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Abstract

Using SU(2)×SU(2) Lie-group structure we obtain the algebraization of 2D harmonic oscil-
lator model with complex quadratic coupling. It is shown that the original time-independent
Schrödinger equation in Cartesian coordinates, when mapped to a curved manifold (in gen-
eral) of arbitrary metric, is expressible as a quadratic combination of group generators modulo
a gauge freedom. We propose an improvisation of the usual Lie-algebraic scheme for two
critical values of the coupling parameter which makes the problem non-diagonalizable and non-
separable. Recently reported results about this interesting non-Hermitian Hamiltonian are
confirmed by solving the corresponding spectral problem in a purely algebraic procedure.
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1 Introduction

Finding algebraic structure of a system (classical or quantum mechanical) is always advantageous
as such an inherent dynamical symmetry gives us opportunity of classifying the concerned systems
in association with different groups. Searching for a Lie-algebraic description becomes even more
important and essential for a quantum system due to the increasing complexity arisen for switching
from classical observable to a quantum-mechanical operator. As soon as a system is found to
possess an explicit or hidden algebraic structure, one can extract all the information about the
system encoded in purely algebraic quantities.

Representation space of a Lie group is the arena where we talk in algebraic language. The
dimension of representation space may be finite or infinite. However since the spectacular discovery
of partial algebraization [1–3] in late 80s, the investigation over the years (see [4] for a lucid dis-
cussion covering broad variation of quantal systems) along this direction remains confined within
finite-dimensional representation space. This is because in this approach everything, whether it is
vector components of group-generators, coefficients of derivatives in the Lie-algebraic realization of
Hamiltonian or the wave functions, is expressed in terms of certain polynomials, the best known
mathematical entity to deal with.

Over the last two decades the extensive research reports help us to understand that a 1D
stationary Schrödinger equation in Hermitian as well as in non-Hermitian platform with a variety
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of quantum potentials [5–9] indeed possesses sl(2) Lie-algebraic structure. This is true for both
of exactly solvable (ES) and quasi-exactly solvable (QES) Hamiltonian. The reason for such an
apparently surprising phenomena is the exceptional combination of group generators for an ES
Hamiltonian making it free from quantum number/s of the Lie group, a fact explained long ago
in Ref [4] and recently reinforced by proposing a unified platform [10] through a modification via
an additional transformation function. Thus our understanding about the algebraic structure for
1D models is moderately clear. But unfortunately this is not true for multidimensional quantum
mechanics (QM).

It should be mentioned that going from 1D to d-dimensional system [11] one encounters several
new issues which are not present in one dimension. For instance, apart from solvability the question
arises whether the system is integrable or even superintegrable, a lot of literature exists in this field
both in classical and quantum level [12–21] These issues for nontrivial higher dimensional models
such as non-separable and non-diagonalizable complex quantum Hamiltonian are yet to be properly
understood. It is only recently [19] that a novel relation between maximal superintegrability and
exact solvability is established for 2D models.

An important recent generalization in QM is due to Bender et al [22] who pointed out that a class
of PT-symmetric potentials possesses real eigenvalues (see, for up-to-date survey, [23, 24]). This
breakthrough discovery started a new era of non-Hermitian QM thanks to the leading contributions
[5, 25–37] from science community. Along this field also 1D models are first reported and then
attention goes to the multidimensional models.

Expertise in 1D supersymmetric QM [38] is employed for multidimensional Hermitian and
non-Hermitian QM. Series of articles [39–43] contribute in the development of multidimensional
Hamiltonian using point-canonical transformation or higher-dimensional intertwining relations and
shape-invariance formalism including the possible modifications in the supercharges to accommo-
date non-Hermitian systems.

However, the Lie-algebraic structures of most of the multidimensional models are not known.
It is absolutely necessary to start a systematic investigation on this field. The purpose of present
communication is to uncover the hidden algebra of an interesting 2D model namely harmonic
oscillator with complex quadratic coupling in real Cartesian plane. Except for two critical values of
the coupling parameter (pointed out recently [43]) the Hamiltonian has been shown to be separable
[42] in some complex plane. The novelty of our finding is that the algebraization is found not only
for separable case but also for non-diagonalizable and non-separable coupling.

2 2D harmonic oscillator with complex coupling

& SU(2)×SU(2)

Let us consider following 2D stationary Schrödinger equation in real Cartesian coordinates (x, y) [
chosen atomic units: ~ = m = 1]

H(x, y)ψ(x, y) ≡
[

−1

2

(

∂2x + ∂2y
)

+ V (x, y)

]

ψ(x, y) = Eψ(x, y) (1)

for the non-Hermitian potential

8V (x, y) = ω2x2 + ω̃2y2 + 2 iµxy (ω, ω̃, µ ∈ R) . (2)

Note that for µ = 0, the potential simply becomes sum of two 1D (real) oscillators. Thus in our
model µ 6= 0 and also the frequencies ω, ω̃ are positive. Clearly PT-symmetry is not preserved for
this model. Several significant properties of this system such as its pseudo-Hermiticity, relation
between real spectra and the potential parameters etc. are already known. We are interested about
its hidden algebraic structure, which is unknown.

In the first step, we are to choose suitable coordinates for the representation space of the Lie
group. This space must be preserved by every defined operators including the Hamiltonian. Hence
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it is not expected that the group coordinates would coincide with the physical coordinates (x, y) for
a general potential interaction. Suppose (ξ, η) denotes the coordinates on the orbit of SU(2)×SU(2)
group. Then its representation space Rnñ is of dimension (n+ 1)(ñ+ 1) with the polynomial basis
functions

{ξnηñ, ξn−1ηñ, · · · , ηñ; ξnηñ−1, ξn−1ηñ−1, · · · , ηñ−1; · · · ξnη, ξn−1η, · · · η; ξn, ξn−1, · · · , 1} .

After fixing the coordinates, we can write down six generators of the group

J1 = ξ2∂ξ − nξ
J2 = ξ∂ξ − n/2
J3 = ∂ξ

J4 = η2∂η − ñ η
J5 = η∂η − ñ/2
J6 = ∂η







, (3)

where n, ñ are quantum numbers associated with the group assuming (independently of each other)
non-negative integer values. The cooresponding Lie algebra is closed with respect to the commuta-
tion relations

[J1, J2] = −J1 , [J2, J3] = −J3 , [J3, J1] = 2J2
[J4, J5] = −J4 , [J5, J6] = −J6 , [J6, J4] = 2J5

}

. (4)

Note that we have two degenerate relations

(2J2)
2 − 2{J1, J3} = n(n+ 2) , (2J5)

2 − 2{J4, J6} = ñ(ñ+ 2) . (5)

In the next section particular transformation function will be fixed.

3 Linear complex transformation and gauge rotation

In the 2nd step of algebraization, we are to choose the transformation rules between physical co-
ordinates (x, y) and the group coordinates (ξ, η). This is crucial for the success of the program.
The observation is as follows. It is inevitable that every non-derivative quantity in transformed
coordinate system must be certain polynomial. Now the given potential is already quadratic poly-
nomial in x, y and so must also be a polynomial (not necessarily of same degree) in ξ, η. Thus only
polynomial relation between two systems are allowed. We will proceed with the simplest choice of
linear transformations as this corresponds to constant metric of the transformed space.

Without loss of generality, we assume following relations between two coordinate systems

ξ = x+ ay , η = x+ ãy , (a, ã ∈ C , a 6= ã) . (6)

Note that the metric corresponding to this transformation is constant: g = 1/(ã− a)2. The kinetic
part of original Schrödinger Hamiltonian (1) then transforms to the form

− 2T (x, y) → −2T (ξ, η) = (1 + a2)∂2ξ + (1 + ã2)∂2η + 2(1 + aã)∂ξ∂η . (7)

We see that the new coordinate system is non-orthogonal for general values of a, ã. For simplicity,
let us make it orthogonal by choosing digonalized metric. This implies that the two transformation
parameters are no longer independent

1 + aã = 0 . (8)

The algebraic structure of the model is hidden. To uncover it, let us utilize the gauge freedom

ψ(x, y) = exp[−Ω(ξ, η)] χ(ξ, η)|ξ=x+ay ,η=x+ãy , (χ ∈ Rnñ) (9)

The purpose of this gauge transformation is straightforward. We need the eigenfunctions of group
eigenvalue equation HG(ξ, η)χ = E χ as polynomials in ξ, η. Two points worth mentioning. In the
first place, the maximum degree of the polynomial χ(ξ, η) must be n+ ñ (degree in ξ ≤ n & that in
η ≤ ñ). In the second place, the total number of allowed levels is equal to dim Rnñ = (n+1)(ñ+1).
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Hence generically the generated potential will belong to QES class unless an exceptional combination
of generators makes the Hamiltonian free from n, ñ. Below we will show that this is actually the
case for our model qualifying it as an ES member.

The explicit expression for the gauge-transformed Hamiltonian HG(ξ, η) ≡ eΩH(ξ, η)e−Ω is as
follows

2HG(ξ, η) = −(1 + a2)∂2ξ − (1 + ã2)∂2η + 2
{

(1 + a2)Ωξ∂ξ + (1 + ã2)Ωη∂η + V +△V
}

, (10)

where the suffix denotes partial differentiation with respect to that. The gauge-potential △V is
given by the expression

2△V ≡ (1 + a2)(Ωξξ − Ω2
ξ) + (1 + ã2)(Ωηη − Ω2

η) . (11)

In the next section we will show that the gauged HamiltonianHG, given by (10), can be expressed
in terms of group generators (3). The general relation must be quadratic.

4 Lie-algebraic representation for diagonalizable potential

In this section we will find the algebraization for the Hamiltonian HG(ξ, η) with diagonalized kinetic
term [ see equation (10) ]. A close inspection on the generators (3) reveals that the Hamiltonian
(10) should have following Lie-algebraic representation

− 2(HG − E) = (1 + a2)J2
3 + (1 + ã2)J2

6 + k1J2 + k̃1J5 + 2D1(n, ñ) . (12)

Thus the bilinear terms are fixed to match with second order derivative terms. The linear terms
are to be determined to get the desired form (2). The reason for using suffix ‘1’ in the coefficients
of linear terms will be clear shortly. The additive constant D1 is introduced to have the convenient
form of the potential and the eigenvalue equation HG χ = E χ.

The issue is to balance the first order derivative terms between (10) and its Lie-algebraic repre-
sentation (12), which yields two first-order partial differential equations (PDE)

− 2(1 + a2)Ωξ = k1ξ , −2(1 + ã2)Ωη = k̃1η . (13)

On integration, we get the form of the phase function

− 4Ω(ξ, η) = k1ξ
2/(1 + a2) + k̃1η

2/(1 + ã2) . (14)

The determination of two constants k1, k̃1 will be the final step of algebraization. Comparing the
derivative-free terms, we get the following equation

V − E = −△V −D + (nk1 + ñk̃1)/4 . (15)

Substituting the phase function Ω(ξ, η) from (14) into (11), the gauge-potential △V can be
calculated. Hence the final forms of the generated potential and energy eigenvalues are

8V (x, y) =

(

k21
1 + a2

+
k̃21

1 + ã2

)

x2 +

(

a2k21
1 + a2

+
ã2k̃21
1 + ã2

)

y2 + 2

(

ak21
1 + a2

+
ãk̃21

1 + ã2

)

xy (16)

Enñ = −k1
4
(n+ 1)− k̃1

4
(ñ+ 1) +D , n, ñ = 0, 1, 2, . . . (17)

At this point we recognize the potential as a genuine ES candidate as its explicit form (16) is free
from quantum numbers n, ñ. Now the two forms (16) and (2) for the potential must be identical.
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This gives us following three linear equations for three unknowns k1, k̃1, a [ note that aã = −1
according to (8)]

k21
1 + a2

+
k̃21

1 + ã2
= ω2 ,

a2k21
1 + a2

+
ã2k̃21
1 + ã2

= ω̃2 ,
ak21

1 + a2
+

ãk̃21
1 + ã2

= iµ . (18)

Our algebraization will work if the system (18) is consistent. Examining the first two equations,
it is not difficult to convince that for consistency a2 6= ã2 must hold. Now a 6= ã is set from the
beginning as a requirement of non-vanishing Jacobian. The other restriction, namely a 6= −ã must
be the automatic choice, for otherwise aã = −1 would imply a = ±1, ã = ∓1, pushing us towards
a particular case ω = ω̃. We, therefore conclude that our algebraization is successful. Solving first
two equations for k1, k̃1 and substituting them into the last equation of (18), we have the following
expressions

k21 =
(1 + a2)(ω2ã2 − ω̃2)

ã2 − a2
, k̃21 =

(1 + ã2)(ω̃2 − a2ω2)

ã2 − a2
, ω2 − ω̃2 + iµ(a+ ã) = 0 . (19)

Using the relation aã = −1, the last equation gives following complex values for the transfor-
mation parameters

− 2µa = i
[(

ω̃2 − ω2
)

+ δ
]

, −2µã = i
[(

ω̃2 − ω2
)

− δ
]

, δ = +
√

(ω̃2 − ω2)2 − 4µ2 . (20)

Substituting back the values (20) for a, ã into first two expressions for k1, k̃1 in equation (19), one
may express their final values after some manipulations

k1
√
2 = −

√

ω2 + ω̃2 + δ , k̃1
√
2 = −

√

ω2 + ω̃2 − δ . (21)

Note that the negative square root is taken for k1, k̃1 to ensure the normalizability of the wave
functions for real case µ = 0 [ see equations (9) and (14) ].

The wave functions and the spectra can be obtained explicitly following purely algebraic pro-
cedure. The procedure is to fit a polynomial (in ξ, η of degree ξ ≤ n and degree η ≤ ñ ) in the
eigenvalue equation HG χ = E χ for each pair of values of n, ñ, where HG is given by the Lie-
algebraic realization (12). For the ES potential, the resulting PDE usually coincides with some
known form. Indeed the substitution χ(ξ, η) = χ(1)(ξ)χ(2)(η) splits it into two Hermite equations,
provided we chose zero value for separation constant and the constant D1 is taken as

− 4D1(n, ñ) = nk1 + ñk̃1 . (22)

The final expressions for the wave functions and energy eigenvalues emerge as

χ(1) ∝ Hn

(

ξ
√

−k1

2(1+a2)

)

, χ(2) ∝ Hñ

(

η
√

−k̃1

2(1+ã2)

)

,

−4Enñ = (2n+ 1)k1 + (2ñ+ 1)k̃1 .







(23)

For a non-Hermitian model, one of the important issue is the existence of real spectra. From
the above results it is clear that the quantity δ, given by (20), plays a crucial role in this context.
In other words the range of value of the coupling parameter µ controls the nature of the spectra
due to the following fact

δ ∈ R or ∈ iR according as 2µ < ( or >)|ω̃2 − ω2| . (24)

It is not difficult to show that the reality of δ implies the reality of k1, k̃1. On the other hand, when
δ is purely imaginary, we have k̃1 = k∗1 . Consequently, we have the following conclusions, reported
first in [42]:

1. For 2µ < |ω̃2 − ω2|, full spectra is real.
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2. For 2µ > |ω̃2 − ω2|, the spectra is real if and only if n = ñ and otherwise energy eigenvalues
appear in conjugate pair.

Deliberately we didn’t include two critical values of the coupling parameter in the above discus-
sion, which are

2µ = |ω̃2 − ω2| . (25)

This is because we have to check carefully whether these two values are allowed in our algebraic
scheme. The answer is unfortunately negative. Note that we set 1 + aã = 0 to get orthogonal
coordinate system (ξ, η). This, in turn, means 1 + a2 6= 0, 1 + ã2 6= 0 must hold for otherwise we
would have vanishing metric, which is non-physical. These restrictions imply from the values (20)
of a, ã that the two critical values (25) are prohibited in this scheme.

Hence we have found the algebraization of the Schrödinger equation (1) with 2D harmonic
oscillator with complex coupling (2) for all values of the potential parameters ω, ω̃, µ except for two
critical values of the coupling parameter µ given in (25). It is interesting to note that these are
the values for which the model is studied recently [43]. Within the supersymmetric context, the
authors show that the model has a shape-invariance property for which it becomes an ES model.
The most important conclusion made there is that the Hamiltonian is non-diagonalizable and non-
separable for those two critical values of µ. In the next section we will show that this non-separable
Hamiltonian also have hidden algebraic structure.

5 Improvised Lie-algebraic approach

for non-diagonalizable potential

Our purpose, in this section, is to find algebraic structure of non-diagonalizable and non-separable
Hamiltonian (1) and (2) for two critical values (25) of the coupling parameter. For definiteness, we
will consider

2µ = ω̃2 − ω2 . (26)

Let us recall that the non-zero restrictions for the diagonal metric components 1 + a2, 1 + ã2

were responsible for excluding two critical values in the previous algebraization. This motivates us
to choose an unusual metric induced by

1 + a2 = 0 , 1 + ã2 = 0 , 1 + aã 6= 0 , (27)

whose solution is

a = i , ã = −i ⇒ 1 + aã = 2 , ξ = x+ iy , η = x− iy = ξ∗ . (28)

The gauged Hamiltonian corresponding to this non-vanishing off-diagonal metric g = −4 may
be written as

HG χ ≡ [2 (−∂ξ∂η +Ωη∂ξ +Ωξ∂η) + V + 2 (Ωξη − ΩξΩξ)]χ = E χ . (29)

Note that the expression for V in (ξ, η) coordinates is given by

16V (ξ, η) = (ω2 + ω̃2)ξη − 2µη2 , (30)

where we have utilized the critical value (26).
Clearly the Hamiltonian (29) together with (30) is not directly expressible in terms of group

generators. We propose an improvisation by introducing an arbitrary function f(ξ, η). Hence,
instead of HG, we claim that HG+f can be expressed as a bilinear combination of group generators
as follows

− (HG + f) = 2J3J6 + k2J2 + k̃2J5 +D2(n, ñ)− E . (31)
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The purpose of using suffix ‘2’ in the coefficients of linear terms should be clear now. Comparing
first-order derivative terms between (29) and (31), we get two PDEs

− 2Ωη = k2ξ , −2Ωξ = k̃2η , (32)

from which, we conclude, for consistency, the following

k2 = k̃2 = −2ℓ (ℓ > 0) , Ω(ξ, η) = ℓ ξη . (33)

The constant ℓ is yet to be determined.
Balancing derivative-free term, we get

V − E = 2(ℓ2ξη − ℓ)− ℓ(n+ ñ)−D2 − f , (34)

where we substitute the phase function Ω from (32). The above equation may be split as

V = 2ℓ2ξη − f , Es = ℓ(s+ 2) +D2 , s = 0, 1, 2, . . . (35)

It is important to note that we are using index s in place of n + ñ, but this means that a given
value of s is achieved for (s+ 1) different pairs of values of n, ñ. The function f can now be found
by substituting (30) for V into first equation of (35). This gives

f = µη2/8 , [µ is given by (26)] , (36)

for the choice
32ℓ2 = ω2 + ω̃2 . (37)

The most crucial step is to find the wave functions and spectra by solving the equation HG χ =
E χ. Note that introduction of f in Lie-algebraic realization (31) for HG definitely destroys the
algebraic procedure, since now χ /∈ Rnñ. To restore the algebraic setup, we assume that there exists
a second gauge transformation

χ = exp[−Ω̃]χ̃ (38)

such that χ̃ becomes a polynomial in ξ, η. The success of our improvised algebraic scheme depends
on the existence of such a phase function Ω̃(ξ, η).

A straightforward computation shows that the equation HG χ = E χ converts, after second
gauge transformation (38) into following equivalent eigenvalue equation

[

∂ξ∂η −
(

ℓξ + Ω̃η

)

∂ξ −
(

ℓη + Ω̃ξ

)

∂η + Ω̃ξΩ̃η − Ω̃ξη

+ℓ
(

ξΩ̃ξ + ηΩ̃η

)

+
µ

16
η2 +

1

2
(D2 + ℓs)

]

χ̃ = 0 . (39)

The fact that χ̃ is some polynomial in ξ, η implies that the phase function Ω̃(ξ, η) must also be
certain polynomial in ξ, η. Thus their generic forms are

Ω̃ = λξaηb , χ̃ = ξcηd . (40)

Our job remains to find the unknown quantities in (40). The underlying procedure is algebraic:
To substitute (40) into (39) and then to equate the coefficients of each independent powers of ξ, η
to zero. Clearly seven cases are to be investigated separately:– i) abcd 6= 0 , ii) d = 0, ab 6= 0 , iii)
d = b = 0 , iv) d = a = 0 , v) c = 0, ab 6= 0 , vi)c = b = 0 , vii) c = a = 0 . Without further details,
we quote the final result. Only case vii) corresponds to consistent and non-trivial solutions for Ω̃
and χ̃:

Ω̃ = − µ

32ℓ
η2 , χ̃s = η

Es

2ℓ
−1 , s = 0, 1, 2, . . . (41)
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where we have replaced D2 in (39) according to second equation of (35). Let us mention that the
phase function Ω̃ in (41) produces the term opposite in sign of the term f/2 in (39).

Last step is to find Es. So far we have not utilized the conjugate relation between the coordinates
(ξ, η) namely η = ξ∗, which will now be used. Note that χ̃s may be expressed in terms of modulus

r = +
√

x2 + y2 and the amplitude φ (cosφ = x/r , sinφ = y/r):

χ̃s(r, φ) = r
Es

2ℓ
−1 exp

[

i

(

Es

2ℓ
− 1

)

φ

]

. (42)

Physical requirement is that the wave function must be single valued which implies 2π-periodicity
of χ̃s, i. e. χ̃(r, φ+ 2π) = χ̃(r, φ). This is true if and only if

Es

2ℓ
− 1 = s , an integer ⇒ Es = 2ℓ(s+ 1) , s = 0, 1, 2, . . . (43)

Then the wave functions in the final form are

ψs(x, y) = exp
(

−ℓξη + µ

32ℓ
η2
)

ηs
∣

∣

∣

ξ=x+iy,η=ξ∗
, (44)

where µ and ℓ are respectively given by (26) and (37).
Hence, we have successfully obtained the algebraization for the critical value (26). The other

critical value, namely 2µ = ω2 − ω̃2, may be included by simply replacing µ by −µ in the whole
procedure. It may be mentioned that both of the expressions (43) and (44) for the spectra and
wave functions, derived above, were obtained in Ref. [43] by using shape-invariance method within
supersymmetric framework.

6 Conclusion and future problems

In recent times several 2D quantum potentials are reported. Among them the most interesting one
is harmonic oscillator with complex quadratic coupling. Although the so-called PT-symmetry is not
present, the model is pseudo-Hermitian and possesses either fully real spectra or conjugate pairs of
energy eigenvalues. Very recently, in an important work, the authors pointed out that the model
becomes non-separable and non-diagonalizable for two critical values of the coupling parameter,
but surprisingly remains exactly-solvable with fully real spectra.

Our work explains that the cause behind such an amazing phenomena is the hidden algebraic
structure of the model. Within SU(2)×SU(2) group, we have discovered the Lie-algebraic realiza-
tion of the Hamiltonian. It is shown that for two critical values of the coupling parameter, an
improvised Lie-algebraic approach is required to get its distinct algebraic structure. To the best of
our knowledge, the algebraization of this model is not reported previously.

Following issues are being investigated presently. Whether s associated functions, needed for
completeness of basis for non-separable case, may be constructed algebraically. Interestingly, the
index s = n+ñmeans (s+1)-fold degeneracy for a given value of s, one of which is the wave function
in s-th excited state. The improvisation proposed in this work may find interesting applications
such as generating new non-trivial non-Hermitian Hamiltonian which are non-separable and non-
diagonalizable.
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[14] Ballesteros Á and Herranz F J 2007 J. Phys. A 40 F51

[15] Post S and Winternitz P 2011 J. Phys. A. 44 162001

[16] Tremble F and Wintemitz P 2010 J. Phys. A 43 175206

[17] Gravel S and Wintemitz P 2002 J. Math. Phys. 43 5902

[18] Chanu C, Degiovanni L and Rastelli G 2008 J. Math. Phys. 49 112901

[19] Tempesta P, Turbiner A V and Wintemitz P 2001 J. Math. Phys. 42 4248
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