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Abstract. A single inhibitory neuron with delayed feedback is conside The neuron receives an excitatory input
from the Poisson stream, and inhibitory impulses from theglfeck line with delay. We investigate here, how does
the feedback presence affect the output firing statistidahobitory neuron. Using binding neuron (BN) as a model,
we derive exact analytical expressions for the output &pi&e intervals (I1SI) probability density, mean output éid
coefficient of variation as functions of model’s paramefersthe case of threshold 2. Using leaky integrate-and-fire
(LIF) model, as well as BN model with higher thresholds, theatistical quantities are found numerically. In corttras
to the previously studied situation of no feedback, the I8bpbility densities found here both for BN and LIF neuron
become bimodal and have discontinuity of jump type. Newdess, the delayed feedback presence was not found to
affect substantially the output ISI coefficient of variatiorhe 1SI coefficient of variation found ranges between 0.5
and 1. It is concluded that introduction of delayed feedbeak radically change neuronal output firing statistics of
inhibitory neuron. This statistics is as well distinct of attwas found previously for excitatory neuron with delayed
feedback.

PACS. 87.19. Models of single neurons and networks — 87.10.-eneG# theory and mathematical aspects —
87.10.Ca Analytical theories — 87.10.Mn Stochastic modgeli

1 Introduction through a single intermediate neurbh [9]. Also, it can bekedo
not only by means of spike delivered to corresponding syoapt

A realistic neuronal network is normally characterizedwat connection, but also through extended diffusion of somalusu
complicated system of excitatory and inhibitory interce@n [12], or unusuall[3] mediator.

tions between individual neurons the network is composed of
Statistics of spiking activity of individual neurons cantbpea-

sured experimentally [[7,10,13]. It would be interestingite

derstand how the details of network’s construction migfitiin
ence statistics of neuronal activity, when the network igedr

with some stimulation, or allowed to reverberate freelyaéix
theoretical analysis of this question in a developed netwe-

resents fair mathematical difficulties.

At the same time, in a real neural network, constructing el- For analytical derivation, we take binding neuron (BN) as
ements can be found, which allow exact mathematical treatneuronal model, see Séc.]2.1 for BN definition. In Secs. 3—
ment. The results of such a treatment can shed light on Blewe derive exact analytical expressions for the output ISI
nature of transformations the neuronal activity might ugde probability density, mean output ISI and coefficient of gari
while spreading within a real neural network. One exampleti®n as functions ofA, A and BN’s internal memony, for BN
an excitatory neuron which sends its output impulses osto With threshold 2. In Se€l 7, these statistical quantitiefa@und
own dendritic tree. This type of constructive element hanbenumerically by means of Monte-Carlo simulations for leaky
found in the olfactory bulli [1,)8]. Theoretical study of tkisn- integrate-and-fire (LIF) model, as well as for BN model with
struction fed with Poisson stream revealed interestinglpee higher thresholds. In contrast to the previously studig¢dasi
ities in its output activity statistics [20]. Another naglivariant tion of neuron without feedback, and of excitatory neurothwi
of this construction is an inhibitory neuron with feedbattk. delayed feedback, the ISI probability densities found lhexté
seems that selfinhibition happens more frequently in thimprafor excitatory BN and excitatory LIF neuron are bimodal.&ls
than selfexcitation. Selfinhibition can be slow, due to petathey retain discontinuity of jump type obsereved beforetlier
sium channels openingl[3], or fast, due to chlorine chari@gls excitatory neuron with feedback. In the case of instantaseo
9]. It also can be direct (through autapsés) [2,8,12], dngct (A = 0) feedback, as it could be expected namely for fast shunt-

In this paper, we consider situation of inhibitory neuron
fed externally with excitatory impulses from Poisson stnea

of intensityA, which sends its output impulses to its own input
through feedback line with delay tine The inhibition mecha-
nism is fast in a sense, that it cancels excitatory impulgegh
neuron obtained recently, and has no any effect on the neuron
in its resting state.
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ing inhibition, the feedback line has no effect on the oumit wherey;(t) are defined according to the following recurrent re-

tivity of inhibitory neuron. lation:
i+2 . Ai+l .
yi(t) =yi-1(t) + ] (t—im)*e - = (= ir)e ™,
2 Object definition Yolt) = e A2t i=01... t>0 @
2.1 BN without feedback PO(t) is a unimodal function, which reaches its maximum at

min(%; T). Example ofP%(t) is given in Fig[®, left.

The binding neuron model[16] is inspired by numerical sim- The first momentW,, of the probability density({1) was
ulation [15] of Hodgkin-Huxley-type point neuron, as wedl afound as

by the leaky integrate-and-fire (LIF) model[11]. In the kiimgl ® 1 1

neuron, the trace of an inputis remembered for a fixed pefiod o Wlo = / tPO(t)dt =5 (2+ ef‘T—l) ; 3)
time after which it disappears completely. This is in thetcast 0 N

with the above two models, where the postsynaptic potentigthich will be used later.

decay exponentially and can be forgotten only after trignger In this work, we also utilize the probabilitii (t) to get an
The finiteness of memory in the binding neuron allows orautput ISI, which is longer than

to construct fast recurrent networks for computer modedisg P

well as obtain exact mathematical conclusions concerning fi ) E/ PO(t) dt. (4)
ing statistics of BN. Recently, the finiteness is utilizeddract t

mathematical description of the output stochastic proiééiss  The exact expression fdi (t) for an arbitraryt, which is cum-
binding neuron is driven with the Poisson input stream in tigrsome, can be found in [17]. We will need the expression for
case of no feedback[118], for BN with instantaneous feedbablt) only at the domait < 7, where it reduces to the following

[19] and for excitatory BN with delayed feedback [20]. () = (14 At) e X, t<T. (5)
delayed feedback 2.2 Feedback line action
input stream réj output stream . _ . _ .
| Lo L s<n, A Ir_1 this work, we conS|der.the situation, Whe_n BN receives ex-
| | L ' citatory input from the Poisson stream and inhibitory ingesl
7 memory t — TSI duration from the feedback line.

We assume, that time delay of impulse in the feedback

Fig. 1. Binding neuron with feedback (se€ [16] for deatils)s sim- line is smaller than the BN's memory duratian,
ilar to the “tolerance interval” discussed [n [6, p. 42]. Mple input A<t (6)
lines with Poisson streams are joined into a single one here. '
It allows to make analytical expressions shorter. Also,abe
sumption[(6) is consistent with the case of direct feedbagk,
The BN works as follows (see Figl 1 with the feedback linmediated by other neurons.
removed). All excitatory input impulses have the same magni If the line is empty, when neuron fires, an output impulse
tude. Each one of them is stored in the BN for a fixed periaghters the line and after deldyreaches neuron’s input. If the
of time, 7, and then is forgotten. When the number of stordihe already keeps an impulse at the moments of BN firing,
excitatory impulsesZ, becomes equal to the BN's thresholdit does not accept the new one. It means, that at any given mo-
No, the BN fires output spike, clears its internal memory, andent, the feedback line either keeps one impulse, or comeys
is ready to receive fresh inputs. Thus, the state just afiegfi impulses, and cannot convey two or more impulses at the same
corresponds to the resting state of excitable membranealn réme. If so, the state of the feedback line can be describéu wi
neurons, and presence of impulses in the internal memoryaofingle variable. For this purpose, we introduce the s&tha
BN corresponds to partially depolarised state. In this wamk variables, s €]0;A], which gives the time to live of the impulse
take BN withNy = 2 for analytical derivation. BNs with higher in the feedback line, see Higj 1. Hereinafter, we will use thle v
thresholds are studied numerically in 9&c. 7. ues ofsjust at the moments of output ISI beginings (just after
Normally, any neuron has a number of input lines. If inpuBN firings).
stream in each line is Poissonian and all lines have the sameThe inhibitory action of feedback impulses is modelled in
weight, all of them can be joined into a single one, like in.Blg the following way. When the inhibitory impulse reaches BN,
with intensity,A, equal to sum of intensities in the individuait annihilates all excitatory impulses already present M'sB
lines. memory, similarly a<Cl-type inhibition shunts depolarization
The output statistics for BN without feedback was calcwf excitable membrane. If at the moment of inhibitory impguls
lated if Ng = 2 (see [[18] for details). ISI probability densityarrival, the BN is empty, then the impulse desappears withou
function, P(t), wheret > 0 denotes the output ISI durationany action, similarly a€l-type inhibition does not affect mem-
was obtained as brane’s voltage in its resting state. Such inhibition isstfan
that sense, that the inhibitory impulses act instantarigeins!
mr<t<(m+1)1t = Pot)=ym(t), m=0,1,..., (1) arenotremembered by neuron.
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3 Derivation outline and is firstly triggered at momenhtThese events are indepen-
dent since their realizations are defined by behavior of9eais

It is clear, that both the binding neuron and the feedbagk liinput stream on disjoint interval®;s] and]s;t]. By definition
operate in deterministic manner. Nevertheless, the pitisab of 1(t), see Eq.[(4), the probability to have (i)fi5(s), and (ii)
tic description is required for the output stream becaughef has the probabilit°(t — s) dt. Therefore,
stochastic nature of driving Poisson process.

Let us denote by (t) the ISI probability density function PA(t]s)=(s) PP(t—s), t>s (10)
for inhibitory neuron with delayed feedback. In order toceal . o _ o
lateP2 (1), we use the procedure, previously utilized for excitathe conditional probability density” (t | s), given in [9) and
tory BN with delayed feedback[20]. As a first step, we defin@0), is normalizedfg’ P4t | s)dt = 1.
the conditional probability densit4 (t | s). Namely,PA(t | s) Taking into account EqLI5).X9) and {10) for the cdse T
gives the probability to obtain an output ISI of durationhiit Oné€ obtain®*(t | s) as follows:
interval [t;t + dt[, provided there was an impulse in the feed-

back line with time to live equas at the moment of this 1SI Ate M teod,

begining. PAt]s) = (11)
Then, we introduce the stationary probability densit), (1+As) e POt —s), t>s

for time to live,s €]0;4], of an impulse in the feedback line at T

the moment of beginning of any output IS. P4(t | ), givenin [11), has a break of heights e *Satt = s.

The output ISI probability density can be calculated based
on the expressions f&* (t | s) and f (s), namely:

A 4.2 Transition probability density P(S | s)
PA(t):/ PA(t| 9)f(s)ds 7
0 From the meaning o® (t | s) it follows that Eq. [®) allows to

In order to findf(s), we first obtain the transition proba_calculateP(s’ |s) for s’ <, namely:

bility densityP(s' | s), s,5 €]0;A], which gives the probability _ 50

that at the begining of some output ISI, the line has impulse P(|s) = PA(S_SI|S) =P(s—s),
with time to live within interval[s’;s + ds|, provided that at
the beginning of the previous ISl it had impulse with time t
live equals. f(s) is then found as normalized to 1 solution O?ore,

the following equation: P(¢|s)=0, s<€<A. (13)

s <s€]0;4]. (12)

As the feedback line conveys no more than one impulse at
ny given moment, it is impossible to hase: s < A. There-

4 Consider the exact equaligy= A. Itis realized every time,
/o P(s|s)f(s)ds= f(s). (8)  when for previous ISt > s, and this inequality happens with
non-zero probability. Therefore, the probability densitg | s)
In the next section, we are going to find explicit expressioings singularity oB-function type as = A. For calculating its
for probability densitie®” (t | s), P(3 | s) andf(s). mass, one should obtain the probabilityt of s by integrating
Eq. (10) over suitable values tof

4 Main calculation

P(S |s) = 6(5’7A)/dt PAt]s) =
4.1 Conditional probability density P2 (t | s) s

[

In order to deriveP? (t | s), domaing < sandt > s should be =95(§—-4)- I'l(s)/PO(t —s)dt=
considered separately. <
In the case < s, the output impulse must be generated —1(9)5(8 —4), ¢>s€l0:4]. (14)

without the line impulse involved. Therefore, probabilitgn-

sity for such ISl values is the same as for BN without any feed- P
back: Here we usg PO(t)dt = 1.

0 0
PA(t| 9 =P(M), t<s ©) The transition probability densif(s | s), givenin Eqs.[(IR)
HereP?(t) is the output ISI probability density for BN without— (I4) is normalizeds P(s | s)ds = 1.
feedback, given in Eql{1). Note, that Eqs.[(12) and_(I14) could be obtained directly,
At the momenss, the inhibitory feedback impulse reachesvithout refering toP? (t | s). Indeed, ifs < s, then the ISk =
BN and BN becomes empty. As it is impossible to obtain moee- ' was obtained without feedback line envolved. Therefore,
than one impulse from the Poisson stream within infinited®(s' | s) is determined by probability to obtain ISI of duratibn
mally small time intervals; s+ dt[, PA(t | s) = 0whent =s.  from BN without feedback, which giveE{112).
In order to obtain ISt > s, two independent events must The exact equalitys = A is realized when BN without
occure: (i) BN without feedback fires no spikes during time irfeedback fires no spikes Hx;s|. The probability of this event
terval]0;9); (ii) BN without feedback starts emty at moment is 7(s), which gives[(I#) for conditional probability density.
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Substituting?®(s— ') from (@) andr(s) from (), one ob- ® "0 002 004 006 008 0 002 0.04 006 0.08
tainsP(s' | s) for the case) < T in the following form: IS! duration, s IS! duration, s

e Ms9)2(s—g), s>¢ €04],

P(s’ I's) = Fig. 3. Example of ISI probability density function, calculatedao-
|l (Ast+1)ess(§-4), §>s

cordance with Eqs_(20), (23], (24&ft, and numerically, by means of
Monte Carlo methodright. For both panelst = 10 ms,A = 8 ms,

Interestingly, that obtained expressions g’ | s) are the A= 10_8’1. No = 2. Curve found numerically fits perfectly with one
same, as those, previously found for excitatory BN with g&hown in the left panel. In the numerical experimer? §pikes were
layed feedback[20]. produced.

(15)

.. . which after transformations becomes
4.3 Delays probability density

—At
In order to findf(s), one should substitute(s' | s) from (15) PA(t) = 2/\42)\3;%' <%/\3t3 %)\thJr
into (8) and solve the obtained equation. A& | s) obtained tote
is exactly the same as for excitatory BN with delayed feekbac 3 1 1
[20], the equation fof (s) and f (s) itself will also be the same. -+ At (5 + Ze’ZM + Ze’ZA (A’t)) +/\2tA> . t<A. (20)
In [20], the probability densityf (s) was obtained as

Whent > A, one needs only the bottom line of EQ.(11) to
calculateP? (t), and Eq.[(IB) turns into the following:

whereg(s) — is an ordinary function, which vanishes out of
interval]0;Al: PA(t) =a(l+24) e POt —4)+

f(s)=aod(s—A4)+4g(s), (16)

_a

A
g(s) (1—e*2“A*5>) s€]0;4] (17) + /O (1+As) e **PO(t —s)g(s)ds
2 ) 1 9

. . . Let us introduce a new variable of integrationst —s:
anda - is a dimensionless constant:
4B PA(t) =a(1+AA) e POt —A)+

= 18 :
’ > [ aeac-we IR L wdu @)

(2AA +3)ePb 1+ 17

which gives the probability to find the impulse in the feedbac _ L _
line with time to liveA at the beginning of arbitrary 1SI. In order to perform integration ifL(21), we define two groups o
domains B, andCr,, namely:

. . Bm= [mT+A4A;(m+1)1], m=0,1,...,
5 ISI probability density Cn= |(M+1)T;(M+ D)7+ A[, m=01,....
In order to findPA(t), one should substitute{{L1) aid16) intdote, that the full domaiA; o[ is completely covered by al-
Eq. (1), which gives: ternate domainBmy, andCny, m=0,1,....

A If t € Bm, thenmt <t—A <t < (m+ 1)1, and one should
PA(t) =aPA(t| A) +/ PA(t | s)g(s)ds (19) substituteym(t) from (@), corresponding to tham, instead of
Jo PO(u) in the [21). Ift € C, thenmt <t —A < (m+1)T < t.
Therefore, the domain of integration in the Eg.l(21) showd b
splitinto subdomains two with poiritn+-1) 7, and a$°(u) one
Bhould substitute eithem(t), orym:1(t) depending on subdo-
main.

As the explicit expressions & (t | s) are different for differ-
ent domains of (see Eqs[{11) andl(1)), further transformatio
of (I9) depends on the domain, thbelongs to. The first few
domains ot are shown in Fid.12.

Consider case A, whetec]0;A[. Here integration domain
in (I9) should be splitted into two with poist=t, see bothtop 5.1 IS| probability density at the domains By,
and bottom line of Eq[{{11). This gives

Thus, in the caseec By, one obtains foP4 (t):

t
PA(t) :/o (1+As) e A2t —s)e M9 g(s)dst+ PA(H) —a(14AA) e Mym(t— A)+

A A
+/t AteMg(s)ds+ aA’t e, +/O (1+As) eyt —s)g(s)ds teBm, (22)
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which after integration gives: 500
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Fig. 4. Left—Mean output firing rate as the functionifor inhibitory
BN with delayed feedbackly, for BN without feedback [19]23) and
for excitatory BN with delayed feedback [203)( obtained analyti-
cally. Curves )—(3): Np = 2, T = 10 ms.A = 2 ms both for {) and
(3). Right —Mean output firing rate as the function dffor inhibitory
BN with delayed feedback fd¥y = 2 (1), obtained analytically, and
for Np = 4 (2) andNp = 6 (3), found numerically. Curveslj—@3): 7 =
10 ms,A = 2 ms, 1. 10° triggerings for each point.

aA k-1 k—I
——€ KA 't =kn)*", teBm, (23)
kZM;
where

1 I4+1
Kia = 2'+2(k—l)! <(|+2)!

—(Il—1)e 24 22} |2M| I( +

—i
5.2 ISI probability density at the domains Cy,

(=2A8)*2 41 41—

aa)).

[+1
[+1—i

Here the dimentionless variable of integratios:- As was in-
troduced.

Performing integration i 5) one obtains:
Consider the cagec Cp. Taking into account Eqd.](1) ard (2), ginted 25)

one can rewritd (21) as follows

ey Do e
= K x —e” -y Dy x (26)
PAO|  =a(l+Ard)eMym(t—4)+ ga ;3
teCm
t—(m+1)T N where
[ @A e Yt - g(s)ds+
(M—1-1) 2
K=——""‘e?4 |=0..m+1;
+/ 1+As “ASyn(t — 9)g(s)ds= T omeaT
K 1 e 224 1
A 2= 2oy
:a(l—i—AA)e*Mym(t—A)—k/o (147S) & Mym(t—s)g(s)ds+ m+24 (m+(2>->i (m+2)
‘ 1) 1
m+3 t—(MH-1)T Kmis = + ;
+(n’:+2), e”“/ (1+AS) (t—s— (m+1)T)™2g(s)ds— Z (m+2-il i+ (m+3)!
: 40 m+2 i
(-1 (i+1)
- AT e ‘ti(erl)T(lJr/\s) (t—s—(m+1)7)™g(s)ds Knis = Z) (m+2-i)! (i+2)"
m+1) - Jo g
| I—i i
It is useful to denote a§§m the righthand side of Eq.(22) D, = m+14 - Z) (—1)_ .(m.— 1- ), |=0,...m+1;
defined for all: 2miat & it (=it
mi-2 i
P2 (1) =a(l+AA)e Myt —A)+ _ITT D+
Sm(t) = a(1+22) e M yn(t ) Omi2=3 > it 31}
+/ (1419 € Syt —9g(s)ds  t>0, pm2 (L
- Dm3:§;_| > (27)
With this notation, one obtaines: & i (m+2-1)
aA
P  =PEmt)+ > e M pA (A (t—(m+1)1)), (24) Note, that in the casé = 0, ISI probability density is com-
teCm pletely defined by Eq[{23), which turns into
where

PA(t)|a—o =P°(t), t>0. (28)

This indeed should be the case, because wher0, inhibitory
impulses always enter empty neuron and, therefore, the feed
back line have no chance to affect the output stream. N&tural
the output ISI distribution foA = 0 coincides with that found
for BN without feedback.

Graph ofPA(t) is shown in the Fid.I3.

(25)
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1.4 14—
12 12} .
> > > } -3
O O 1 3 O 1 2
058 2 os} 1 N
1
0.6 0.6
200 400 600 800 200 400 600 800
X X input intensity, 1/s input intensity, 1/s

Fig. 5. Left —Coefficient of variation vsx = At for inhibitory BN  Fig. 6. Left —Coefficient of variation vsA for inhibitory BN with de-
with delayed feedback fod =2 ms (1), A =5 ms @), obtained layed feedbackl), for BN without feedback [19]2) and for excita-
analytically, and forA = 20 ms @), found numerically after 0 tory BN with delayed feedback [20B), obtained analytically. Curves
triggerings for each point. For curve$)£(3): No =2, 7 = 10 ms. (1)-(3): Np =2, 7 = 10 ms.A = 2 ms both for {) and @). Right —
Right — Coefficient of variation vsx = A1 for inhibitory BN with  Coefficient of variation vsA for inhibitory LIF neuron with delayed
delayed feedback fd¥g = 2 (1), No =4 (2) andNp = 6 (3), found feedback 1), for LIF neuron without feedback?) and for excitatory
numerically after 18 triggerings for each point. For curve®{(3): T  LIF neuron with delayed feedbacR)( found numerically. Curvesj—
=10 msA =18. (3): C =20 mV, Ty = 3 ms,yp = 15 mV, 1. 1P triggerings for each
point. A = 2 ms both for {) and @).

6 Properties of the ISI probability density ,
where Eqs.[(29)[{3) an@{1L8) are used. At large input raes th

6.1 Mean interspike interval following relation takes place
The mean output ISW2, can be defined as the first moment lim (i —)\OA) = i (31)
of the ISI probability density: Ao\ 2 44
- This limiting relation can be understood as follows. At mede
WA :/ tPA(t)dt. ate stimulation some input spikes are lost without influegci
0 output due to high probability of long input ISI. At high in-

tensity every two consecutive excitatory input impulsegger
the BN and send impulse into the feedback line, provided it is
A ® A A ® empty. Thus, output intensity should B¢2 minus firing, in-
W, :/o tdt/o PA(t|5)f(S)dS:/O de(S)/O tPA(t|s)dt, hibited by the line. The maximum rate of ihibitory impulses,
which can be delivered by the feedback line to the neuron’s
which taken together with Ed. (1L 1) gives: input, is /A, and this rate is attaining when— . Each in-
hibitory impulse either cancells one excitatory impulsetia

Taking into account EqL{7), one obtains:

A H neuron, or does nothing, if neuron appears empty at the mo-
wA :/ dsf(s) </t2e“)\2dt+ ment of the feedback line dejection. For high input rates, th
0 0 probabilities to find neuron empty, or storing one impulse ar
% bloth approahing 0.5. Thus, due to feedback line activitgpab
1+ s ef)\s/tPO t—gdt| = 55 excitatory impulses will be eliminated from input streem,
T(1+29) J (t=9) and about half as much from the output stream, which expdaine

2 @)é h ofA2 is sh he Figl4
1 rapn o IS shown at the FiI .
:X/dsf(s) (2+ e (AW -2+ AWP - 1)2s) ), °
0

6.2 Coefficient of variation

whereW, is the mean output ISI for BN without feedback - - . ,
Eq. (3). Use herd(16) and{17), which gives after transf«s'rm‘!';\he.Coefn.c'elnt of variation (_CV¢€ of output ISls is defined
tions: as dimentionless dispersion:

W =a(a+wWy), (29) wa
wherea is given in [18).

C€ = (W:LA)Z ]
Note, that in the casd = 0 Eq. [29) turns into the follow-
ing: whereWs' is the second moment of the ISI probability density:

-0 = Wi wi= [Tepmdi= [ds (s [ 2PA| 9d
which is consistent with EqL{28). :_/0 PR tf./o s (S)./o t“P2(t | s)dt.

Output intensity, Ao, defined as the mean number of im- . . A . -
pulses per time unit, is inversW,LA: While calculatinghVy', we use Eq[(3), and finally obtain:

B eAT+2B, e+ By

1 _(248+3+e?4)(1-e?T) (c0)?=

A= = . (30) 5 — 1L (32)
° WA 4AA+2-(AA+1)eAT) 8((2+M)e“—M—1)
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Fig. 8. ISI probability densityP? (t) (measured in'st) found numer-
ically for t = 10 ms,A =8 ms,A =50 st Left— No = 4, right —
Np = 6. In both cases 307 triggerings were taken.

Fig. 7. 1SI probability density (measured in'$), found numerically.
Left— BN with delayed feedback fa¥y = 2, T = 10 ms,A = 18 ms,
A =50 s 1, 5.10° triggerings in Monte-Carlo methodight — LIF

neuron with delayed feedback fér= 20 mV, 7y =3 ms,A = 18 ms,

=15mV,A = 75 s1, 5.10° triggerings in Monte-Carlo method. - . o .
Yo ggering the ISI probability densities found are similar to thoseaitxtd

analytically for threshold 2 and < 71, see Figd.17, left arid 8.

where In order to omit the model limitations and to figure out,
what pequliarities of the I1SI probability density are calisamely
By =3e M4 _ge 0 2(6AA +13) e 24 _ by the presence of delayed feedback, we have also performed

numerical simulations of an inhibitory leaky integrateddire
—8(2AA+3) e M +122%A%+524A+51,  (LIF) neuron with delayed feedback. Namely, the LIF neuson i
characterized by a threshofd, and every excitatory input im-
pulse advances by, the LIF membrane voltag®,. Between
Bo=—2e M 441 2(BAA+AT-T) e P04 input impulsesy decays exponentially with time constam.
_ The LIF neuron fires whe¥ becomes greater or equ@J and
+4(2AA+3)e M 124242+ ANPAT-34NA+6AT- 24, V = 0 just after firing. When the inhibitory impulse arrives,
it resets neuron’s membrane potential to zero. The LIF model
doesn’t allow exact mathematical treatment due to gradual e
Bs=e M2 1 2(40A+3) e 24 1120242 1 240 A + 9. ponential decay of input impulses.
(33) Thus, the program developed was extended with the class
] ) of objects, which mimics the operation manner of inhibitory
Itis clear, that fod = 0 Egs. [3P) [(38) must give the outpui |F neuron with delayed feedback. The objects of this class a
ISI coefficient of variation of BN without feedbacky. And  feq externally with the same sequence of pseudorandom num-
indeed, substituting = 0 to (32) and[(38), one obtains bers (input ISIs) as the objects of the class, based on the BN
) 1 ) model. It was found for several parameter sets, that oldaine
(c€) ’ - = . (2e2/\T+2(,\ T-1) e"T+1) = (08) ISI distribution for LIF model is qualitatively similar to kat
4=0  (2eAT 1) was found for the BN model, see example in [Eig. 7, right.

wherecd was previously found iri [19].

8 Discussion and Conclusions

7 Numerical Simulations _ . . - . -
We investigated here the firing statistics of a single irtbityi

Reuron with delayed feedback under Poisson stimulation. Us

We have also performed numerical simulations of inhibitor, e .
1g binding neuron model, we calculate analytically thepoit

BN with delayed feedback. A C++ program developed is si » .
ilar to that used for excitatory BN with delayed feedbacj20'S! Probability density, as well as the mean output ISI arel th
The class of objects, which reproduce the operation manG@gfficient of variation for the threshold 2. For higher ire
of inhibitory BN with delayed feedback, was created. Obje@{dS, mentioned statistical properties are found numbyibg

of this class receives the sequence of pseudorandom numB&#&ns of Monte-Carlo simulations. N
with Poisson distribution to its input, which is realizedngs In order to elucidate whether the features of neuronal firing
tools from the GNU Scientific Librafly statistics found are due to the the BN neuron model specifics,

BN firing statistics is represented in termsRf(t), f(s), © namely due to the delayed feedback presence, the numer-

A4 andc2. Numerical results obtained are then compared witf@! Simulations of a single inhibitory leaky integratessiire
corresponding analytical expressions, given in Egs. (23),— neuron with delayed feedback were also performed. The LIF
@7), (I6) - [(18),[(30) [(32) and(B3). It was found, that neme€uron was driven externally with the Poisson stream, wisich

ically obtained curves fit perfectly with mentioned analgti the Same as for BN. g o
expressions, see example in Fiy. 3. The 1S probability densities found both for inhibitory BN

Also the set of numerical simulations for BN with highe@nd inhibitory LIF neuron exhibit several qualitativelyrst
threshold as well as for the cage> T was performed. All 1ar pequliarities. Namely, for all the parameters sets i)
are found to be bimodal functions, which contain jumps and

1 http:/iwww.gnu.org/software/gsl/ derivative discontinuities, see Fig$[3, 7 amd 8.
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20 As regards the output ISI coefficient of variation, the con-
siderable variability of output ISIs was found both for ibiory

BN and inhibitory LIF neuron with delayed feedback. CV was
found as the function ranging between 0.5 and 1, see[Bigsl 5 an
[6. This is consistent with experimental resultd [7,13], rehe
high CV values of the same range were obtained at the output
of cortical neurons.

From Fig[® one can see, that delayed feedback influences
Fig. 9. 1SI probability densityP4 (t), s~ L. Left— BN without feedback CV for both BN and LIF_ neuron in a S|m.|Iar manner. In con-
[18]; right — for excitatory neuron BN with delayed feedbackl[20]. Ifrast to the case of excitatory neuron with delayed feedback
both casest = 10 ms,A = 50 s°1, Ny = 2. For right pannela =g  the delayed feedback presence does not change CV values of
ms. inhibitory neuron substantially as compared to the cask-wit

out feedback. This is in accordance with experimental studi
of the influence of independent GABA-mediated inhibition oh

Break, or jump, in ISI probability density &= A is caused CV value of cortical neurons5, 14].
by the assumption of fixed time deldyof the impulse in the We conclude, that the output firing statistics of an inhityito
feedback line. Breaks of the same nature were observedeefiuron undergoes substantial changes due to the action of de
both for excitatory BN and excitatory LIF neuron with instanlayed feedback. These changes are qualitatively distioct f
taneous[19] and delayed feedback [20]. those, imposed by the delayed feedback on excitatory neuron
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The derivative discontinuities in ISI probability densitye
due to the time decay of the traces of inputs in neuron’s mem-

ory, which is true both for BN and for LIF models. Such derivaReferences
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