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Abstract—In this study, we consider a linear differential
equation with fuzzy boundary values. We express the solutio
of the problem in terms of a fuzzy set of crisp real functions.
Each real function from the solution set satisfies differentl
equation, and its boundary values belong to intervals, detenined
by the corresponding fuzzy numbers. The least possibility @mong
possibilities of boundary values in corresponding fuzzy gs is
defined as the possibility of the real function in the fuzzy shtion.

In order to find the fuzzy solution we propose a method based
on the properties of linear transformations. We show that, {
the corresponding crisp problem has a unique solution thenhe
fuzzy problem has unique solution too. We also prove that iftie
boundary values are triangular fuzzy numbers, then the vale of
the solution at any time is also a triangular fuzzy number.

We find that the fuzzy solution determined by our method
is the same as the one that is obtained from solution of crisp
problem by the application of the extension principle.

We present two examples describing the proposed method.
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ways. The first one uses the extension principle. In this
way, the initial value is taken as a real constant, and the
resulting crisp problem is solved. Then the real constattién
solution is replaced with the initial fuzzy value. In the fina
solution, arithmetic operations are considered to be dipaiIa
on fuzzy numbers [(I8],[[9]). The second way, offered by
Hullemerier [10], uses the concept of differential inétus
In this way, by taking an alpha-cut of initial value, the give
differential equation is converted to a differential ingilon and
the obtained solution is accepted as the alpha-cut of theyfuz
solution. Misukoshi et al [11] have proved that, under derta
conditions, the two main ways of the approach are equivalent
for the initial value problem. The third way is offered by
Gasilov et all[12]. In this way the fuzzy problem is considere
to be a set of crisp problems.

In this study, we investigate a differential equation with

Keywords: fuzzy boundary value problem, fuzzy set, lineafuzzy boundary values. We interpret the problem as a set of

transformation.

I. INTRODUCTION

crisp problems. For linear equations, we propose a method
based on the properties of linear transformations. We show
that, if the solution of the corresponding crisp problemsexi

and is unique, the fuzzy problem also has unique solution.

Approaches to fuzzy boundary value problems can be of tioreover, we prove that if the boundary values are triangula

types. The first approach assumes that, even if only the boufszzy numbers, then the value of the solution is a triangular
ary values are fuzzy in the handling problem, the solution fazzy number at each time. We explain the proposed method
fuzzy function, consequently, the derivative in the diéietial on examples.
equation can be considered as a derivative of fuzzy function
This derivative can be Hukuhara derivative, or a derivaiive
generalized sense. Bedeé [1] has demonstrated that a lagg c| Below, we use the notatiom = (uz(r),ur(r)), (0 <
of boundary value problems have not a solution, if Hukuhara< 1), to indicate a fuzzy number in parametric form. We
derivative is used. To overcome this difficulty, in [2] and [3denoteu = u.(0) andw = ug(0) to indicate the left and the
the concept of generalized derivative is developed andyfuzght limits of u, respectively. We represent a triangular fuzzy
differential equations have been investigated using thigept number asi = (I, m,r), for which we haveu = [ and@ = r.
(see also([4],[5],[[6]). Recently, Khastan and Nigfo [7] édav In this paper we consider a fuzzy boundary value problem
found solutions for a large enough class of boundary val(eBVP) with crisp linear differential equation but with fzy
problems with the generalized derivative. However as ieins boundary values. For clarity we consider second order rdiffe
from the examples in mentioned article, these solutions a8tial equation:
difﬁcu!t to interpret bepause four differgnt problems,aibed 2"+ ay ()2’ + as()a = (1)
by using the generalized second derivatives, often does not (0) = i
reflect the nature of the problem.

The second approach is based on generating the fuzzy
solution from the crisp solution. In particular case, foe thWe note that the coefficients of the differential equatioa ar
fuzzy initial value problem this approach can be of threeot necessary constant.

Il. Fuzzy BOUNDARY VALUE PROBLEM

(1)
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_Let us represent the boundary valuesAs- a,, + a and c121(t) + caxa(t). Fore; ande, we have the following linear
B = b, +b, wherea., andb., are vectors with possibility 1 system

and denote the crisp parts (the vertices)doéind B; @ andb c121(0) + c222(0) = a %
denote the uncertain parts with vertices at the origin. c171(T) + caz2(T) = b
We split the problem{1) to following two problems: Below we obtain a matrix representation for the solution of
1) Associated crisp problem (which is non-homogeneouske BvP. We rewrite the linear systef (7) in matrix form:
{ 2"+ ai(t)r’ +az(t)z = f(t) Mc=u
z(0) = aer (2)
B | 2(0) ze(0) |, |a |, |a
z(T) = bey where M _- 1(T) :?2(T) = o | u=| .
2) Homogeneous problem with fuzzy boundary values: ~ The solution of the linear system is
2’ + a1 ()’ + ax(t)r =0 c=M"'u (8)
z(0) = @ (3)  We constitute a vector-function of linear independent Sohs
x(T)=b s(t) = [z1(t) 2(t)]. Then the general solution can be

It is easy to see that, a solution of the given problelrﬁewmten in matrix form as

(@ is of the formz(t) = z¢(t) + zun(t) (crisp solution + 2(t) = [z1(t)  z2(t)] [ c1 ] —s(t) ¢

uncertainty). Here..(¢) is a solution of the non-homogeneous

crisp problem [(R); whilex,,,,(¢) is a solution of the homo-

geneous probleni]3) with fuzzy boundary conditions.(¢)

can be computed by means of analytical or numerical methods. z(t) =w(t) u=wi(t) a+wa(t) b 9)

Hence,[(1) is reduced to solving a homogeneous equation witn

fuzzy boundary condition$13). Therefore, we will investig where 1

how to solve this problem. w(t) =s(t) M (10)
We assume the solutian,,, of the problem[(B) be a fuzzy B, The solution method for FBVP

set X of real functions such as(t). Each functionz(¢) must Now we show how to findX(¢) (the value of the solution

satisfy the differential e~quati0~n and mus_t have bound_alqem for the problem((B) at a time).

“ an_d b from the sets and b, respe(_:tlvely. We define the Let linear independent solutions of the crisp equation

possibility (membership) of the function(¢) to be equal to @), z.(t) and z5(t), be known. Then we can constitute the

Using [8) we haver(t) = s(t) M~ u, or,

the least possibility of its boundary values. vectorw (see. formulalll0)). Accordindl(4) and (9) we have:
Mathematically, the fuzzy solution set can be defined as w (see, [Z0). 414) and (9) '

follows: )Z_{x(t)_w(t)um_ { Z] a€d; be’z;} (11)
X ={z(t) | 2" + a1(t)z’ + a2(t)x = 0;

Consider a fixed time. Putv = w(t). Then from [(I1) we

2(0)=a; (T)=0b; a€a; be E} 4)  have:
with membership function X(t) = {v ulu=a b8";aca; be 5} (12)
pg(x(t)) = min {4g(a), p5(0) } () To determine how is the se€ (¢) we consider the transfor-

The solutionX, defined above, can be interpreted as a fuzzr}](at'o;T(u)l:. v (herev is aflxed.vector). One can See that
. : R* — R'is alinear transformation. Therefot¥ ) is the
bunch of functions. . ~ T _ ~ T
One can also interpret that we consider a FBVP as a set@ge of the sef = {“ =la b laca be b} = (a, b)

crisp BVPs whose boundary values belong to the fuzzy detginder the linear transformatidhi(u).

andb. We remember some properties of linear transformations
[13]:
A. A matrix representation of the solution in the crisp case 1. A linear transformation maps the origin (zero vector) to

e origin (zero vector).

2. Under a linear transformation the images of a pair of
similar figures are also similar.

3. Under a linear transformation the images of nested figures

Here we consider crisp BVP for second order homogeneotn
linear differential equation:

"+ ai1(t)x’ + az(t)x =0

_ are also nested.
z(0) = a (6) o
2(T) =b In addition, we shall reference a property of fuzzy number
vectors.

Let 21 (t) andz(t) be linear independent solutions of the 4. The fuzzy setB = (a, b) forms a fuzzy region in the
differential equation. Then the general solutionsi§) = ab-coordinate plane, vertex of which is located at the origin



and boundary of which is a rectangle. Furthermorebmits E. Solution algorithm

of the region are rectangles nested within one another. Based on the arguments above, we propose the following
The facts 1-4 allow us to derive the following conclusionigorithm to solve the problenitl(1):

The vector3, components of which are the boundary values 1 Represent the boundary valuesAs- a., +a and B =

a andb, form a fuzzy rectangle in theb-coordinate plane. , 73,

The linear transformatiofi’(u) maps this fuzzy rectangleto a 2 Find linear independent solutions; (£) and z(t) of
fuzzy interval inR'. Therefore, the solution at any time formspe crisp differential equation” + a1 ()2’ + as(t)z = 0.

a fuzzy number. Constitute the vector-functios(t) = [z1(t) x2(t)], the
C. Particular case when boundary values are triangular fuzzy Matrix M and calculate the vectow (t) = (w1 (), w2(t)) by
numbers formula [10).

| icular. it 5 and? tri lar § b h 3. Find the solutione,,(¢) of the non-homogeneous crisp
n particular, ifa andb triangular fuzzy numbers, the- problem [2).

cuts of the regionB = (a, 5) are nested rectangles, further-
more, they are similar. According to the discussion above, _
their images are intervals that also are nested and similar, Z(t) = Ter(t) +wi(t) @+ wa(t) b (14)

consequently, form a triangular fuzzy numtféft). Therefore,

4. The solution of the given problerl (1) is

X (t) can be represented in the for®i(t) = (z(t),0,Z(t)). IIl. EXAMPLES
Now we investigate how to calculate(t) andz(t). Example 1 Solve the FBVP:
Leta = (a,0,a), b = (b,0,b) andw(t) = (wy(t), w2 (t)). 2 — 32 + 22 =4t —6
Since Z(t) is the maximum value among all products z(0) = (1.5, 2, 3) (15)
w(t)u =aw; (t) + bws(t), we have: x(1)=( 2, 3,4)
2(t) = max {gw: (¢), awy (t)} + max {bwa(t), bws(t) } Solution: We represent the solution &ét) = e, (t) +Zun (t).
(t) = min {aw (t), awy (1)} + min {bws(t), bwa(t) } 1. We solve crisp hon-homogeneous problem
Note that am-cut of X () can be determined by similarity: 2" — 32" + 20 =4t -6
z(0) =2
Xa(t) = [2a(t),Ta(t)] = (1) [2(t),7(1)] = (1 - ) Xo(?) z(1) =3

and find the crisp solution

Formulas forz(t) andz(t) allow us to represent the solutlonxcr(t) =20 ol [2(e2F - ) 4 (¢ — )] (the thick

in a new way:

e2—e

N B line in Fig.1).
X(t) =wi(t) a4+ wa(t) b

where the operations assumed to be multiplication of real
number with fuzzy one, and addition of fuzzy numbers.

D. General case when boundary values are parametric fuzzy
numbers

In the general case, whea and b are arbitrary fuzzy
numbers, the solution can be obtained by usirguts. Let
o = [0a,Tq)| @Ndby = [ba,ba]. Then By = [aa,da] X
[b_a,m. By similar argumentation to the preceding case, for
the a-cut of the solution we obtain the following formulas:

Xa(t) = [2a(t), Ta(t)]
where
To (1) = max {aqw: (t), Gaw: () } +max {bawa (), bawa(t) }

2o (t) = min {aqwi (), Gawi (t) } + min {bawa(t), baws(t) }

Based on the formulas above we can conclude, that the \ \
representation for solution 0.0 0.5 10

t
X(t) = wi(t) @+ wa(t) b (13)

Fig. 1. The fuzzy solution and its = 0.5-cut for Example 1. Dashed and

. L. . . thick bars represent the values of the fuzzy solution andvits 0.5-cut at
is valid in general. Thus, the solution, defined by formulggerent time'z, respectively. Y

(4), becomes the same as the solution obtained fidm (9) by

extension principle. 2. We consider fuzzy homogeneous problem
Remark: The approach is valid also for the general case, 2 =32 +2x=0
when nth-order m-point boundary value problem is consid- x(0) = (-0.5, 0, 1)

ered. z(1) =(-1, 0, 1)



r1(t) = ¢! andz,(t) = €% are linear independent solutions
for the differential equation. Thes(t) = [e! '],

M= ! 12 and
e e
w=s(t) Mt =G [e*Tt —elT20 20 —¢f],

The formula[(IB) gives the solution of homogeneous problem:

Tun(t) = 2= ((e2** — 12 (—0.5, 0, 1)+
(e* —e') (~1, 0, 1)) (16)

where the arithmetic operations are considered to be fuzzy
operations. We add this solution to the crisp solution ard ge 0

the fuzzy solution of the given FBVR(IL5): 00 05 10 15 20
F(t) = 2t + (¥t — 12 (1.5, 2, 3)+ t
(e2t _ et) (O, 1 2)) (17) Fig. 2. The fuzzy solution and its = 0.6-cut for Example 2. Dashed and

thick bars represent the values of the fuzzy solution andvits 0.6-cut at

The fuzzy solutionz(t) forms a band in thez-coordinate different times, respectively.

plane (Fig. 1). Sincev; (¢) > 0 andw,(t) > 0for0 <t < T,

the upper border of the band(t), becomes the solution of 2 +162=0
the crisp non-homogeneous problem with the upper boundary; z(0) = ( —1, 0, 0.5)
valuesA = 3 and B = 4, while the lower borderz(t) z(2) = (-0.5, 0, 0.5)
corresponds togd = 1.5 and B = 2: x1(t) = cos4t and zo(t) = sin4t are linear independent
B ) 1 2t ivay . g 2% _ o solutions for the differential equation. Then
) = t+62—e((e —e) 3 A=)y s(t) = [cos4t sindt], M = L O. and
1 cos8 sin8
z(t) = 2+ m(@%t —e ) 154 (e — ') 0)  w= s(t) M~! = Lo [sin(8 — 4t)  sin4].

L i i Using the formula[(T13) we obtain the solution of homo-
We can express the solution(t) also viaa-cuts, which enequs problem and adding the crisp solution we get the
are intervalse,, (t) = {x_a(t), T_(t)| at any timet. Since the solution of the given FBVPL(18):
boundary values are triangular fuzzy numbéfs, (t) also is F(t) =3 — 0.5t2 + —L_(sin(8 — 4¢) (1, 0, 0.5)+
. ~ __ : sin 8 [
a triangular fuzzy number, say,,, (t) = (zun(t), 0, Tun(t)).
Consequently, am-cut of Z,,(t) can be determined by

similarity with coefficient(1 — ), i.e.
1 _ Fuzzy solution generates a bandinplane (Fig. 2). Unlike
Tun, o(t) = (1= ) [2un(t), Tun (1) Example 1, the functions); (¢) andw-(¢) takes both positive
Adding the crisp solution gives the-cut of the solutioriz(¢): and negative values in the internvl< ¢t < T'. Because of
_ _ N1 o4t 142t that, in generation of upper and lower borders of the band,
[x—“(t)’ o (t)} 2t+(1—a) o= ((e e ) 115, 3]+ anda, b andb take charge in alternately.

sindt (—0.5, 0, 0.5)) (19)

(e* —¢) [0, 2])

In Fig. 1 we show the fuzzy solution (dashed bars) and its IV. CONCLUSION

a = 0.5-cut (thick bars) at different times. In this paper we have investigated the fuzzy boundary value

Example 2 Solve the FBVP: problem as a set of crisp problems. We have proposed a
2" 4 162 = 47 — 82 solution method based on the properties of linear transfor-
2(0)=( 2, 3, 3.5) (18) mations. For clarit_y we hgve explained t_he proposed method
2(2) = (0.5, 1, 1.5) for second order linear differential equation. We have show

_ that the fuzzy solution by our method coincides with the
Solution: _ solution by extension principle. We are planning to make a
Associated crisp non-homogeneous problem comparative analysis between the proposed method and the

" _ 2
T+ 16(56)_ 4; — 8t method including generalized Hukuhara derivative in fatur
x =
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