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that
Adiabatic Theorem for Discrete Time Evolution P,(s")UnP;(S) = 6 + O(NY) 3)

Atushi TANAKA * for N — 0. In the following, we will follow a “discrete ana-
log” of the conventional proof of the adiabatic theor&d?)
Department of Physics, Tokyo Metropolitan University, Our proof consists of two parts. One is to introduce the time
Hachioji, Tokyo 192-0397 evolution operatotV, (Eq. (10)) for an interaction picture
whose free evolution is the adiabatic time evolution. This i
KEYWORDS: adiabatic theorem, quantum map, quantum cir-  rather straightforward . The other is to exami to esti-
cuit mate the deviation from the adiabatic time evolution. In the

. . latter part, we will frequently utilize a discrete analogrute-
Quantum maps, where the time evolution proceeds alo@gation by parts:

discrete time, describe various important models in thd-stu
ies of quantum chad8 Also, quantum maps describe the time
evolution of quantum circuits, which play the key role in the Z(fn’ = fv-1)9r = fnGn — fog1 - Z fr (G2 = Gn). (4)
studies of quantum computatidiVlany studies that concerns  "™=? =l
quantum maps with slow parameter assumes that the adiabatidVe introduce two time evolution operators that comprise
theorem is applicabl®. Although the adiabatic time evolu- the adiabatic time evolution. The first part is Kato’s geaiset
tion is the most elementary one in the studies of quantum dgvolution operatotk (s, §'), which is supposed to satisfy so-
namics? there has been only a few works on the adiabatiéalled intertwining property
theorem for quantum magsOne is a numerical verification 5 rany - 5.
by Takam? and the other is a heuristic argument by H8Yg. Pi(9Uk(s 8) = Uk(s $IPi(S). ®)
We note that the proof for slowly modulated Hamiltonighs, Uk (s §') can be expressed by a path ordered integral of an
whose stationary state is described by an eigenvector af-a FRdiabatic “Hamiltonian'Hk (s) along a segment «:
quet Hamiltoniarf) cannot be applicable to quantum maps in ~ s
general, since the adiabatic parameter can be discontrinou Uk(s s) = EXP{ i f HK(f)dr} (6)
time for quantum maps.

The aim of this note is to provide a proof of the adiabati®vhere exp. represents the path ordered exponential. Here we
theorem for quantum maps (“discrete adiabatic theorem’§mplo
where we employ a discrete time analog of Kato’s pro&¥.

n

: OP; i9 5
Although we will focus on the case that the spectrum of quan- Hi(9) = i Z { , ] , (7)
tum map is purely discrete and the spectral crossing is &bsen
various extensions should be straightforward. which satisfy Eq. (5) as weII as
We explain the adiabatic limit for quantum mapés) with . - .
a slow parametes. The adiabatic parameter evolves fram Pj(9Hk(9)Pj(s) = 0. (8)

to s” for N(> 0) steps. Lets, be the value ob atn-th step  The |atter equation is convenient to prove the main theorem.

(0 < n < N), wheresy = s"andsy = s”. We assume that The second part of the free evolution contains only the dy-
the intervalds, = s, — S-1 is O(N™Y) asN — co. Also, we  pamical phase

assume thas, belongs to a smooth path We will examine

the time evolution induced by (s) with {s,},. The exact time - Z Bi(<) exp{ Z 6i(sv) } ©)

evolution operatot, satisfies the recursion relation —

Un = U(s))Un-1 M) forns>o0 andUpg = 1. i X
forn> 0andUg = 1. Using the adiabatic time evolutiddk (s,, S)Upn as a free
We introduce assumptions fa#(s) for our proof. First, evolution, we introduce the time evolution operator in the i
U(s) is supposed to be unitary, and we assume that its spderaction picture:
trum consists of purely discrete eigenvaIL{e@(S)}j, where

~ ~ ~ t oA
W = {Uk(sn, SHU Un. 10

an eigenangl®;(s) takes a real value fos € C. The cor- . { k(sn. §) Dvn} n (10)

responding spectral projectio;{@j(s)}j satisfyU(s)Pj(s) =  From the definition olUp », we havelp = 1. The recursion

&%9P(s) andP;(s)P(s) = 5P;(s). Also, we have the reso- relation for, is

lution of unity 3; Pj(s) = 1. The second assumption is Wi, = UwnWi-1, (11)

zi(s) # 1, where zj(s) = exp(-i{6(s) - 6(9)}), (2) Wwhere

which correspond to the non-zero gap condition for eigenen- Uwp = {UK(sn, s’)UD,n}‘ U(s)Uk(sh-1.§)Upn1. (12)
ergies. This also implies the absence of crossing of eigenan
gles. Hence the dimension of thieh eigenspace is indepen-
dent ofs. Finally, we assume theftj(s) andg;(s) are smooth ) o
functions ofs. Pi(S)WPk(s) = 6 + O(NY), (13)

The discrete adiabatic theorem for quantum nuk(s) is

To prove the discrete adiabatic theorem (Eq. (3)), it is suf-
fice to show

which will be shown in the following. We start from aftr-
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ence equation o\,
Wn - Wn—l = (OW,n -

which implies

DWh-a, (14)

n
Wh =1+ (O = V1. (15)

n=1

our estimation of thefd-diagonal part requires to take into ac-
count the destructive quantum interferenéieet induced by
the dynamical phase factors. Namely, our task is to examine
the following oscillatory summation
Pi(S)VnP(s) = Z Zov-1. 1R (24)

=1

To apply the discrete analog of integration by parts (Eg, (4)for j # k. To apply Eq. (4) to Eq. (24), we examine théeli-

we introduce

n
Vo= (Oww - 1) (16)
n=1
0. From Egs. (15) and (4), we obtain
~ ~ ~ nil ~ ~ ~
Wh = 1+ VoW1 = > Vi (O = DWy1

n=1

forn> 0 andVy =
(7)

In the following, we will showUw, — 1 = O(N-1) andV, =
O(N~1), which imply Eq. (13).

We examine?;(s')(Uwn — 1)Py(s) for j # k:

Pi()(Uwn — 1)P(S) = Zn-1,ikRn jks (18)
where
Zoj = exp{—i 2 [6i(sv) - ek(sq/)]} (19)
=1
and
Ruje = {Uk(s0 )] Pi(s)Pu(si0Uk(she ). (20)
From the smoothness é’fj(s), we have
Pi(sn) = Pj(s-1) + Pi(sn-0)0s0 + O((6s0)).  (21)
which implies
Rk =ON™Y) forj#k (22)

Hence we obtairP;(s)(Uwn — 1)Pi(s) = O(N). On the

other hand, the “diagonal” part afy, — 1 is
Pi(s)(Uwn - )P;(s)
= {O(s0 )} By(s) {2 - Ul 51-0)) Pi(sr- ) Ox(80-2. ).

(23)

From Eqgs. (6) and (8), we have-1Uk (sn, Sr-1) = O((65)2).
Hence we concludB;(s)(Uwn—1)Pj(s') = O(N-?), which is
much smaller than thefbdlagonal components OU(Nn -1).
Next we examlné?/n The diagonal part iB; (s’)VnP (s) =
r_1Pi(s)(Own — 1Pi(s) = On/N?). Hence we have
P (s’)VnP (s) = O(N- l) for 0 < n < N. On the other hand,

ence ofZ, j:

Znjk = Zo1jk = Zn-1 {Zi(s0) - 1 (25)

(see, Egs. (2) and (19)). From the non-crossing condition fo
the eigenangle (Eg. (2)), we have

Znjk — Zn-1.jk
= = 26
Ak e - (26)
From Eq. (24), we have
Pi($)VaP()
Zy, R jk Ry jk n-1 -
B B + Y Zu g RD, (27
ij(Sw) -1 ij(Sl) -1 r;-Zn vlkRn Lk ( )
where
52 _ Ruiik Rk ”
Rn Zik(SHl) - ij(Sﬁ) — (28)

The first two terms in the right-hand side of Eq. (27) is
O(N 1) from Egs. (22) and (2). It is straightforward to see
( = O(N7?) from Eq. (2) and the smoothness}bf(s) and
0 (s) These estimations |mpll?,(s’)VnPk(s’) = O(N™Y) for
j # k. Thus we have shown Eq. (13). This completes the proof
of the discrete adiabatic theorem.
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