has been considered in various geo-
metrical backgrounds. Most familiar are the regular lattices, where it is well
known that in dimension d = 1, originally considered by Ising and Lenz
[18, 22], there is no phase transition as opposed to dimension d ≥ 2, where
spontaneous magnetization occurs at sufficiently low temperature [24, 25].

The Ising model on a Cayley tree turns out to be exactly solvable [9, 15,
23]. Despite the fact that the free energy, in this case, is an analytic function
of the temperature at vanishing magnetic field, the model does have a phase
transition and exhibits spontaneous magnetization at a central vertex. One
may attribute this unusual behavior to the large size of the boundary of a
ball in the tree as compared to its volume.

Studies of the Ising model on non-regular graphs are generally non-
tractable from an analytic point of view. For numerical studies see e.g. [4].
See also [6], where the Ising model with external field coupled to the causal
dynamical triangulation model is studied via high- and low-temperature ex-
pansion techniques. In [2] a grand canonical ensemble of Ising models on
random finite trees was considered, motivated by studies in two dimensional
quantum gravity [1]. It was argued in [2] that the model does not exhibit
spontaneous magnetization at values of the fugacity where the mean size of
the trees diverges.

In the present paper we study the Ising model on certain infinite random
trees, constructed as “thermodynamic” limits of Ising systems on random
finite trees. These are subject to a certain genericity condition for which
reason we call them generic Ising trees. Using tools developed in [11, 13]
we prove for such ensembles that spontaneous magnetization is absent. The
basic reason is that the generic infinite tree has a certain one dimensional
feature despite the fact that we prove its Hausdorff dimension to be 2. Fur-
thermore, we obtain results on the spectral dimension of the generic Ising
trees.

This article is organized as follows. After a brief review of some basic
graph theoretic notions that will be used throughout the article and fixing
some notation we define, in Section 2, the finite size systems whose infinite
size limits are our main object of study. The remainder of Section 2 is
devoted to an overview of the main results, including the existence and
detailed description of the infinite size limit, the magnetization properties
and the determination of the annealed Hausdorff and spectral dimensions of
the generic Ising trees.

The next two sections provide detailed proofs and, in some cases, more
precise statements of those results. Under the genericity assumption men-
tioned above we determine, in Section 3, the asymptotic behavior of the
partition functions of ensembles of spin systems on finite trees of large size.
This allows a construction of the limiting distribution on infinite trees and
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also leads to a precise description of the limit. In Section 4 we exploit the
latter characterization to determine the annealed Hausdorff and spectral
dimensions of the generic Ising trees, whereafter we establish absence of
magnetization in Section 5.

Finally, some concluding remarks on possible future developments are
collected in Section 6.

2 Definition of the models and main results

2.1 Basic definitions

Recall that a graph G is specified by its vertex set V (G) and its edge set
E(G). Vertices will be denoted by v or vi etc. An edge is then an unordered
pair (v, v′) of different vertices. Both finite and infinite graphs will be con-
sidered, i.e. V (G) may be finite or infinite, and all graphs will be assumed
to be locally finite, i. e. the number σv of edges containing a vertex v, called
the degree of v, is finite for all v ∈ V (G). By the size of G we shall mean
the number of edges in G and denote it by |G|, i.e. |G| = ♯E(G), where ♯M
is used to denote the number of elements in a set M .

A path in G is a sequence of different edges (v0, v1), (v1, v2), . . . , (vk−1, vk)
where v0 and vk are called the end vertices. If v0 = vk the path is called a
circuit originating at v0. The graph G is called connected if any two vertices
v and v′ of G can be connected by a path, i. e. they are end vertices of a
path. The graph distance between v and v′ is then defined as the minimal
number of edges in a path connecting them. A connected graph is called a
tree if it has no circuits.

Given a connected graph G and R ≥ 0 and v ∈ V (G) we denote by
BR(G, v) the closed ball of radius R centered at v, i.e. BR(G, v) is the
subgraph of G spanned by the vertices at graph distance ≤ R from v.

A planar graph is a graph together with an embedding φ : V (G) → R2

and an association to each edge (v, v′) ∈ E(G) of an arc ψ(v, v′) in R2

connecting φ(v) and φ(v′) such that arcs corresponding to different edges
are disjoint except possibly for endpoints. Two planar graphs are considered
identical if one can be continuously deformed into the other in R2.

A planar tree is a planar connected graph without circuits. In the fol-
lowing we will often refer to planar trees simply as trees.

In this paper we consider planar rooted trees, where rooted means that
they contain a distinguished oriented edge e =< r, r′ >, called the root edge,
and whose initial vertex r is called the root vertex. Further, we assume the
root r to be of degree 1. We denote by T the set of such trees, by TN the
subset of T of trees of size N and by T∞ the subset of infinite trees, such
that

T =

(

∞
⋃

N=1

TN
)

∪ T∞. (1)
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The height of a finite tree is the maximal distance from the root to one
of its vertices.

The set T is a metric space with the distance between two trees τ and
τ ′ defined by

d̃(τ, τ ′) = inf

{

1

R+ 1

∣

∣ BR(τ) = BR(τ
′)

}

, (2)

whereBR(τ) denotes the ball of radius R centered at the root r, i.e. BR(τ) ≡
BR(τ, r). See [11] for further details on properties of d̃. In particular, d̃ is
an ultrametric, i.e.

d̃(τ, τ ′) ≤ max
{

d̃(τ, τ ′′), d̃(τ ′, τ ′′)
}

for all τ , τ ′′, τ ′′ ∈ T .

2.2 The models and the thermodynamic limit

The statistical mechanical models considered in this paper are defined in
terms of planar trees as follows. Let ΛN be the set of rooted planar trees of
size N decorated with Ising spin configurations,

ΛN =
{

s : V (τ) → {±1}
∣

∣ τ ∈ TN
}

, (3)

and set

Λ =

(

∞
⋃

N=1

ΛN

)

∪ Λ∞, (4)

where Λ∞ denotes the set of infinite decorated trees. In the following we
will often denote by τs a generic element of Λ, in particular when stressing
the underlying tree structure τ of the spin configuration s. Furthermore, we
shall use both sv and s(v) to denote the value of the spin at vertex v.

The set Λ is a metric space with metric d defined by

d(τs, τ
′
s′) = inf

{

1

R+ 1

∣

∣ BR(τ) = BR(τ
′), s|BR(τ) = s′|BR(τ ′)

}

, (5)

as a generalization of (2).
We define a probability measure µN on ΛN by

µN (τs) =
1

ZN
e−H(τs)ρ(τ), τs ∈ ΛN , (6)

where the Hamiltonian H(τs), describing the interaction of each spin with
its neighbors and with the constant external magnetic field h at inverse
temperature β, is given by

H(τs) = −β
∑

(vi,vj)∈E(τ)

svisvj − h
∑

vi∈V (τ)\r

svi . (7)
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Figure 1: Example of an infinite tree, consisting of a spine and left and right
branches.

The weight function ρ(τ) is defined in terms of the branching weights pσv−1

associated to vertices v ∈ V (τ) \ r, and is given by

ρ(τ) =
∏

v∈V (τ)\r

pσv−1. (8)

Here (pn)n≥0 is a sequence of non-negative numbers such that p0 6= 0 and
pn 6= 0 for some n ≥ 2 (otherwise only linear chains would contribute). We
will further assume the branching weights to satisfy a genericity condition
explained below in (25), and which defines the generic Ising tree ensembles
considered in this paper (see also [13]). Finally, the partition function ZN

in (6) is given by

ZN (β, h) =
∑

τ∈TN

∑

s∈Sτ

e−H(τs)ρ(τ), (9)

where Sτ = {±1}V (τ).
Our first result (see Sec. 3) is to establish the existence of the thermo-

dynamic limit of this model, in the sense that we prove the existence of a
limiting probability measure µ = µ(β,h) = limN→∞ µN defined on the set
of trees of infinite size decorated with spin configurations. Here, the limit
should be understood in the weak sense, that is

∫

Λ
f(τs) dµN (τs)

N→∞−−−−→
∫

Λ
f(τs) dµ(τs)

for all bounded continuous functions f on Λ. In particular, we find that the
measure µ is concentrated on the set of infinite trees with a single infinite
path, the spine, starting at the root r, and with finite trees attached to the
spine vertices, the branches, see Fig. 1.

As will be shown, the limiting distribution µ can be expressed in ex-
plicit terms in such a way that a number of its characteristics, such as the
Hausdorff dimension, the spectral dimension, as well as the magnetization
properties of the spins, can be analyzed in some detail. For the reader’s
convenience we now give a brief account of those results.
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2.3 Magnetization properties

As a first result we show that the generic Ising tree exhibits no single site
spontaneous magnetization at the root r or at any other spine vertex, i. e.

lim
h→0

µ(β,h)(
{

τs
∣

∣ s(v) = +1
}

) =
1

2
,

for any vertex v on the spine and all β ∈ R. Details of this result can be
found in Theorem 5.2.

The fact that the measure µ is supported on trees with a single spine
gives rise to an analogy with the one-dimensional Ising model. In fact, we
show that the spin distribution on the spine equals that of the Ising model
on the half-line at the same temperature but in a modified external magnetic
field. As a consequence, we find that also the mean magnetization of the
spine vanishes for h→ 0.

A different and perhaps more relevant result concerns the the total mean
magnetization, which may be stated as follows. First, let us define the mean
magnetization in the ball of radius R around the root by

MR(β, h) = 〈|BR(τ)|〉−1
β,h

〈

∑

v∈BR(τ)

sv

〉

β,h

(10)

and the mean magnetization on the full infinite tree as

M(β, h) = lim sup
R→∞

MR(β, h). (11)

For the generic Ising tree, we prove in Theorem 5.4 that this quantity satisfies

lim
h→0

M(β, h) = 0, β ∈ R .
2.4 Hausdorff dimension

Given an infinite connected graph G, if the limit

dh = lim
R→∞

ln |BR(G, v)|
lnR

(12)

exists, we call dh the Hausdorff dimension of G. It is easily seen that the
existence of the limit as well as its value do not depend on the vertex v.

For an ensemble of infinite graphs G∞ with a probability measure ν, we
define the annealed Hausdorff dimension by

d̄h = lim
R→∞

ln 〈 |BR(G)| 〉ν
lnR

, (13)

provided the limit exists, where < · >ν denotes the expectation value w.r.t.
ν.
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We show in Theorem 4.1 that the annealed Hausdorff dimension of a
generic Ising tree can be evaluated and equals that of generic random trees
as introduced in [13], i.e.

d̄h = 2 .

2.5 Spectral dimension

A walk on a graph G is a sequence (v0, v1), (v1, v2), . . . , (vk−1, vk) of (not
necessarily different) edges in G. We shall denote such a walk by ω : v0 → vk
and call v0 the origin and vk the end of the walk. Moreover, the number
k of edges in ω will be denoted by |ω|. To each such walk ω we associate a
weight

πG(ω) =

|ω|−1
∏

i=0

σ−1
ω(i)

where ω(i) is the i’th vertex in ω. Denoting by Πn(G, v0) the set of walks of
length n originating at vertex v0 we have

∑

ω∈Πn(G,v0)

πG(ω) = 1 .

i.e. πG defines a probability distribution on Πn(G, v0). We call πG the simple
random walk on G.

For an infinite connected graph G and v ∈ V (G) we denote by πt(G, v)
the return probability of the simple random walk to v at time t, that is

πt(G, v) =
∑

ω:v→v
|ω|=t

πG(ω) .

One can in a standard manner relate this quantity to the discrete heat kernel
on G, but we shall not need this interpretation in the following. If the limit

ds = −2 lim
t→∞

lnπt(G, v)

ln t
(14)

exists, we call ds the spectral dimension of G. Again in this case, the exis-
tence and value of the limit are independent of v.

If G is the hyper-cubic lattice Zd it is clear that dh = d and by Fourier
analysis it is straight-forward to see that also ds = d. However, examples of
graphs with dh 6= ds are abundant, see e.g. [12].

The annealed spectral dimension of an ensemble (G∞, ν) of rooted infinite
graphs is defined as

d̄s = −2 lim
t→∞

ln 〈πt(G, r) 〉ν
ln t

(15)

provided the limit exists.
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We show in Theorem 4.6 that the annealed spectral dimension of a
generic Ising tree is

d̄s =
4

3
. (16)

The values of the Hausdorff dimension and the spectral dimension of
generic Ising trees are thus found to coincide with those of generic random
trees [13]. This indicates that the geometric structure of the underlying trees
is not significantly influenced by the coupling to the Ising model as long as
the model is generic.

3 Ensembles of infinite trees

In this section we establish the existence of the measure µ(β,h) on the set
of infinite trees for values of β, h that will be specified below. Our starting
point is the Ising model on finite but large trees. We first consider the
dependence of its partition function on the size of trees.

3.1 Asymptotic behavior of partition functions

Let the branching weights (pn)n≥0 be given as above and consider the gen-
erating functions

ϕ(z) =

∞
∑

n=0

pnz
n, (17)

which we assume to have radius of convergence ξ > 0, and

Z(β, h, g) =

∞
∑

N=0

ZN (β, h)gN , (18)

where ZN is given by (9).
Decomposing the set Sτ into the two disjoint sets

S±
τ =

{

s ∈ Sτ
∣

∣ s(r) = ±1
}

, (19)

gives rise to the decompositions

ΛN = ΛN+ ∪ ΛN−

and
Λ = Λ+ ∪ Λ−.

Correspondingly, we get

Z(β, h, g) = Z+(β, h, g) + Z−(β, h, g),

8



Figure 2: Decomposition of a tree of size N +1 with s(r) = +1. The tree is
decomposed according to the spin and the degree of the root’s neighbor.

where the generating functions Z±(β, h, g) are given by

Z±(β, h, g) =
∞
∑

N=0

ZN±(β, h)g
N , (20)

and ZN± are defined by restricting the second sum in (9) to S±
τ .

Decomposing the tree as in Fig.2, it is easy to see that the functions
Z±(g) are determined by the system of equations

{

Z+ = g(aϕ(Z+) + a−1 ϕ(Z−))

Z− = g(b ϕ(Z+) + b−1 ϕ(Z−))
(21)

where
a = eβ+h, b = e−β+h. (22)

Let us define F : {|z| < ξ}2 × C→ C2 by

F (Z+, Z−, g) = Z − gΦ(Z+, Z−), (23)

where,

Z ≡
(

Z+

Z−

)

, Φ(Z+, Z−) ≡
(

aϕ(Z+) + a−1 ϕ(Z−)
b ϕ(Z+) + b−1 ϕ(Z−)

)

. (24)

With the assumption ξ > 0, we have

∂F

∂Z = 1− g
∂Φ

∂Z = 1− g

(

aϕ′(Z+) a−1 ϕ′(Z−)
b ϕ′(Z+) b−1 ϕ′(Z−)

)

,

and in particular, F (0, 0, 0) = 0 and ∂F
∂Z (0, 0, 0) = 1. The holomorphic

implicit function theorem (see e.g. [16], Appendix B.5 and refs. therein)
implies that the fixpoint equation (21) has a unique holomorphic solution
Z±(g) in a neighborhood of g = 0. Let g0 be the radius of convergence of the
Taylor series of Z+(g). Since the Taylor coefficients of Z+ are non-negative,
g = g0 is a singularity of Z+(g) by Pringsheim’s Theorem ([16] Thm.IV.6).
Setting

Z+(g0) = lim
gրg0

Z+(g)

9



we have that Z+(g0) < +∞. In fact, if ξ = ∞ this follows from (21), since
ϕ(Z+) increases faster than linearly at +∞, assuming that pn > 0 for some
n ≥ 2. If ξ < +∞ we must have Z±(g0) ≤ ξ, because otherwise there
would exist 0 < g1 < g0 such that Z+(g1) = ξ and Z−(g1) ≤ ξ (or vice
versa), contradicting (21) (the LHS would be analytic at g1 and the RHS
not). In particular, we also have g0 < +∞ and that g0 equals the radius of
convergence for the Taylor series of Z−(g) by (21).

The genericity assumption mentioned above states that

Z±(g0) < ξ , (25)

which we shall henceforth assume is valid.

Remark 3.1. It should be noted that, in the absence of an external magnetic
field, i. e. for h = 0, one has Z+(β, 0, g) = Z−(β, 0, g) ≡ Z̄(β, g) and the sys-
tem (21) determining Z± reduces to the single equation Z̄ = 2g cosh β ϕ(Z̄).
On the other hand, this equation characterizes the random tree models con-
sidered in [13] except for a rescaling of the coupling constant g by the factor
2 cosh β. It follows that the condition (25) can be considered as a general-
ization of the genericity condition introduced in [13]. For this reason, the
results on the Hausdorff dimension and the spectral dimension established
in this paper follow from [13] in case h = 0.

Under the assumption (25), the implicit function theorem gives

det
(1− g0 Φ

′
0

)

= 0, (26)

where

Φ′
0 = Φ′(Z0

+, Z
0
−) =

(

aϕ′(Z0
+) a−1 ϕ′(Z0

−)
b ϕ′(Z0

+) b−1 ϕ′(Z0
−)

)

, (27)

with Z0
± = Z±(g0). Expanding (21) around Z0

± we get

∆Z = ∆gΦ0 + g0 Φ
′
0∆Z +

g0
2
Φ′′
0 ∆Z2 +O(∆Z3,∆g∆Z) , (28)

where

∆Zn =

(

(∆Z+)
n

(∆Z−)
n

)

=

(

(Z+ − Z0
+)

n

(Z− − Z0
−)

n

)

, ∆g = g − g0, (29)

Φ′′
0 =

(

aϕ′′(Z0
+) a−1 ϕ′′(Z0

−)
b ϕ′′(Z0

+) b−1 ϕ′′(Z0
−)

)

. (30)

By (26), we have
(

c1 c2
) (1− g0 Φ

′
0

)

= 0, (31)

where
c1 = g0 b ϕ

′(Z0
+), c2 = 1− g0 aϕ

′(Z0
+). (32)

10



Hence, multiplying (28) on the left by c = (c1 c2) gives

∆g cΦ0 +
g0
2
cΦ′′

0 ∆Z2 +O(∆Z3,∆g∆Z) = 0. (33)

This equation, together with (28), gives

(∆Z±)
2 = −K± ∆g + o(∆g), (34)

where the constants K± (depending only on β and h) are given by

K+ = α2K− (35)

with

α ≡ g0 a
−1 ϕ′(Z0

−)

1− g0 aϕ′(Z0
+)

=
1− g0 b

−1 ϕ′(Z0
−)

g0 b ϕ′(Z0
+)

, (36)

where the identity follows from (26), and

K− ≡ 2

g0

αaϕ(Z0
+) + b−1 ϕ(Z0

−)

α3 aϕ′′(Z0
+) + b−1 ϕ′′(Z0

−)
. (37)

This proves that Z±(g) has a square root branch point at g = g0 in the disc
{

g
∣

∣ |g| ≤ g0
}

.

Remark 3.2. The transpose of the matrix g0Φ
′
0 has positive entries and

eigenvalues 1 and λ, with

λ = det g0Φ
′(Z0

+, Z
0
−) = g20(ab

−1 − a−1b)ϕ′(Z0
+)ϕ

′(Z0
−). (38)

In particular, we have λ < 1 by construction and λ > −1 since

1 + λ = g0(aϕ
′(Z0

+) + b−1ϕ′(Z0
−)) > 0. (39)

Hence 1 is the Perron-Frobenius eigenvalue of the transpose of g0Φ
′
0 (cf. [16]

and refs. therein) and we have c1, c2 > 0 and accordingly α > 0.

Making further use of the implicit function theorem we next show that
Z±(g) have extensions to a so-called ∆-domain (cf. [16]), as described by
the following proposition.

Proposition 3.3. Suppose the greatest common divisor of
{

n
∣

∣ pn > 0
}

is
1. Then the functions Z±(g) can be analytically extended to a domain

Dǫ,ϑ = {z | |z| < g0 + ǫ, z 6= g0, | arg(z − g0)| > ϑ} (40)

and (34) holds in Dǫ,ϑ, for some ǫ > 0 and 0 ≤ ϑ < π
2 .
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Proof. From det(1−gΦ′(Z+, Z−))|g=g0 = 0 and det(1−gΦ′(Z+, Z−))|g=0 =
1, we have

det(1− gΦ′(Z+, Z−)) > 0, 0 ≤ g < g0. (41)

Hence

|det(1− gΦ′(Z+, Z−))| ≥ det
(1− |g|Φ′(Z+(|g|), Z−(|g|))

)

> 0 (42)

for |g| < g0, where we have used that ϕ and Z± have positive Taylor
coefficients. Moreover, in the limiting case |g| = g0 we get that det(1 −
gΦ′(Z+, Z−)) = 0 if and only if

gϕ′(Z±(g)) = g0ϕ
′(Z±(g0)). (43)

In particular, |ϕ′(Z±(g))| = ϕ′(Z±(g0)) which implies

|Z±(g)| = Z±(g0). (44)

By the definition of ZN±(β, h) we have that ZN±(β, h) > 0 for all N of the
form

N = 1 + n1 + n2 + · · ·+ ns, (45)

where ni are such that pni
> 0, i = 1, . . . , s. Hence, eq. (44) implies

gN = eiθgN0 (46)

for some fixed θ ∈ R and all such N . By the assumption on (pn) this implies
g = g0. This proves that the functions Z±(g) can be analytically extended
beyond the boundary of the disc

{

g
∣

∣ |g| ≤ g0
}

, except at g0.
It remains to show that

det(1− gΦ′(Z+, Z−)) 6= 0 (47)

for 0 < |g − g0| < ǫ for some ǫ > 0, since this together with the implicit
function theorem proves the claim with ϑ = 0. By (34) it suffices to show

∂

∂Z+
det(1− gΦ′(Z+, Z−))

∣

∣

∣

∣

Z0
±

√

K+

+
∂

∂Z−
det(1− gΦ′(Z+, Z−))

∣

∣

∣

∣

Z0
±

√

K− 6= 0.

(48)

The LHS equals
[

− g0aϕ
′′(Z0

+) (1− g0b
−1ϕ′(Z0

−))− g20a
−1bϕ′′(Z0

+)ϕ
′(Z0

−)

]

√

K+

+

[

− g0b
−1ϕ′′(Z0

−) (1 − g0aϕ
′(Z0

+))− g20a
−1bϕ′(Z0

+)ϕ
′′(Z0

−)

]

√

K−

(49)

which obviously is < 0. The reader may also consult [10] for a general
theorem on the asymptotic behavior of solutions to systems of functional
equations of the type considered here.
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The above result allows us to use a standard transfer theorem [16] to
determine the asymptotic behavior of ZN±(β, h) for N → ∞. We state it
as follows.

Corollary 3.4. Under the assumptions of Proposition 3.3, we have

ZN±(β, h) =
1

2

√

g0K±

π
g−N
0 N−3/2(1 + o(1)) (50)

for N → ∞, where g0, K± > 0 are determined by (21), (26), and (34)-(37).

3.2 The limiting measure

For 1 ≤ N < ∞ and fixed β, h ∈ R we define the probability distributions
µN± on ΛN± ⊂ Λ by

µN±(τs) =
1

ZN±
e−H(τs), (51)

such that

µN =
ZN+

ZN
µN+ +

ZN−

ZN
µN−. (52)

We shall need the following proposition, that can be obtained by a slight
modification of the proof of Proposition 3.2 in [11], and whose details we
omit.

Proposition 3.5. Let KR, R ∈ N, be a sequence of positive numbers. Then
the subset

C =

∞
⋂

r=1

{

τs ∈ Λ
∣

∣ |BR(τ)| ≤ KR

}

(53)

of Λ is compact.

We are now ready to prove the following main result of this section.

Theorem 3.6. Let β, h ∈ R and assume that the genericity condition (25)
holds and that the greatest common divisor of

{

n
∣

∣ pn > 0
}

is 1. Then the
weak limits

µ± = lim
N→∞

µN± and µ = lim
N→∞

µN (54)

exist as probability measures on Λ and

µ =
α

1 + α
µ+ +

1

1 + α
µ−, (55)

where α is given by (36).
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Proof. The identity (55) follows immediately from (52), Corollary 3.4 and
(35), provided µ± exist. Hence it suffices to show that µ+ exists (since
existence of µ− follows by identical arguments).

According to [11], it is sufficient to prove that the sequence (µN+) satis-
fies a certain tightness condition (see e.g. [7] for a definition) and that the
sequence

µN+(
{

τs
∣

∣ BR(τ) = τ̂ , s|V (τ̂ ) = ŝ
}

) (56)

is convergent in R as N → ∞, for each finite tree τ̂ ∈ T and fixed spin
configuration ŝ.

Tightness of (µN+): As a consequence of Proposition 3.5, this condition
holds if we show that for each ǫ > 0 and R ∈ N there exists KR > 0 such
that

µN+(
{

τs
∣

∣ |BR(τ)| > KR

}

) < ǫ, N ∈ N. (57)

For R = 1 this is trivial. For R = 2, k ≥ 1 we have

µN+(
{

τs
∣

∣ |B2(τ)| = k + 1
}

)

= Z−1
N+

∑

N1+···+Nk=N−1

[

a

k
∏

i=1

ZNi+ + a−1
k
∏

i=1

ZNi−

]

pk

≤ k
∑

N1+···+Nk=N−1
N1≥(N−1)/k

Z−1
N+

[

a
k
∏

i=1

ZNi+ + a−1
k
∏

i=1

ZNi−

]

pk

≤ cst. k5/2
[

Z+(g0)
k−1 + Z−(g0)

k−1
]

pk ,

(58)

where we have used (50). The last expression tends to zero for k → ∞ as a
consequence of (25). This proves (57) for R = 2.

For R > 2 it is sufficient to show

µN+(
{

τs
∣

∣ |BR+1(τ)| > K,BR(τ) = τ̂ , s|V (τ̂ ) = ŝ
}

) → 0 (59)

uniformly in N for k → ∞, for fixed τ̂ of height R and fixed ŝ ∈ {±1}V (τ̂ ),
as well as fixed K > 0. Let L denote the number of vertices in τ̂ at maximal
height R. Any τ ∈ Λ with BR(τ) = τ̂ is obtained by attaching a sequence
of trees τ1, . . . , τS in Λ such that the root vertex of τi is identified with a
vertex at maximal height in τ̂ . We must then have

|τ1|+ · · ·+ |τS | = |τ | − |τ̂ | (60)

and
k1 + · · ·+ kL = S, (61)
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where ki ≥ 0 denotes the number of trees attached to vertex vi in τ̂ , i =
1, . . . , L. For fixed k1, . . . , kL we get a contribution to (59) equal to

Z−1
N+

∑

N1+···+NS=N−|τ̂ |

(

L
∏

i=1

(ZNiŝvi
)kipki

)

e−H(τ̂ŝ)
∏

v∈V (τ̂)\{r,v1,...,vL}

pσv−1

≤ cst.
L
∏

i=1

(maxZ0
±)

kipki (ki + 1)5/2

(62)

where the inequality is obtained as above for R = 2 and the constant is
independent of k1, . . . , kL.

Since
|BR+1(τ)| = |τ̂ |+ k1 + · · ·+ kL > K (63)

and the number of choices of k1, . . . , kL ≥ 0 for fixed k = k1+ · · ·+kL equals

(

k + L− 1

L− 1

)

≤ kL−1

(L− 1)!
(64)

the claim (59) follows from (25) and (62).

Convergence of µN+(
{

τs
∣

∣ BR(τ) = τ̂ , s|V (τ̂ ) = ŝ
}

): Using the decomposi-
tion of τ into τ̂ with branches described above and using the arguments in
the last part of the proof of Theorem 3.3 in [11] we get, with notation as
above, that

µN±(
{

τs
∣

∣ BR(τ) = τ̂ , s|V (τ̂) = ŝ
}

)

N→∞−−−−→ g
|τ̂ |
0√
K±

e−H(τ̂ŝ)
L
∑

i=1

√

Kŝ(vi)ϕ
′(Z0

ŝ(vi)
)
∏

j 6=i

ϕ(Z0
ŝ(vj)

),
(65)

provided ŝ(r) = ±1 (if ŝ(r) = ∓1 the limit is trivially 0).

Introducing the notation

A(ŝ) =
{

τs
∣

∣ BR(τ) = τ̂ , s|V (τ̂ ) = ŝ
}

,

where τ̂ is a finite tree of height R with spin configuration ŝ, and using (35),
it follows from (65) that the µ±-volumes of this set are given by

µ±(A(ŝ)) = g
|τ̂ |
0 e−H(τ̂ŝ)

L
∑

i=1

α(ŝ(vi)∓1)/2 ϕ′(Z0
ŝ(vi)

)
∏

j 6=i

ϕ(Z0
ŝ(vj )

),

if ŝ(r) = ±1 and where v1, . . . , vL are the vertices at maximal distance from
the root r in τ̂ .
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The above calculations show, by similar arguments as in [11, 8], that
the limiting measures µ± are concentrated on trees with a single infinite
path starting at r, called the spine, and attached to each spine vertex ui,
i = 1, 2, 3 . . . , is a finite number ki of finite trees, called branches, some of
which are attached to the left and some to the right as seen from the root,
cf. Fig.1.

The following corollary provides a complete description of the limiting
measures µ±.

Corollary 3.7. The measures µ± are concentrated on the sets

Λ̄± =
{

τs ∈ Λ±

∣

∣ τ has a single spine
}

,

respectively, and can be described as follows:

i) The probability that the spine vertices u0 = r, u1, u2, . . . , uN have
k′1, . . . , k

′
N left branches and k′′1 , . . . , k

′′
N right branches and spin values

s0 = ±1, s1, s2, . . . , sN , respectively, equals

ρs0
k′
1
,...,k′

N
,k′′

1
,...,k′′

N

(s0, . . . , sN )

= gN0 e
−HN

(

N
∏

i=1

(Z0
si)

k′i+k′′i pk′i+k′′i +1

)

α(sN−s0)/2,
(66)

with

HN = −β
N
∑

i=1

si−isi − h

N
∑

i=1

si.

ii) The conditional probability distribution of any finite branch τs at a fixed
ui, 1 ≤ i ≤ N , given k′1, . . . , k

′
N , k′′1 , . . . , k

′′
N , s0, . . . , sN as above, is

given by

νsi(τs) = (Z0
si)

−1 g
|τ |
0 e−H(τs)

∏

v∈V (τ)\ui

pσv−1 (67)

for s(ui) = si, and 0 otherwise.

iii) The conditional distribution of the infinite branch at uN , given k′1, . . . ,
k′N , k′′1 , . . . , k

′′
N , s0, . . . , sN , equals µsN .

4 Hausdorff and spectral dimensions

In this section we determine the values of the Hausdorff and spectral di-
mensions of the ensemble of trees (T , µ̄) obtained from (Λ, µ) by integrating
over the spin degrees of freedom, that is

µ̄(A) = µ(
{

τs
∣

∣ τ ∈ A
}

)
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for A ⊆ T . Note that the mapping τs → τ from Λ to T is a contraction
w. r. t. the metrics (5) and (2).

Most of the arguments in this section are based on the methods of [13],
and we shall mainly focus on the novel ingredients that are needed and
otherwise refer to [13] for additional details.

4.1 The annealed Hausdorff dimension

Theorem 4.1. Under the assumptions of Theorem 3.6 the annealed Haus-
dorff dimension of µ̄ is 2 for all β, h:

d̄h = lim
R→∞

ln 〈|BR|〉µ̄
lnR

= 2 .

Proof. Consider the probability distribution ν± on
{

τs
∣

∣ τ is finite
}

given by
(67) and denote by DR(τ) the set of vertices at distance R from the root in
τ . For a fixed branch T , we set

f±R = 〈|DR|〉ν± Z0
±.

where 〈·〉ν± denotes the expectation value w.r.t. ν±. Arguing as in the
derivation of (21), we find

{

f+R = g0
(

aϕ′(Z0
+) f

+
R−1 + a−1 ϕ′(Z0

−) f
−
R−1

)

f−R = g0
(

b ϕ′(Z0
+) f

+
R−1 + b−1 ϕ′(Z0

−) f
−
R−1

)

,

for R ≥ 2, and f±1 = Z0
±. Using that c, given by (32), is a left eigenvector

of g0Φ
′
0 with eigenvalue 1, this implies

c1 f
+
R + c2 f

−
R = c1 f

+
R−1 + c2 f

−
R−1 = . . .

= c1 f
+
1 + c2 f

−
1 = c1 Z

0
+ + c2 Z

0
− .

Since c1, c2, Z
0
±, f

±
R > 0, we conclude that

k1 ≤ 〈|DR|〉ν± ≤ k2, R ≥ 1 , (68)

where k1, k2 are positive constants (depending on β, h). Using

〈|BR|〉ν± =

R
∑

R′=0

〈|DR′ |〉ν± (69)

we then obtain
1 + k1R ≤ 〈|BR|〉ν± ≤ 1 + k2R, (70)

Finally, it follows from (66) that

1 +R+ k1
1

2
R(R+ 1) ≤ 〈|BR|〉µ ≤ 1 +R+ k2

1

2
R(R+ 1) , (71)

which proves the claim.
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Remark 4.2. By a more elaborate argument, using the methods of [13, 14],
one can show that the Hausdorff dimension dh defined by (12) exists and
equals 2 almost surely, that is for all trees τ ∈ T except for a set of vanishing
µ̄-measure. We shall not make use of this result below and refrain from giving
further details in this paper.

4.2 The annealed spectral dimension

In this section we first establish two results needed for determining the
spectral dimension. The first one is a version of a classical result, proven by
Kolmogorov for Galton-Watson trees [17], on survival probabilities for ν±.

Proposition 4.3. The measures ν± defined by (67) fulfill

k−
R

≤ ν±(
{

τs ∈ Λ
∣

∣ DR(τ) 6= ∅
}

) ≤ k+
R
, R ≥ 1, (72)

where k± > 0 are constants depending on β, h.

Proof. Let H±
R (w) be the generating function for the distribution of |DR|

w.r.t. ν±,

H±
R (w) = Z0

±

∞
∑

n=0

ν±(
{

τs
∣

∣ |DR(τ)| = n
}

)wn. (73)

Arguing as in the proof of (21), we have
{

H+
R = g0

(

aϕ(H+
R−1) + a−1 ϕ(H−

R−1)
)

H−
R = g0

(

b ϕ(H+
R−1) + b−1 ϕ(H−

R−1)
)

,
(74)

for R ≥ 2, and H±
1 = Z0

±w.
Note that

Z0
± ν±(

{

τs ∈ Λ
∣

∣ DR(τ) 6= ∅
}

) = Z0
± −H±

R (0), (75)

and that the radius of convergence for H±
R is ≥ 1. Also, (H±

R (0))R≥1 is an
increasing sequence. In fact, H±

1 (0) = 0 and so H±
2 (0) > 0 by (74). Since

ϕ is positive and increasing on [0, ξ), it then follows by induction from (74)
that (H±

R (0))R≥1 is increasing. Hence, we conclude from (74) and (21) that

H±
R (0) ր Z0

± for R→ ∞. (76)

Taking R large enough and expanding ϕ(H±
R (0)) around Z0

± we obtain, in
matrix form,

∆R = g0 Φ
′
0∆R−1 −

g0
2
Φ′′
0 ∆

2
R−1 +O(∆3

R−1) , (77)

where

∆n
R =

(

(∆+
R)

n

(∆−
R)

n

)

=

(

(Z0
+ −H+

R (0))n

(Z0
+ −H+

R (0))n

)

, (78)
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and where Φ′
0, Φ

′′
0 are given by (27) and (30). Setting LR = c∆R, eq. (77)

gives

LR = LR−1 −
g0
2
cΦ′′

0 ∆
2
R−1 +O(∆3

R−1) . (79)

From this we deduce that there exists R0 > 0 such that

LR−1 −A−L
2
R−1 ≤ LR ≤ LR−1 −A+L

2
R−1, R ≥ R0, (80)

where A± = A±(β, h) are constants. Hence, it follows that

1

LR−1
+B− ≤ 1

LR−1

1

1−A−LR−1
≤ 1

LR
≤ 1

LR−1

1

1−A+LR−1
≤ 1

LR−1
+B+,

for R ≥ R0, where B± > 0 are constants. This implies

B−R+ C− ≤ 1

LR
≤ B+R+ C+ (81)

for suitable constants C±. Evidently, this proves that

D−

R
≤ Z0

± −H±
R (0) ≤ D+

R
, R ≥ 1, (82)

where D± > 0 are constants, which together with (75) proves the claim.

We also note the following generalization of Lemma 4 in [13].

Lemma 4.4. Suppose u : Λ → C is a bounded function depending only on
τs ∈ Λ through the ball BR(τ) and the spins in BR(τ), except those on its
boundary, for some R ≥ 1. Moreover, define the function ER : Λ → R by

ER(τs) =
∑

v∈DR(τ)

√

Ksv

Z0
sv

, (83)

with the convention ER(τs) = 0 if DR(τ) = ∅. Then
∫

Λ
u(τs)dµ±(τs) =

Z0
±√
K±

∫

Λ
u(τs)ER(τs)dν±(τs). (84)

Proof. Using (66-67) we may evaluate the LHS of (84) and get
∑

τs∈Λ(R)

u(τs) g
|τ |
0 e−H(τs) α(s(vR)−s0)/2

∏

v∈V (τ)\r

pσv−1 , (85)

where Λ(R) denotes the set of finite rooted trees in Λ with one marked
vertex wR of degree 1 at distance R from the root, and vR is the neighbor
of wR.

On the other hand, the integral on the RHS can be written as

1

Z0
±

∑

τs∈Λ(R)

u(τs) g
|τ |
0 e−H(τs)

√

Ks(vR)

Z0
s(vR)

Z0
s(vR)

∏

v∈V (τ)\r

pσv−1. (86)

By comparing the two expressions the identity (84) follows.
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As a consequence of this result we have the following lemma.

Lemma 4.5. There exist constants c± > 0 such that

〈

|BR|−1
〉

µ±
≤ c±R

−2 (87)

Proof. Define, for fixed R ≥ 1, the function

u(τ) =

{

|DR(τ)|−1 if DR(τ) 6= ∅
0 otherwise.

(88)

Then u(τ) fulfills the assumptions of Lemma 4.4 for this value of R. Hence

〈

|DR(τ)|−1
〉

µ±
=

Z0
±√
K±

∑

τs:DR(τ)6=∅

|DR(τ)|−1 E(τs) e
−H(τs)

∏

v∈V (τ)\r

pσv−1

≤ c′±
∑

τs:DR(τ)6=∅

e−H(τs)
∏

v∈V (τ)\r

pσv−1 ≤
c′′±
R
,

(89)

where Proposition 4.3 is used in the last step. Combining this fact with
Jensen’s inequality, we obtain

〈

|BR|−1
〉

µ±
=

〈

1

|D1|+ · · ·+ |DR|

〉

µ±

≤ R−1
〈

(|D1||D2| · · · |DR|)−1/R
〉

µ±

≤ R−1
R
∏

i=1

〈

|Di|−1
〉1/R

µ±

≤ c′′±(R!)
−1/R ≤ c±R

−2.

(90)

Returning to the spectral dimension, let us define, with the notation of
subsection 2.5, the generating function for return probabilities of the simple
random walk on a tree τ by

Qτ (x) =
∞
∑

t=0

(1− x)
t
2πt(τ, r) , (91)

and set
Q(x) = 〈Qτ (x)〉µ̄ . (92)
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The annealed spectral dimension as defined by (15) is related to the singular
behavior of the function Q(x) as follows. First, note that if d̄s exists, we
have

〈πt(τ, r)〉µ̄ ∼ t−
d̄s
2 , t→ ∞ . (93)

For d̄s < 2, this implies that Q(x) diverges as

Q(x) ∼ x−γ , as x→ 0, (94)

where

γ = 1− d̄s
2
. (95)

We shall take (94) and (95) as the definition of d̄s and prove (94) with γ = 1
3

by establishing the estimates

c x−1/3 ≤ Q(x) ≤ c̄ x−1/3 (96)

for x sufficiently small, where c and c̄ are positive constants, that may depend
on β, h.

Theorem 4.6. Under the assumptions of Theorem 3.6, the annealed spectral
dimension of (T , µ̄) is

d̄s =
4

3
.

Proof. We first prove the lower bound in (96).
Let R ≥ 1 be fixed and consider the spine vertices u0, u1, . . . , uR with

given spin values s0, . . . , sR and branching numbers k′1, . . . , k
′
R, k

′′
1 , . . . , k

′′
R ≥

0 as in Corollary 3.7. The conditional probability that a given branch at
uj has length ≥ R is bounded by c

R by Proposition 4.3. Hence, the condi-
tional probability that at least one of the k′j + k′′j branches at uj has height
≥ R is bounded by (k′j + k′′j )

c
R . Using Corollary 3.7 and summing over

k′1, . . . , k
′
R, k

′′
1 , . . . , k

′′
R, we get that the conditional probability qR that at

least one branch at uj is of height ≥ R, given s0, . . . , sR, is bounded by

1

1 + α
gR0 e

−HR

R
∏

i=1
i 6=j

ϕ′(Z0
si)ϕ

′′(Z0
sj )α

(sR+1)/2 c

R
≤ c′

R
. (97)

Using that the distributions of the branches at different spine vertices are
independent for given s0, . . . , sR, it follows that the conditional probability
that no branch at u1, . . . , uR has length ≥ R, for given s0, . . . , sR, is bounded
from below by

(1− qR)
R ≥

(

1− c′

R

)R

≥ e−c′+O(R−1). (98)
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Denoting this conditioned event by AR, it follows from Lemmas 6 and 7 in
[13] that the conditional expectation of Qτ (x), given s0, s1, . . . , sR, is

≥ ec
′+O(R−1)

〈(

1

R
+Rx+

∑R

T⊂τ

x |T |
)−1〉

R

≥ ec
′+O(R−1)

(

1

R
+Rx+ x

〈

∑R

T⊂τ

|T |
〉

R

)−1

.

(99)

Here 〈·〉R denotes the conditional expectation value w.r.t. µ on AR and
∑R

T⊂τ
the sum over all branches T of τ attached to vertices on the spine

at distance ≤ R from the root. We have

〈

∑R

T⊂τ

|T |
〉

R

=
R
∑

i=1

〈

|Bi
R(τ)|

〉

R

≤
R
∑

i=1

µ(AR

∣

∣ s0, . . . , sR)
−1
〈

|Bi
R|
〉

µ

≤ ec
′+O(R−1)

R
∑

i=1

〈|BR|〉νsi ≤ C R2,

(100)

where (70) is used in the last step.
This bound being independent of s0, . . . , sR we have proven that

Q(x) ≥ cst.

(

1

R
+Rx+ CR2x

)−1

(101)

and consequently, choosing R ∼ x−
1

3 , it follows that

Q(x) ≥ c x−
1

3 . (102)

As concerns the upper bound in (96), it follows by an argument identical
to the one in [13] on p.1245–50 by using Lemma 4.5.

5 Absence of spontaneous magnetization

Using the characterization of the measure µ(β,h) established in Section 3 and
that d̄h = 2, we are now in a position to discuss the magnetization properties
of generic Ising trees in some detail. In view of the fact that the trees have
a single spine, we distinguish between the magnetization on the spine and
the bulk magnetization. In subsection 5.1 we show that the former can be
expressed in terms of an effective Ising model on the half-line {0, 1, 2, . . .}.
The bulk magnetization is discussed in subsection 5.2
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5.1 Magnetization on the spine

The following result is crucial for the subsequent discussion.

Proposition 5.1. Under the assumptions of Theorem 3.6, the functions Z0
±

are smooth functions of β, h.

Proof. In Section 3.1 we have shown that Z±(β, h, g) is a solution to the
equation

F (Z+, Z−, g) = 0

where F is defined in (23), and that

Z0
±(β, h) = Z±(g0(β, h), β, h) (103)

is a solution to
{

F (Z0
+, Z

0
−, g0) = 0

det(1− g0Φ
′(Z0

+, Z
0
−)) = 0 ,

(104)

considered as three equations determining (Z0
+, Z

0
−, g0) implicitly as func-

tions of (β, h). Hence, defining G : (−R,R)2 × R3 → R3 by

G(Z0
+, Z

0
−, g0, β, h) =

(

F (Z0
+, Z

0
−, g0)

det(1− g0Φ
′(Z0

+, Z
0
−))

)

it suffices to show that its Jacobian J w.r.t. (Z0
+, Z

0
−, g0) is regular at

(Z0
+(β, h), Z

0
−(β, h), g0(β, h)). We have

J =

(1− g0Φ
′(Z0

+, Z
0
−) −Φ(Z0

+, Z
0
−)

A+ A− B

)

,

where

A± =
∂

∂Z0
±

det(1− g0Φ
′(Z0

+, Z
0
−)) , B =

∂

∂g0
det(1− g0Φ

′(Z0
+, Z

0
−))

are readily calculated and equal

A+ = −g0 aϕ′′(Z0
+) (1 − g0 b

−1ϕ′(Z0
−))− g20 a

−1 b ϕ′′(Z0
+)ϕ

′(Z0
−) ,

A− = −g0 b−1 ϕ′′(Z0
−) (1− g0 aϕ

′(Z0
+))− g20 a

−1 b ϕ′(Z0
+)ϕ

′′(Z0
−) ,

B = −aϕ′(Z0
+)− b−1ϕ′(Z0

−) + 2g0 (ab
−1 − a−1b)ϕ′(Z0

+)ϕ
′(Z0

−) .

Using eqs. (104) and (36), we get

det J = (Z0
+ b ϕ

′(Z0
+) + g−1

0 Z0
− (1− g0aϕ

′(Z0
+)))

∣

∣

∣

∣

1 −α
A+ A−

∣

∣

∣

∣

< 0 ,

since clearly A± < 0 and α > 0 by Remark 3.2. This proves the claim.
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We can now establish the following result for the single site magnetization
on the spine.

Theorem 5.2. Under the assumptions of Theorem 3.6, the probability
µ(β,h)({sv = +1}) is a smooth function of β, h for any spine vertex v. In
particular, there is no spontaneous magnetization in the sense that

lim
h→0

µ(β,h)({sv = +1}) = 1

2
. (105)

Proof. For the root vertex r, we have by eq. (55) that

µ(β,h)({s(r) = +1}) = α(β, h)

1 + α(β, h)
, (106)

where α(β, h) is given by (36) and is a smooth function of β, h by Proposition
5.1. Hence, to verify (105) for v = r it suffices to note that α(β, 0) = 1,
since a = b−1 and Z0

+ = Z0
− for h = 0.

Now, assume v = uN is at distance N from the root, and define

pij = µi({sv = j}) α
1+i
2

1 + α
, (107)

for i, j ∈ {±1}, where we use ±1 and ± interchangeably. From eq. (66)
follows that

µs0({sv = sN}) =
∑

k′i,k
′′
i ≥0

s1,...,sN−1

ρs0
k′
1
,...,k′

N
,k′′

1
,...,k′′

N

(s0, . . . , sN )

=
∑

s1,...,sN−1

N
∏

i=1

g0[Φ
′(Z0

+, Z
0
−)]si−1si α

sN−s0
2

= [(g0 Φ
′(Z0

+, Z
0
−))

N ]s0sN α
sN−s0

2 ,

(108)

where we have used that the matrix elements of Φ′(Z0
+, Z

0
−) are given by

[Φ′(Z0
+, Z

0
−)]si−1si = eβsi−isi+hsiϕ′(Z0

si) . (109)

Hence, substituting into (107) we have

pij =
[

(g0Φ
′(Z0

+, Z
0
−))

N
]

ij

α
1+j
2

1 + α
. (110)

By Proposition 5.1, all factors on the RHS of (110) are smooth functions of
β, h, and by (55) we have

µ(β,h)({sv = j}) = p+j + p−j . (111)
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Eq. (105) is now obtained from (110) by noting again that for h = 0 we
have α = 1 and hence c1 = c2, which by (31) gives

p+j + p−j =
[

(1 1)(g0 Φ
′(Z0, Z0))N

]

j

1

2

= (1 1)j
1

2
=

1

2
.

(112)

The preceding proof together with (66) shows that the distribution of
spin variables s0, . . . , sN on the spine can be written in the form

ρ(s0, . . . , sN ) = e−H′
N (s0,...,sN )

(

g20 ϕ
′(Z0

+)ϕ
′(Z0

−)
)N/2

√
α

1 + α
(113)

where

H ′
N(s0, . . . , sN ) = −β

N
∑

i=1

si−1si − h′
N
∑

i=1

si −
sN
2

logα (114)

and

h′ = h+
1

2
ln
ϕ′(Z0

+)

ϕ′(Z0
−)

. (115)

Since ρ(s0, . . . , sN ) is normalized, the expectation value w.r.t. µ of a function
f(s0, . . . , sN−1) hence coincides with the expectation value w. r. t. the Gibbs
measure of the Ising chain on [0, N ], with Hamiltonian given by (114) and
(115). In particular, we have that the mean magnetization on the spine
vanishes in the absence of an external magnetic field, since h′ is a smooth
function of h, by Proposition 5.1, and vanishes for h = 0 (see e.g. [5] for
details about the 1d Ising model).

We state this result as follows.

Corollary 5.3. Under the assumptions of Theorem 3.6, the mean magne-
tization on the spine vanishes as h→ 0, i.e.

lim
h→0

lim
N→∞

〈

s0 + · · ·+ sN−1

N

〉

β,h

= 0. (116)

5.2 Mean magnetization

For the mean magnetization on the full infinite tree, defined in Sec. 2.3,
we have the following result, which requires some additional estimates in
combination with Proposition 5.1.

Theorem 5.4. Under the assumptions of Theorem 3.6, the mean magneti-
zation vanishes for h→ 0, i.e.

lim
h→0

M(β, h) = 0 , β ∈ R ,
where M(β, h) is defined by (10)-(11).
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Proof. Consider the measure ν± given by (67) and, for a given finite branch
T , let SR(T ) denote the sum of spins at distance R from the root of T .
Setting

m±
R = Z0

± 〈SR〉ν± (117)

it follows, by decomposing T according to the spin and the degree of the
vertex closest to the root, that

{

m+
R = g0

(

aϕ′(Z0
+)m

+
R−1 + a−1 ϕ′(Z0

−)m
−
R−1

)

m−
R = g0

(

b ϕ′(Z0
+)m

+
R−1 + b−1 ϕ′(Z0

−)m
−
R−1

)

,
(118)

for R ≥ 1, and m±
0 = ±Z0

±. In matrix notation these recursion relations
read

mR = g0Φ
′
0mR−1, (119)

which, upon multiplication by the left eigenvector c of g0Φ
′
0, leads to

cmR = g0 cΦ
′
0mR−1 = cmR−1, (120)

and hence
c1m

+
R + c2m

−
R = c1 Z

0
+ − c2 Z

0
−, R ≥ 0 . (121)

Now, fix N ≥ 1 and let UR,N denote the sum of all spins at distance
R ≥ 1 from the N ’th spine vertex uN in the branches attached to uN . The
conditional expectation of UR,N , given s0, s1, . . . , sN , then only depends on
sN , and its value is obtained from Corollary 3.7 by summing over k′N , k

′′
N ≥ 0,

which yields

(

∞
∑

k=0

(Z0
sN )

k(k + 1)pk+1

)−1 ∞
∑

k=0

(Z0
sN )

k−1pk+1k(k + 1)msN
R

= ϕ′(Z0
sN )

−1ϕ′′(Z0
sN )m

sN
R ≡ dsNR .

(122)

Using the matrix representation (110) for pij, this gives

〈UR,N 〉β,h =
1

1 + α
(1 1) (g0Φ

′(Z0
+, Z

0
−))

N

(

α d+R
d−R

)

. (123)

As pointed out in Remark 3.2, the matrix g0Φ
′
0 has a second left eigen-

value λ such that |λ| < 1. Let (e1, e2) be a smooth choice of eigenvectors
corresponding to λ as a function of (β, h), e.g.

(

e1
e2

)

=

(

g0bϕ
′(Z0

−)
g0b

−1ϕ′(Z0
−)− 1

)

, (124)

and write
(

1
1

)

= A

(

c1
c2

)

+B

(

e1
e2

)

. (125)
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From (123) we then have

〈UR,N 〉β,h =
1

1 + α

(

A(c1 c2) +BλN(e1 e2)
)

(

α d+R
d−R

)

=
A

1 + α
(c1αd

+
R + c2d

−
R) + λN

B

1 + α
(e1αd

+
R + e2d

−
R) ,

(126)

and from (the proof of) Theorem 5.2 it follows that A→ c̃−1 and B → 0 for
h→ 0, where c̃ = c1(β, 0) = c2(β, 0).

Next, note that |d±R|, R ≥ 1, are bounded by a constant C1 = C1(β, h)
as a consequence of (68), and that

〈MR(β, h)〉β,h ≤ 〈|BR|〉−1
β,h

∑

R′,N≤R

∣

∣

∣

〈

UR′,N

〉

β,h

∣

∣

∣

≤ C2R
−2

∑

R′,N≤R

∣

∣

∣

〈

UR′,N

〉

β,h

∣

∣

∣

(127)

for some constant C2 = C2(β, h) by (71). It now follows from (126) that

∣

∣

∣
〈MR(β, h)〉β,h

∣

∣

∣
≤ AC2

R(1 + α)

R
∑

R′=1

(c1αd
+
R+c2d

−
R)+R

−1B C1 C2 max{e1, e2}.

(128)
Obviously, the second term on the RHS vanishes in the limit R → ∞.
Rewriting the summand in the first term on the RHS as

c1αd
+
R + c2d

−
R = c1 αm

+
Rϕ

′(Z0
+)

−1ϕ′′(Z0
+) + c2m

−
Rϕ

′(Z0
−)

−1ϕ′′(Z0
−)

= (c1m
+
R + c2m

−
R)ϕ

′(Z0)−1ϕ′′(Z0)

+ c1m
+
R

[

αϕ′(Z0
+)

−1ϕ′′(Z0
+)− ϕ′(Z0)−1ϕ′′(Z0)

]

+ c2m
−
R

[

ϕ′(Z0
−)

−1ϕ′′(Z0
−)− ϕ′(Z0)−1ϕ′′(Z0)

]

,

(129)

we see the last two terms in this expression tend to 0 uniformly in R as
h→ 0 by continuity of Z0

±, g0 and boundedness of |m±
R|, and the same holds

for the first term as a consequence of (121) and continuity of c1, c2, Z
0
± and

g0. In conclusion, given ǫ > 0 there exists δ > 0 such that

∣

∣

∣
〈MR(β, h)〉µ

∣

∣

∣
≤ ǫ

AC2

1 + α
+ C ′R−1 , (130)

if |h| < δ, where C ′ is a constant. This completes the proof of the theorem.

Remark 5.5. A natural alternative to the mean magnetization as defined
by (10)-(11) is the quantity

M̄(β, h) = lim sup
R→∞

M̄R(β, h) ,
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where

MR(β, h) =

〈

|BR(τ)|−1
∑

v∈BR(τ)

sv

〉

β,h

.

It is natural to conjecture that limh→0 M̄(β, h) = 0 holds for generic Ising
trees.

6 Conclusions

The statistical mechanical models on random graphs considered in this paper
possess two simplifying features, beyond being Ising models, the first being
that the graphs are restricted to be trees and the second that they are
generic, in the sense of (25). Relaxing the latter condition might be a way
of producing models with different magnetization properties from the ones
considered here. Infinite non-generic trees having a single vertex of infinite
degree have been investigated in [19, 20], but it is unclear whether a non-
trivial coupling to the Ising model is possible. A different question is whether
validity of the genericity condition (25) for h = 0 implies its validity for all
h ∈ R. The arguments presented in Section 3.1 only show that the domain
of genericity in the (β, h)-plane is an open subset containing the β-axis, and
thus leaves open the possibility of a transition to non-generic behavior at
the boundary of this set.

Coupling the Ising model to other ensembles of infinite graphs represents
a natural object of future study. In particular, models of planar graphs
may be tractable. The so-called uniform infinite causal triangulations of
the plane are known to be closely related to planar trees [14, 21], and a
quenched version of this model coupled to the Ising model without external
field has been considered in [21], and found to have a phase transition.
Analysis of the non-quenched version, analogous to the models considered
in the present paper, seem to require developing new techniques. Surely, this
is also the case for other planar graph models such as the uniform infinite
planar triangulation [3] or quadrangulation [8].
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