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Abstract. A single inhibitory neuron with delayed feedback is considered. The neuron receives an excitatory input
from the Poisson stream, and inhibitory impulses from the feedback line with delay. We investigate here, how does
the feedback presence affect the output firing statistics ofinhibitory neuron. Using binding neuron (BN) as a model,
we derive exact analytical expressions for the output interspike intervals (ISI) probability density, mean output ISIand
coefficient of variation as functions of model’s parametersfor the case of threshold 2. Using leaky integrate-and-fire
(LIF) model, as well as BN model with higher thresholds, these statistical quantities are found numerically. In contrast
to the previously studied situation of no feedback, the ISI probability densities found here both for BN and LIF neuron
become bimodal and have discontinuity of jump type. Nevertheless, the delayed feedback presence was not found to
affect substantially the output ISI coefficient of variation. The ISI coefficient of variation found ranges between 0.5
and 1. It is concluded that introduction of delayed feedbackcan radically change neuronal output firing statistics of
inhibitory neuron. This statistics is as well distinct of what was found previously for excitatory neuron with delayed
feedback.

PACS. 87.19.ll Models of single neurons and networks – 87.10.-e General theory and mathematical aspects –
87.10.Ca Analytical theories – 87.10.Mn Stochastic modeling

1 Introduction

A realistic neuronal network is normally characterized with a
complicated system of excitatory and inhibitory interconnec-
tions between individual neurons the network is composed of.
Statistics of spiking activity of individual neurons can bemea-
sured experimentally [7,10,13]. It would be interesting toun-
derstand how the details of network’s construction might influ-
ence statistics of neuronal activity, when the network is driven
with some stimulation, or allowed to reverberate freely. Exact
theoretical analysis of this question in a developed network rep-
resents fair mathematical difficulties.

At the same time, in a real neural network, constructing el-
ements can be found, which allow exact mathematical treat-
ment. The results of such a treatment can shed light on the
nature of transformations the neuronal activity might undergo
while spreading within a real neural network. One example is
an excitatory neuron which sends its output impulses onto its
own dendritic tree. This type of constructive element has been
found in the olfactory bulb [1,8]. Theoretical study of thiscon-
struction fed with Poisson stream revealed interesting peculiar-
ities in its output activity statistics [20]. Another natural variant
of this construction is an inhibitory neuron with feedback.It
seems that selfinhibition happens more frequently in the brain,
than selfexcitation. Selfinhibition can be slow, due to potas-
sium channels opening [3], or fast, due to chlorine channels[2,
9]. It also can be direct (through autapses) [2,8,12], or acting

through a single intermediate neuron [9]. Also, it can be evoked
not only by means of spike delivered to corresponding synaptic
connection, but also through extended diffusion of some usual
[12], or unusual [3] mediator.

In this paper, we consider situation of inhibitory neuron
fed externally with excitatory impulses from Poisson stream
of intensityλ , which sends its output impulses to its own input
through feedback line with delay time∆ . The inhibition mecha-
nism is fast in a sense, that it cancels excitatory impulses,which
neuron obtained recently, and has no any effect on the neuron
in its resting state.

For analytical derivation, we take binding neuron (BN) as
a neuronal model, see Sec. 2.1 for BN definition. In Secs. 3–
6, we derive exact analytical expressions for the output ISI
probability density, mean output ISI and coefficient of varia-
tion as functions ofλ , ∆ and BN’s internal memory,τ, for BN
with threshold 2. In Sec. 7, these statistical quantities are found
numerically by means of Monte-Carlo simulations for leaky
integrate-and-fire (LIF) model, as well as for BN model with
higher thresholds. In contrast to the previously studied situa-
tion of neuron without feedback, and of excitatory neuron with
delayed feedback, the ISI probability densities found hereboth
for excitatory BN and excitatory LIF neuron are bimodal. Also
they retain discontinuity of jump type obsereved before forthe
excitatory neuron with feedback. In the case of instantaneous
(∆ = 0) feedback, as it could be expected namely for fast shunt-
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ing inhibition, the feedback line has no effect on the outputac-
tivity of inhibitory neuron.

2 Object definition

2.1 BN without feedback

The binding neuron model [16] is inspired by numerical sim-
ulation [15] of Hodgkin-Huxley-type point neuron, as well as
by the leaky integrate-and-fire (LIF) model [11]. In the binding
neuron, the trace of an input is remembered for a fixed period of
time after which it disappears completely. This is in the contrast
with the above two models, where the postsynaptic potentials
decay exponentially and can be forgotten only after triggering.
The finiteness of memory in the binding neuron allows one
to construct fast recurrent networks for computer modelingas
well as obtain exact mathematical conclusions concerning fir-
ing statistics of BN. Recently, the finiteness is utilized for exact
mathematical description of the output stochastic processif the
binding neuron is driven with the Poisson input stream in the
case of no feedback [18], for BN with instantaneous feedback
[19] and for excitatory BN with delayed feedback [20].

✲

input stream
Σ ≤ N0

τ � memory✲ ✲

✲
0

r

∆
r
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r

✲

delayed feedbak
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t

output stream� ISI duration
Fig. 1. Binding neuron with feedback (see [16] for deatils).τ is sim-
ilar to the “tolerance interval” discussed in [6, p. 42]. Multiple input
lines with Poisson streams are joined into a single one here.

The BN works as follows (see Fig. 1 with the feedback line
removed). All excitatory input impulses have the same magni-
tude. Each one of them is stored in the BN for a fixed period
of time, τ, and then is forgotten. When the number of stored
excitatory impulses,Σ , becomes equal to the BN’s threshold,
N0, the BN fires output spike, clears its internal memory, and
is ready to receive fresh inputs. Thus, the state just after firing
corresponds to the resting state of excitable membrane in real
neurons, and presence of impulses in the internal memory of
BN corresponds to partially depolarised state. In this work, we
take BN withN0 = 2 for analytical derivation. BNs with higher
thresholds are studied numerically in Sec. 7.

Normally, any neuron has a number of input lines. If input
stream in each line is Poissonian and all lines have the same
weight, all of them can be joined into a single one, like in Fig. 1,
with intensity,λ , equal to sum of intensities in the individual
lines.

The output statistics for BN without feedback was calcu-
lated if N0 = 2 (see [18] for details). ISI probability density
function,P0(t), wheret > 0 denotes the output ISI duration,
was obtained as

mτ ≤ t ≤ (m+1)τ ⇒ P0(t) = ym(t), m= 0,1, . . . , (1)

whereyi(t) are defined according to the following recurrent re-
lation:

yi(t) = yi−1(t)+
λ i+2

(i +1)!
(t − iτ)i+1e−λ t −

λ i+1

i!
(t − iτ)ie−λ t ,

y0(t) = e−λ tλ 2 t, i = 0,1, . . . , t > 0. (2)

P0(t) is a unimodal function, which reaches its maximum at
min( 1

λ ;τ). Example ofP0(t) is given in Fig. 9, left.
The first moment,W0

1 , of the probability density (1) was
found as

W0
1 ≡

∫ ∞

0
t P0(t)dt =

1
λ

(

2+
1

eλ τ −1

)

, (3)

which will be used later.
In this work, we also utilize the probabilityΠ(t) to get an

output ISI, which is longer thant:

Π(t)≡
∫ ∞

t
P0(t) dt. (4)

The exact expression forΠ(t) for an arbitraryt, which is cum-
bersome, can be found in [17]. We will need the expression for
Π(t) only at the domaint < τ, where it reduces to the following

Π(t) = (1+λ t) e−λ t , t < τ. (5)

2.2 Feedback line action

In this work, we consider the situation, when BN receives ex-
citatory input from the Poisson stream and inhibitory impulses
from the feedback line.

We assume, that time delay∆ of impulse in the feedback
line is smaller than the BN’s memory duration,τ:

∆ < τ. (6)

It allows to make analytical expressions shorter. Also, theas-
sumption (6) is consistent with the case of direct feedback,not
mediated by other neurons.

If the line is empty, when neuron fires, an output impulse
enters the line and after delay∆ reaches neuron’s input. If the
line already keeps an impulse at the moments of BN firing,
it does not accept the new one. It means, that at any given mo-
ment, the feedback line either keeps one impulse, or conveysno
impulses, and cannot convey two or more impulses at the same
time. If so, the state of the feedback line can be described with
a single variable. For this purpose, we introduce the stochastic
variables, s∈]0;∆ ], which gives the time to live of the impulse
in the feedback line, see Fig 1. Hereinafter, we will use the val-
ues ofs just at the moments of output ISI beginings (just after
BN firings).

The inhibitory action of feedback impulses is modelled in
the following way. When the inhibitory impulse reaches BN,
it annihilates all excitatory impulses already present in BN’s
memory, similarly asCl-type inhibition shunts depolarization
of excitable membrane. If at the moment of inhibitory impulse
arrival, the BN is empty, then the impulse desappears without
any action, similarly asCl-type inhibition does not affect mem-
brane’s voltage in its resting state. Such inhibition is ”fast” in
that sense, that the inhibitory impulses act instantaneously and
are not remembered by neuron.
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3 Derivation outline

It is clear, that both the binding neuron and the feedback line
operate in deterministic manner. Nevertheless, the probabilis-
tic description is required for the output stream because ofthe
stochastic nature of driving Poisson process.

Let us denote byP∆ (t) the ISI probability density function
for inhibitory neuron with delayed feedback. In order to calcu-
lateP∆ (t), we use the procedure, previously utilized for excita-
tory BN with delayed feedback [20]. As a first step, we define
the conditional probability density,P∆ (t | s). Namely,P∆ (t | s)
gives the probability to obtain an output ISI of duration within
interval [t; t + dt[, provided there was an impulse in the feed-
back line with time to live equals at the moment of this ISI
begining.

Then, we introduce the stationary probability density,f (s),
for time to live,s∈]0;∆ ], of an impulse in the feedback line at
the moment of beginning of any output ISI.

The output ISI probability density can be calculated based
on the expressions forP∆ (t | s) and f (s), namely:

P∆ (t) =
∫ ∆

0
P∆ (t | s) f (s)ds. (7)

In order to find f (s), we first obtain the transition proba-
bility densityP(s′ | s), s,s′ ∈]0;∆ ], which gives the probability
that at the begining of some output ISI, the line has impulse
with time to live within interval[s′;s′ + ds′[, provided that at
the beginning of the previous ISI it had impulse with time to
live equals. f (s) is then found as normalized to 1 solution of
the following equation:

∫ ∆

0
P(s′ | s) f (s)ds= f (s′). (8)

In the next section, we are going to find explicit expressions
for probability densitiesP∆ (t | s), P(s′ | s) and f (s).

4 Main calculation

4.1 Conditional probability density P∆ (t | s)

In order to deriveP∆ (t | s), domainst < s andt ≥ s should be
considered separately.

In the caset < s, the output impulse must be generated
without the line impulse involved. Therefore, probabilityden-
sity for such ISI values is the same as for BN without any feed-
back:

P∆ (t | s) = P0(t), t < s. (9)

HereP0(t) is the output ISI probability density for BN without
feedback, given in Eq. (1).

At the moments, the inhibitory feedback impulse reaches
BN and BN becomes empty. As it is impossible to obtain more
than one impulse from the Poisson stream within infinitesi-
mally small time interval[s;s+dt[, P∆ (t | s) = 0 whent = s.

In order to obtain ISIt > s, two independent events must
occure: (i) BN without feedback fires no spikes during time in-
terval ]0;s]; (ii) BN without feedback starts emty at moments

and is firstly triggered at momentt. These events are indepen-
dent since their realizations are defined by behavior of Poisson
input stream on disjoint intervals]0;s] and]s; t]. By definition
of Π(t), see Eq. (4), the probability to have (i) isΠ(s), and (ii)
has the probabilityP0(t − s)dt. Therefore,

P∆ (t | s) = Π(s) P0(t − s), t > s. (10)

The conditional probability densityP∆ (t | s), given in (9) and
(10), is normalized:

∫ ∞
0 P∆ (t | s)dt = 1.

Taking into account Eq. (5), (9) and (10) for the case∆ < τ
one obtainsP∆ (t | s) as follows:

P∆ (t | s) =











λ 2t e−λ t , t ∈]0;s[,

(1+λs) e−λ sP0(t − s), t ≥ s.
(11)

P∆ (t | s), given in (11), has a break of heightλ 2s e−λ s at t = s.

4.2 Transition probability density P(s′ | s)

From the meaning ofP∆ (t | s) it follows that Eq. (9) allows to
calculateP(s′ | s) for s′ < s, namely:

P(s′ | s) = P∆ (s− s′|s) = P0(s− s′), s′ < s∈]0;∆ ]. (12)

As the feedback line conveys no more than one impulse at
any given moment, it is impossible to haves< s′ < ∆ . There-
fore,

P(s′ | s) = 0, s< s′ < ∆ . (13)

Consider the exact equalitys′ = ∆ . It is realized every time,
when for previous ISIt ≥ s, and this inequality happens with
non-zero probability. Therefore, the probability densityP(s′ | s)
has singularity ofδ -function type ats′ = ∆ . For calculating its
mass, one should obtain the probability oft ≥ s by integrating
Eq. (10) over suitable values oft:

P(s′ | s) = δ (s′−∆)

∞
∫

s

dt P∆ (t | s) =

= δ (s′−∆) ·Π(s)

∞
∫

s

P0(t − s)dt =

= Π(s)δ (s′−∆), s′ ≥ s∈]0;∆ ]. (14)

Here we use
∞
∫

0
P0(t)dt = 1.

The transition probability densityP(s′ | s), given in Eqs. (12)
– (14) is normalized:

∫ ∆
0 P(s′ | s)ds′ = 1.

Note, that Eqs. (12) and (14) could be obtained directly,
without refering toP∆ (t | s). Indeed, ifs′ < s, then the ISIt =
s− s′ was obtained without feedback line envolved. Therefore,
P(s′ | s) is determined by probability to obtain ISI of durationt
from BN without feedback, which gives (12).

The exact equalitys′ = ∆ is realized when BN without
feedback fires no spikes at]0;s]. The probability of this event
is Π(s), which gives (14) for conditional probability density.
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t
0 ∆

A B0

τ

C0 B1

τ + ∆ 2τ 2τ + ∆

C1 . . .

Fig. 2. Domains oft used for calculating integral in (19).

SubstitutingP0(s−s′) from (1) andΠ(s) from (5), one ob-
tainsP(s′ | s) for the case∆ < τ in the following form:

P(s′ | s) =

{

e−λ (s−s′)λ 2(s− s′), s> s′ ∈]0;∆ ],

(λ s+1) e−λ s δ (s′−∆), s′ ≥ s.
(15)

Interestingly, that obtained expressions forP(s′ | s) are the
same, as those, previously found for excitatory BN with de-
layed feedback [20].

4.3 Delays probability density

In order to find f (s), one should substituteP(s′ | s) from (15)
into (8) and solve the obtained equation. AsP(s′ | s) obtained
is exactly the same as for excitatory BN with delayed feedback
[20], the equation forf (s) and f (s) itself will also be the same.
In [20], the probability densityf (s) was obtained as

f (s) = aδ (s−∆)+g(s), (16)

whereg(s) – is an ordinary function, which vanishes out of
interval]0;∆ ]:

g(s) =
aλ
2

(

1−e−2λ (∆−s)
)

, s∈]0;∆ ], (17)

anda – is a dimensionless constant:

a=
4e2λ ∆

(2λ ∆ +3)e2λ ∆ +1
, (18)

which gives the probability to find the impulse in the feedback
line with time to live∆ at the beginning of arbitrary ISI.

5 ISI probability density

In order to findP∆ (t), one should substitute (11) and (16) into
Eq. (7), which gives:

P∆ (t) = aP∆ (t | ∆)+

∫ ∆

0
P∆ (t | s)g(s)ds. (19)

As the explicit expressions forP∆ (t | s) are different for differ-
ent domains oft (see Eqs. (11) and (1)), further transformation
of (19) depends on the domain, thet belongs to. The first few
domains oft are shown in Fig. 2.

Consider case A, wheret ∈]0;∆ [. Here integration domain
in (19) should be splitted into two with points= t, see both top
and bottom line of Eq. (11). This gives

P∆ (t) =
∫ t

0
(1+λs) e−λ sλ 2(t − s)e−λ (t−s)g(s)ds+

+

∫ ∆

t
λ 2te−λ t g(s)ds+ a λ 2t e−λ t ,
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Fig. 3. Example of ISI probability density function, calculated inac-
cordance with Eqs. (20), (23), (24),left, and numerically, by means of
Monte Carlo method,right. For both panels:τ = 10 ms,∆ = 8 ms,
λ = 10 s−1, N0 = 2. Curve found numerically fits perfectly with one
shown in the left panel. In the numerical experiment 105 spikes were
produced.

which after transformations becomes

P∆ (t) =
2λ e−λ t

2λ ∆ +3+e−2λ ∆ ·

(

1
6

λ 3t3−
1
2

λ 2t2+

+λ t
(3

2
+

1
4

e−2λ ∆ +
1
4

e−2λ (∆−t)
)

+λ 2t∆

)

, t < ∆ . (20)

Whent ≥ ∆ , one needs only the bottom line of Eq. (11) to
calculateP∆ (t), and Eq. (19) turns into the following:

P∆ (t) = a(1+λ ∆) e−λ ∆ P0(t −∆)+

+

∫ ∆

0
(1+λs) e−λ sP0(t − s)g(s)ds.

Let us introduce a new variable of integration,u= t − s:

P∆ (t) = a(1+λ ∆) e−λ ∆ P0(t −∆)+

+

∫ t

t−∆
(1+λ (t−u))e−λ (t−u)P0(u)g(t−u)du. (21)

In order to perform integration in (21), we define two groups of
domains,Bm andCm, namely:

Bm = [mτ +∆ ;(m+1)τ] , m= 0,1, . . . ,

Cm = ](m+1)τ;(m+1)τ +∆ [ , m= 0,1, . . . .

Note, that the full domain[∆ ;∞[ is completely covered by al-
ternate domainsBm andCm, m= 0,1, . . ..

If t ∈ Bm, thenmτ ≤ t −∆ < t ≤ (m+1)τ, and one should
substituteym(t) from (2), corresponding to thatm, instead of
P0(u) in the (21). Ift ∈ Cm, thenmτ < t −∆ < (m+1)τ < t.
Therefore, the domain of integration in the Eq. (21) should be
split into subdomains two with point(m+1)τ, and asP0(u) one
should substitute eitherym(t), or ym+1(t) depending on subdo-
main.

5.1 ISI probability density at the domains Bm

Thus, in the caset ∈ Bm, one obtains forP∆ (t):

P∆ (t) = a(1+λ ∆) e−λ ∆ ym(t −∆)+

+

∫ ∆

0
(1+λs) e−λ sym(t − s)g(s)ds, t ∈ Bm, (22)
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which after integration gives:

P∆ (t) = a(1+λ ∆) e−λ ∆ ·ym(t −∆)−

−
a
2

eλ (∆−τ) ·ym+1(t −∆ + τ)+
a
2

eλ τ ·ym+1(t + τ)+

+
aλ
2

e−λ t
m+1

∑
k=1

k

∑
l=0

Kklλ k−l (t − (k−1)τ)k−l−

−
aλ
2

e−λ t
m

∑
k=1

k

∑
l=0

Kklλ k−l (t − kτ)k−l , t ∈ Bm, (23)

where

Kkl =
1

2l+2(k− l)!

(

l +1
(l +2)!

(−2λ ∆)l+2+ l +1−

−(l −1)e−2λ ∆ −2
l

∑
i=0

(−2λ ∆)l−i

(l − i)!

(

1+
l +1

l +1− i
·λ ∆

))

.

5.2 ISI probability density at the domains Cm

Consider the caset ∈Cm. Taking into account Eqs. (1) and (2),
one can rewrite (21) as follows

P∆ (t)

∣

∣

∣

∣

t∈Cm

= a(1+λ ∆) e−λ ∆ym(t −∆)+

+

∫ t−(m+1)τ

0
(1+λs) e−λ sym+1(t − s)g(s)ds+

+

∫ ∆

t−(m+1)τ
(1+λs) e−λ sym(t − s)g(s)ds=

= a(1+λ ∆) e−λ ∆ym(t−∆)+

∫ ∆

0
(1+λs) e−λ sym(t−s)g(s)ds+

+
λ m+3

(m+2)!
e−λ t

∫ t−(m+1)τ

0
(1+λs)(t−s−(m+1)τ)m+2g(s)ds−

−
λ m+2

(m+1)!
e−λ t

∫ t−(m+1)τ

0
(1+λs)(t−s−(m+1)τ)m+1g(s)ds.

It is useful to denote asP∆
B,m(t) the righthand side of Eq. (22)

defined for allt:

P∆
B,m(t) = a(1+λ ∆) e−λ ∆ ym(t −∆)+

+

∫ ∆

0
(1+λs) e−λ sym(t − s)g(s)ds, t > 0,

With this notation, one obtaines:

P∆ (t)

∣

∣

∣

∣

t∈Cm

= P∆
B,m(t)+

aλ
2

e−λ t ·ρ∆
m (λ (t − (m+1)τ)) , (24)

where

ρ∆
m(x) =

2
aλ

1
(m+2)!

x
∫

0

(1+ v)(x− v)m+2g
( v

λ

)

dv−

−
2

aλ
1

(m+1)!

x
∫

0

(1+v)(x−v)m+1g
( v

λ

)

dv, m= 0,1, . . . .

(25)
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Fig. 4. Left –Mean output firing rate as the function ofλ for inhibitory
BN with delayed feedback (1), for BN without feedback [19] (2) and
for excitatory BN with delayed feedback [20] (3), obtained analyti-
cally. Curves (1)–(3): N0 = 2, τ = 10 ms.∆ = 2 ms both for (1) and
(3). Right –Mean output firing rate as the function ofλ for inhibitory
BN with delayed feedback forN0 = 2 (1), obtained analytically, and
for N0 = 4 (2) andN0 = 6 (3), found numerically. Curves (1)–(3): τ =
10 ms,∆ = 2 ms, 1·106 triggerings for each point.

Here the dimentionless variable of integrationv = λs was in-
troduced.

Performing integration in (25) one obtains:

ρ∆
m(x) =

m+4

∑
l=0

Kl xl −e−2λ ∆+2x ·
m+3

∑
l=0

Dl xl , (26)

where

Kl =
(m−1− l)
2m+4−l · l !

e−2λ ∆ , l = 0, . . .m+1;

Km+2 =
1

4 · (m+2)!
e−2λ ∆ −

1
(m+2)!

;

Km+3 =
m+2

∑
i=1

(−1)i i
(m+2− i)! (i +1)!

+
1

(m+3)!
;

Km+4 =
m+2

∑
i=0

(−1)i (i +1)
(m+2− i)! (i +2)!

;

Dl =
1

2m+4−l ·
l

∑
i=0

(−1)l−i · (m−1− i)
i! (l − i)!

, l = 0, . . .m+1;

Dm+2 =
1
4

m+2

∑
i=0

(−1)i · (i +1)
i! (m+2− i)!

;

Dm+3 =
1
2

m+2

∑
i=0

(−1)i

i! (m+2− i)!
. (27)

Note, that in the case∆ = 0, ISI probability density is com-
pletely defined by Eq. (23), which turns into

P∆ (t)|∆=0 = P0(t), t > 0. (28)

This indeed should be the case, because when∆ = 0, inhibitory
impulses always enter empty neuron and, therefore, the feed-
back line have no chance to affect the output stream. Naturally,
the output ISI distribution for∆ = 0 coincides with that found
for BN without feedback.

Graph ofP∆ (t) is shown in the Fig. 3.
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Fig. 5. Left – Coefficient of variation vs.x = λτ for inhibitory BN
with delayed feedback for∆ = 2 ms (1), ∆ = 5 ms (2), obtained
analytically, and for∆ = 20 ms (3), found numerically after 106

triggerings for each point. For curves (1)–(3): N0 = 2, τ = 10 ms.
Right – Coefficient of variation vs.x = λτ for inhibitory BN with
delayed feedback forN0 = 2 (1), N0 = 4 (2) andN0 = 6 (3), found
numerically after 106 triggerings for each point. For curves (1)–(3): τ
= 10 ms,∆ = 18.

6 Properties of the ISI probability density

6.1 Mean interspike interval

The mean output ISI,W∆
1 , can be defined as the first moment

of the ISI probability density:

W∆
1 =

∫ ∞

0
tP∆ (t)dt.

Taking into account Eq. (7), one obtains:

W∆
1 =

∫ ∞

0
t dt

∫ ∆

0
P∆ (t | s) f (s)ds=

∫ ∆

0
ds f(s)

∫ ∞

0
tP∆ (t | s)dt,

which taken together with Eq. (11) gives:

W∆
1 =

∫ ∆

0
ds f(s)

( s
∫

0

t2e−λ tλ 2dt+

+(1+λs) e−λ s

∞
∫

s

tP0(t − s)dt

)

=

=
1
λ

∆
∫

0

ds f(s)
(

2+ e−λ s(λW0
1 −2+(λW0

1 −1)λs
)

)

,

whereW0
1 is the mean output ISI for BN without feedback,

Eq. (3). Use here (16) and (17), which gives after transforma-
tions:

W∆
1 = a(∆ +W0

1 ), (29)

wherea is given in (18).
Note, that in the case∆ = 0 Eq. (29) turns into the follow-

ing:
W∆

1 |∆=0 =W0
1 ,

which is consistent with Eq. (28).
Output intensity,λo, defined as the mean number of im-

pulses per time unit, is inversedW∆
1 :

λ ∆
o =

1

W∆
1

=
(2λ ∆ +3+e−2λ ∆)(1−e−λ τ)

4(λ ∆ +2− (λ ∆ +1)e−λ τ)
·λ , (30)
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Fig. 6. Left –Coefficient of variation vs.λ for inhibitory BN with de-
layed feedback (1), for BN without feedback [19] (2) and for excita-
tory BN with delayed feedback [20] (3), obtained analytically. Curves
(1)–(3): N0 = 2, τ = 10 ms.∆ = 2 ms both for (1) and (3). Right –
Coefficient of variation vs.λ for inhibitory LIF neuron with delayed
feedback (1), for LIF neuron without feedback (2) and for excitatory
LIF neuron with delayed feedback (3), found numerically. Curves (1)–
(3): C = 20 mV, τM = 3 ms,y0 = 15 mV, 1·106 triggerings for each
point.∆ = 2 ms both for (1) and (3).

where Eqs. (29), (3) and (18) are used. At large input rates the
following relation takes place

lim
λ→∞

(

λ
2
−λ ∆

o

)

=
1

4∆
. (31)

This limiting relation can be understood as follows. At moder-
ate stimulation some input spikes are lost without influencing
output due to high probability of long input ISI. At high in-
tensity every two consecutive excitatory input impulses trigger
the BN and send impulse into the feedback line, provided it is
empty. Thus, output intensity should beλ/2 minus firing, in-
hibited by the line. The maximum rate of ihibitory impulses,
which can be delivered by the feedback line to the neuron’s
input, is 1/∆ , and this rate is attaining whent → ∞. Each in-
hibitory impulse either cancells one excitatory impulse inthe
neuron, or does nothing, if neuron appears empty at the mo-
ment of the feedback line dejection. For high input rates, the
probabilities to find neuron empty, or storing one impulse are
both approahing 0.5. Thus, due to feedback line activity, about
1

2∆ excitatory impulses will be eliminated from input streem,
and about half as much from the output stream, which explaines
(31).

Graph ofλ ∆
o is shown at the Fig. 4.

6.2 Coefficient of variation

The coefficient of variation (CV)c∆
v of output ISIs is defined

as dimentionless dispersion:

c∆
v ≡

√

W∆
2

(W∆
1 )2

−1,

whereW∆
2 is the second moment of the ISI probability density:

W∆
2 ≡

∫ ∞

0
t2 P∆ (t)dt =

∫ ∆

0
ds f(s)

∫ ∞

0
t2 P∆ (t | s)dt.

While calculatingW∆
2 , we use Eq. (3), and finally obtain:

(c∆
v )

2 =
B1 e2λ τ +2 B2 eλ τ +B3

8
(

(2+λ ∆) eλ τ −λ ∆ −1
)2 −1, (32)
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Fig. 7. ISI probability density (measured in s−1), found numerically.
Left – BN with delayed feedback forN0 = 2, τ = 10 ms,∆ = 18 ms,
λ = 50 s−1, 5 ·105 triggerings in Monte-Carlo method;right – LIF
neuron with delayed feedback forC= 20 mV,τM = 3 ms,∆ = 18 ms,
y0 = 15 mV,λ = 75 s−1, 5·105 triggerings in Monte-Carlo method.

where

B1 = 3 e−4λ ∆ −8 e−3λ ∆ +2(6λ ∆ +13) e−2λ ∆−

−8(2λ ∆ +3) e−λ ∆ +12λ 2∆2+52λ ∆ +51,

B2 =−2 e−4λ ∆ +4 e−3λ ∆ +2(−5λ ∆ +λ τ −7) e−2λ ∆+

+4(2λ ∆+3) e−λ ∆ −12λ 2∆2+4λ 2∆τ−34λ ∆+6λ τ−24,

B3 = e−4λ ∆ +2(4λ ∆ +3) e−2λ ∆ +12λ 2∆2+24λ ∆ +9.
(33)

It is clear, that for∆ = 0 Eqs. (32), (33) must give the output
ISI coefficient of variation of BN without feedback,c0

v. And
indeed, substituting∆ = 0 to (32) and (33), one obtains

(

c∆
v

)2 ∣
∣

∣

∆=0
=

1

(2eλ τ −1)2
·
(

2e2λ τ +2(λ τ−1)eλ τ +1
)

=
(

c0
v

)2
,

wherec0
v was previously found in [19].

7 Numerical Simulations

We have also performed numerical simulations of inhibitory
BN with delayed feedback. A C++ program developed is sim-
ilar to that used for excitatory BN with delayed feedback[20].
The class of objects, which reproduce the operation manner
of inhibitory BN with delayed feedback, was created. Object
of this class receives the sequence of pseudorandom numbers
with Poisson distribution to its input, which is realized using
tools from the GNU Scientific Library1.

BN firing statistics is represented in terms ofP∆ (t), f (s),
λ ∆

o andc∆
v . Numerical results obtained are then compared with

corresponding analytical expressions, given in Eqs. (20),(23) –
(27), (16) – (18), (30), (32) and (33). It was found, that numer-
ically obtained curves fit perfectly with mentioned analytical
expressions, see example in Fig. 3.

Also the set of numerical simulations for BN with higher
threshold as well as for the case∆ ≥ τ was performed. All

1 http://www.gnu.org/software/gsl/
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Fig. 8. ISI probability densityP∆ (t) (measured in s−1) found numer-
ically for τ = 10 ms,∆ = 8 ms,λ = 50 s−1. Left — N0 = 4, right —
N0 = 6. In both cases 3·107 triggerings were taken.

the ISI probability densities found are similar to those obtained
analytically for threshold 2 and∆ < τ, see Figs. 7, left and 8.

In order to omit the model limitations and to figure out,
what pequliarities of the ISI probability density are caused namely
by the presence of delayed feedback, we have also performed
numerical simulations of an inhibitory leaky integrate-and-fire
(LIF) neuron with delayed feedback. Namely, the LIF neuron is
characterized by a threshold,C, and every excitatory input im-
pulse advances byy0 the LIF membrane voltage,V. Between
input impulses,V decays exponentially with time constantτM.
The LIF neuron fires whenV becomes greater or equalC, and
V = 0 just after firing. When the inhibitory impulse arrives,
it resets neuron’s membrane potential to zero. The LIF model
doesn’t allow exact mathematical treatment due to gradual ex-
ponential decay of input impulses.

Thus, the program developed was extended with the class
of objects, which mimics the operation manner of inhibitory
LIF neuron with delayed feedback. The objects of this class are
fed externally with the same sequence of pseudorandom num-
bers (input ISIs) as the objects of the class, based on the BN
model. It was found for several parameter sets, that obtained
ISI distribution for LIF model is qualitatively similar to what
was found for the BN model, see example in Fig. 7, right.

8 Discussion and Conclusions

We investigated here the firing statistics of a single inhibitory
neuron with delayed feedback under Poisson stimulation. Us-
ing binding neuron model, we calculate analytically the output
ISI probability density, as well as the mean output ISI and the
coefficient of variation for the threshold 2. For higher thresh-
olds, mentioned statistical properties are found numerically by
means of Monte-Carlo simulations.

In order to elucidate whether the features of neuronal firing
statistics found are due to the the BN neuron model specifics,
or namely due to the delayed feedback presence, the numer-
ical simulations of a single inhibitory leaky integrate-and-fire
neuron with delayed feedback were also performed. The LIF
neuron was driven externally with the Poisson stream, whichis
the same as for BN.

The ISI probability densities found both for inhibitory BN
and inhibitory LIF neuron exhibit several qualitatively simi-
lar pequliarities. Namely, for all the parameters sets, theP∆ (t)
are found to be bimodal functions, which contain jumps and
derivative discontinuities, see Figs. 3, 7 and 8.
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Fig. 9. ISI probability densityP∆ (t), s−1. Left– BN without feedback
[18]; right – for excitatory neuron BN with delayed feedback [20]. In
both cases,τ = 10 ms,λ = 50 s−1, N0 = 2. For right pannel,∆ = 8
ms.

Break, or jump, in ISI probability density att = ∆ is caused
by the assumption of fixed time delay∆ of the impulse in the
feedback line. Breaks of the same nature were observed before
both for excitatory BN and excitatory LIF neuron with instan-
taneous [19] and delayed feedback [20].

The derivative discontinuities in ISI probability densityare
due to the time decay of the traces of inputs in neuron’s mem-
ory, which is true both for BN and for LIF models. Such deriva-
tive discontinuinies were found in the case of no feedback, and
also both for excitatory neuron with instantaneous and for ex-
citatory neuron with delayed feedback.

In order to get visual impression of how does the delayed
feedback presence reshape neuron’s firing statistics of inhibitory
neuron as compared to the case without feedback, we have
placed here the typical output ISI probability density for BN
without feedback, see Fig. 9, left. The exact expressions for
this probability density are given in Eq. (1).

In the absence of feedback, bimodality and breaks in ISI
probability density are not observed, see Fig. 9, left. One can
conclude, that it is namely the delayed feedback presence, which
causes transformation of continuous and unimodal output ISI
probability density to the bimodal function with jump.

In Fig. 9, right, the tipycal output ISI probability density
for excitatory BN with delayed feedback is placed, see [20]
for details. In the case of excitatory neuron with delayed feed-
back, the output ISI probability density is multimodal function,
which contains singularity of Diracδ -function type att = ∆ ,
exhibits jumps and derivative discontinuities. Due to the ab-
sence ofδ -shaped peak, the observed number of jumps and
modes, the ISI probability density for inhibitory BN with de-
layed feedback can be easily distinguished from the ISI proba-
bility density for excitatory BN with delayed feedback.

Also, we calculated here the mean output intensity, or fir-
ing rate, which is inverse mean output ISI. For inhibitory neu-
ron, the output firing rate was reduced by the delayed feedback,
as expected, see Fig. 4, left. For higher thresholds, the range
of input intensities, at which the output firing is almost im-
probable, becomes wider, see Fig. 4, right. In other words, the
higher threshold is the stronger stimulation is needed to evoke
response. The obtained input-output relationship for BN firing
intensities resembles those found experimentally for realneu-
rons under natural stimulation[5, Fig. 4]. In contrast to the case
of feed-forward shunting inhibition[4], the delayed feedback
presence was not found to change the sigmoid input-output re-
lationship qualitatively.

As regards the output ISI coefficient of variation, the con-
siderable variability of output ISIs was found both for inhibitory
BN and inhibitory LIF neuron with delayed feedback. CV was
found as the function ranging between 0.5 and 1, see Figs. 5 and
6. This is consistent with experimental results [7,13], where
high CV values of the same range were obtained at the output
of cortical neurons.

From Fig. 6 one can see, that delayed feedback influences
CV for both BN and LIF neuron in a similar manner. In con-
trast to the case of excitatory neuron with delayed feedback,
the delayed feedback presence does not change CV values of
inhibitory neuron substantially as compared to the case with-
out feedback. This is in accordance with experimental studies
of the influence of independent GABA-mediated inhibition on*
CV value of cortical neurons[5,14].

We conclude, that the output firing statistics of an inhibitory
neuron undergoes substantial changes due to the action of de-
layed feedback. These changes are qualitatively distinct from
those, imposed by the delayed feedback on excitatory neuron.
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