
Framework for discrete-time quantum walks and a symmetric walk on a binary tree

Zlatko Dimcovic,1, ∗ Daniel Rockwell,2 Ian Milligan,2 Robert M. Burton,2 Thinh Nguyen,3 and Yevgeniy Kovchegov2

1Department of Physics, Oregon State University, Corvallis OR 97331
2Department of Mathematics, Oregon State University, Corvallis OR 97331

3School of Electrical Engineering and Computer Science, Oregon State University, Corvallis OR 97331
(Dated: September 30, 2011)

We formulate a framework for discrete-time quantum walks, motivated by classical random walks
with memory. We present a specific representation of the classical walk with memory 2 on which
this is based. The framework has no need for coin spaces, it imposes no constraints on the evolution
operator other than unitarity, and is unifying of other approaches. As an example we construct a
symmetric discrete-time quantum walk on the semi-infinite binary tree. The generating function
of the amplitude at the root is computed in closed-form, as a function of time and the initial level
n in the tree, and we find the asymptotic and a full numerical solution for the amplitude. It
exhibits a sharp interference peak and a power law tail, as opposed to the exponentially decaying
tail of a broadly peaked distribution of the classical symmetric random walk on a binary tree. The
probability peak is orders of magnitude larger than it is for the classical walk (already at small n).
The quantum walk shows a polynomial algorithmic speedup in n over the classical walk, which we
conjecture to be of the order 2/3, based on strong trends in data.

PACS numbers: 03.67.Ac, 89.70.Eg, 02.50.Ga, 05.40.Fb

I. INTRODUCTION

Random walks on graphs (Markov chains) are used
extensively in science. They provide a number of now
standard approaches and models in physics. Application
of such ideas to evolution of quantum systems has led
to the emergence of the field of quantum walks, princi-
pally distinguished between discrete-time (DTQW) and
continuous-time (CTQW) quantum walks. However, be-
ing unitary (reversible) processes, quantum walks are
very different from their classical stochastic (Markovian)
counterparts.

Quantum walks are used to approach varied problems,
for instance, on quantum lattice gases, arrow of time,
generalized quantum theory, exciton trapping, or topo-
logical phases [1–5]. They may become a general tool for
building physical models; for example, see a summary in
[5] and CTQW in transport phenomena [6]. In quantum
computing, they are a universal primitive [7], and in the
algorithmic context, the principle alternative to quantum
Fourier transform. The field has developed since its initi-
ation [8–12], with established algorithmic uses, examples
of dramatic superiority over classical approaches [13, 14],
and implementations [15]. See [16, 17] for a review and
a recent summary.

Standard approaches to quantum walks generally stem
from memoryless classical walks. However, since quan-
tum evolution is memoried (unitary), it seems natural to
approach construction of quantum walks from classical
random walks with memory. Relation between unitarity
and memory in walks has been noted [1, 3]. (Also, in
computer science memoried and biased approaches are
common and beneficial algorithmically.)

∗ dimcoviz@onid.orst.edu

It is our observation that DTQW are most directly
related to classical walks with memory 2. In this paper
we present a general DTQW framework as a direct analog
of a specific representation of memory–2 classical walks.
With it we construct a symmetric DTQW on a binary
tree, starting from a pure state at an arbitrary level in
the tree, and compute its amplitude at the root.

Sec. II starts with a representation for memoried clas-
sical walks, that is particularly interesting for quantum
walks due to the specific form of the Markov tensor. In an
analogy with it, we then define a framework for DTQW.
Walks are built by choosing the evolution operator with
no constraints other than unitarity. They evolve in the
product of state spaces, while the key component of the
operator acts on single states. There is no need for “coin”
degrees of freedom. The framework is flexible and suit-
able for general graphs. It is also unifying of other ap-
proaches, notably coined and Szegedy’s [18].

In Sec. III we apply this framework to a binary tree,
a structure with many uses in physics. It is a natural
environment for quantum walks, but difficult to utilize
with current techniques for DTQW. A successful specific
construction exists for CTQW [13].

We construct a symmetric walk on the semi-infinite bi-
nary tree, and calculate its amplitude at the root, as a
function of time and of the initial level in the tree. This
involves path enumeration using regeneration structures,
manipulated with the z–transform. The obtained closed–
form generating function yields the analytic asymptotic
for the amplitude, which we also compute numerically.
The amplitude has a sharp peak and a power law tail,
completely unlike the corresponding classical random
walk, and shows a polynomial speedup in n. The data
strongly suggests the order of the speedup of 2/3.

A summary is in Sec. IV, and appendices discuss the
steepest descent calculation, and the classical walk.

ar
X

iv
:1

10
7.

42
01

v2
 [

qu
an

t-
ph

]
 2

9
Se

p
20

11

mailto:dimcoviz@onid.orst.edu

2

II. A FRAMEWORK FOR DISCRETE-TIME
QUANTUM WALKS

The main approach to DTQW follows ideas of classical
memoryless walks, and needs an auxiliary “coin” degree
of freedom. Here we employ a specific representation
of memoried Markov chains (II A), as an analogy for a
general DTQW framework (II B) which does not need
coin spaces. Relation to other approaches is discussed at
the close of this section. We start with an example that
serves as a motivation for using memoried walks.

Memoried walks and coined DTQW. Classical walks
with memory are walks with internal states: apart from
its state, the walk carries other information. Here we
use one such walk in one dimension, with the following
property: the next step depends on the direction of the
previous one. If the walker came to a site i from the
site i− 1, the probability to go to i+ 1 (to maintain the
direction) is p, while the probability to go to i−1 (reverse
direction) is 1− p. This is often called a persistent walk.
We now show that coined DTQW are a special case of a
quantum analog of classical persistent walks.

Consider a standard coined walk on a d–regular graph
with n vertices (for example, [12]). The state of the walk
is in the direct product of two Hilbert spaces: an auxil-
iary (“coin”) space HA, spanned by d states |a〉, in which
a unitary operator C mixes components; and a space
of vertices, HV , spanned by n states |v〉. The evolu-
tion operator acts in this product space HA ⊗ HV as:
U (|a〉 ⊗ |v〉) = S (C ⊗ I) (|a〉 ⊗ |v〉). On a cycle with the
HA basis {|↑〉, |↓〉}, the shift S can be implemented as
S = |↑〉〈↑| ⊗

∑
j |j + 1〉〈j| + |↓〉〈↓| ⊗

∑
j |j − 1〉〈j|. Now

consider for C a generalized Hadamard coin operator,

C =

[√
p
√

1− p√
1− p −√p

]
,

and evolve the state. Starting from the pure “up” state,

S · (C ⊗ I) |↑〉 ⊗ |i〉

= S ·
(√

p |↑〉 ⊗ |i〉+
√

1− p |↓〉 ⊗ |i〉
)

=
√
p |↑〉 ⊗ |i+ 1〉+

√
1− p |↓〉 ⊗ |i− 1〉. (1)

For the pure “down” initial state,

S · (C ⊗ I) |↓〉 ⊗ |i〉
=
√

1− p |↑〉 ⊗ |i+ 1〉 − √p |↓〉 ⊗ |i− 1〉. (2)

This is a persistent walk: it maintains the direction with
probability p, and changes it with probability 1− p. The
obtained walk undergoes the same spectral analysis as
its unbiased special case (p = 1/2, the Hadamard walk).
Walks with a general coin have been studied (for exam-
ple, [19–22]), as well as persistent (correlated) walks and
their relation to DTQW [23–25]. With this example we
point out the direct correspondence between them. Note
that the directionality of the walk shows up as soon as

the coin transformation is allowed to have p 6= 0.5. In
other words, the standard Hadamard transform generally
implements a persistent walk (rather than a memoryless
one), only with equal probabilities.

A. A representation for classical memory–2 walks

Walks with memory 2 are such Markov processes where
the next step depends on two states: the current one,
and the previous one. Walks with memory are generally
studied by using a suitably enlarged state space. In par-
ticular, a memory–2 Markov chain can be represented as
a memoryless one over the space with n2 states. The
transition matrix is then large (n2 × n2) and sparse.

Instead, here we represent a Markov chain with mem-
ory k by a probability distribution µ(t) of dimension k,
while the Markov tensor M is then of dimension k + 1.
For a memory–2 walk over n sites, the space has dimen-
sion n, and each state is labeled by two indices (the site
the walker came from, and the current site). So the prob-
ability distribution is two–dimensional,

µ(t) =

 µ0,0(t) · · · µ0,n−1(t)
...

...
µn−1,0(t) · · · µn−1,n−1(t)

 .
The matrix µij can also be given by a column of rows
ri, or by a row of columns ci, which we use below. The
following representation for the third-rank tensorM and
its action is convenient.

Let pij|k be the conditional probability for the transi-
tion j → k, given that the walk came to j from i. All
transition probabilities {pij|k} define the evolution oper-
atorM = [P0P1 . . . Pn−1], as n layers of n× n transition
matrices Pj , j = 0, 1, . . . , n− 1, one for each site:

Pj =

 p0,j|0 p0,j|1 · · · p0,j|n−1

...
...

pn−1,j|0 pn−1,j|1 · · · pn−1,j|n−1

 .
Pj are by construction transition probability matrices,
and this is the only requirement imposed on them.

The evolution of the state, µt+1 = µtM, with M act-
ing to the left, is defined as

µ(t) 7→ µ(t+ 1) : rj(t+ 1) = cTj (t)Pj ,

for each j = 0, 1, . . . , n− 1, where rj and cTj are the j-th
row and transposed column, respectively, of the matrix
µ. In words: At each site j, the Pj associated with that
site acts on the transposed j–th column of µ(t), giving
the j–th row of the evolved µ(t+ 1).

Instead of an n2 × n2 probability matrix, we use n of
n×n probability matrices Pj . They implement the evolu-
tion: the j–th column of µ(t) has probabilities to arrive to
j from any site, and after the action of Pj the j–th row of
µ(t+ 1) has probabilities to go from j to any site. Thus

3

action of all transition matrices on all columns evolves
the probability distribution over all paths. The stochas-
tic nature of the process is carried by the assignment of
{pij|k} transition probabilities in Pj matrices [26].

The Pj transition matrices are simple in most cases of
interest. Consider the cycle, a space {0, 1, . . . , n} with
identified ends (0 and n), with only nearest-neighbor
transitions, (j ± 1, j) → (j, j ± 1). Take the persistent
walk, with probability p to continue, and 1−p to reverse,

(j − 1, j)→ (j, j + 1), with probability p

(j − 1, j)→ (j, j − 1), with probability 1− p.

To obtain this walk, the Pj matrices have the following
block centered at (j, j) (mod n),

Pj =

. . .

1
1− p 0 p

0 1 0
p 0 1− p

1
. . .

(3)

The rest of the diagonal of Pj has 1s, other elements are
0, except for the transitions between sites 0 ≡ n, and n−1
or 1 (boundary conditions), which are p0,n−1|0 = 1 − p
(reverse), p0,n−1|1 = p (continue), etc. Action of these
Pj by the above prescription carries the walk.

B. Quantum walks: the interchange framework

The above classical procedure for memory–2 walks is
directly elevated to define quantum processes.

Consider a basis in an N–dimensional Hilbert space,
with vectors labeled as {|i〉, i = 1, 2, . . . N}. They rep-
resent states that the walk is performed on, enumerated
on a general graph. The state of the walk is given in the
product CN × CN spanned by these bases, by states at
the previous (|i〉) and current (|j〉) step,

|ψ(t)〉 =
∑
ij

cij(t) |i〉 ⊗ |j〉. (4)

The evolution is specified by

|ψ(t+ 1)〉 = ÛX̂ |ψ(t)〉, |ψ(t)〉 = (ÛX̂)t |ψ(0)〉, (5)

where X̂ is the interchange operator and Û is defined via
unitary operators Uj in CN , assigned for each site,

X̂ : |i〉 ⊗ |j〉 7→ |j〉 ⊗ |i〉

Û =

N−1∑
j=0

Πj ⊗ Uj , where Πj = |j〉〈j|. (6)

Πj selects the first state in the product, and Uj acts on
the second. Before explicit examples, we make a few
general comments.

Consider a pure state of the walk |i〉⊗ |j〉, represented
by an arrow pointing from the previous (i) to the current
(j) site. The interchange initiates the walk forward by
“reversing the arrow.” Then the Uj operator distributes
the “tip of the arrow” to all sites the process can ac-
cess (generally in the subspace of adjacent nodes), and
the evolved superposition is obtained. This is best seen
in the forthcoming example of the binary tree (Fig. 2).

The explicit reversal X̂ is crucial; then Uj completely
controls the evolution over site j, by acting on the origi-
nating state(s) |i〉, and sending the process over all paths
to a new state. The framework does not place any condi-
tions on these operators, except for unitarity of quantum
evolution. We are free to choose (or construct) them as
needed to implement quantum walks.

Note that this construction needs no mention of clas-
sical processes. The representation of classical memoried
walks in Sec. II A is given for motivation and insight,
and we now comment on this relation. The discussed
interplay between interchange and (local) Uj , critical
for this formulation, has a clear analog in the classical
representation—recall the transposition before (local) Pj
evolve the distribution. Also, the freedom to craft any
(unitary) Uj to implement quantum walks corresponds
to a classical property, as Pj may be any (probabilistic)
matrices. Finally, the classical representation has no ex-
plicit coin toss, and there is no need in the quantum case
to mimic randomization via a coin degree of freedom;
here Uj drive the walk and mix components.

Relation to other approaches. For a comparison
with a memoryless (coined) approach, consider a walk
on the line, over the state space S = {|j〉, j = 0, 1, . . .}.
The quantum walk (1) and (2) is obtained with

Uj(p) =

. . .

1 √
1− p 0

√
p

0 1 0
−√p 0

√
1− p

1
. . .

,

with the block centered at (j, j). The rest of the diago-
nal has 1s, and other elements are 0. (On a cycle there
are elements needed for boundary conditions, like in the
classical case.) The square roots provide for probability
being the square of the amplitude, and the −√p sign is
needed for unitarity. In this simple case, the choice of
Uj follows from the classical memoried walk (3), but in
general a classical analog is not needed.

Now look at the evolution steps from pure states.
Starting from |i − 1〉 ⊗ |i〉 (the system is in the state

4

|i〉, having been in |i− 1〉 at the previous step),

ÛX̂ |i− 1〉 ⊗ |i〉 = Û |i〉 ⊗ |i− 1〉

=
(∑
j∈S
|j〉〈j| ⊗ Uj

)
|i〉 ⊗ |i− 1〉

=
√

1− p |i〉 ⊗ |i− 1〉+
√
p |i〉 ⊗ |i+ 1〉.

Similarly, for the initial |i+ 1〉 ⊗ |i〉 state,

ÛX̂ |i+ 1〉⊗ |i〉 = −√p |i〉⊗ |i− 1〉+
√

1− p |i〉⊗ |i+ 1〉.

This is an isomorphism of the memoryless–based walk of
Eqs. (1) and (2), via identification

|i− 1〉 ⊗ |i〉 ⇔ |↑〉 ⊗ |i〉 and |i+ 1〉 ⊗ |i〉 ⇔ |↓〉 ⊗ |i〉.

This analysis applies to arbitrary mixed states, as each
component is evolved separately. The choice of p = 1/2
restores the Hadamard walk. Thus the interchange
framework reproduces coined quantum walks on the line
directly, with the above choice for Uj .

Memory in quantum walks is mentioned in literature.
For example, it was noted in study of the classical limit
via decoherence and multiple coins [27], and a direct rela-
tion between coined walks and classical memoried walks
was observed [28]. Recently a particular “quantum walk
with memory” [29] was studied.

An important approach directly resorting to ideas of
memoried walks is the Szegedy walk [18], which is the
most prominent tool in DTQW not using coin degree
of freedom [17]. Its construction starts from a classi-
cal Markov chain, and the resulting evolution operator
explicitly carries classical transition probabilities. It is
contained in the interchange framework via the specific
choice

(Uj)km = 2
√
p(j, ik)p(j, im)− δkm,

where p(i, j) need to be classical transition probabilities.
The present approach does not require a specific form
of the evolution operator. It is fully defined by (4)–(6)
alone, without reference to classical walks, and quantum
processes with desired properties are set by choosing Uj
without constraints. Some benefits of this are seen in the
next section, where we construct a symmetric DTQW on
a binary tree. A Szegedy walk on a binary tree cannot
be obtained with equal probabilities for each branch, as
there is no (real) solution for probabilities p(i, j) such as
to yield a 1/3 probability for the quantum walk.

The Szegedy walk is also a translation of a memoryless
walk into a walk with memory. The interchange frame-
work is a direct analog of an explicit representation for
memory–2 Markov chains. This is reflected in some of its
properties, discussed above.

The interferometry–motivated [30] scattering walk [31]
is performed on graph edges, scattering off of vertices (or
subgraphs). The more general formulation [32] can be
formally reconciled with the present framework, while

their designs and interpretations are different, and com-
plementary. The scattering walk has recently been used,
in its form reflecting the physical (scattering) approach,
for certain search problems [32–34], hinting at benefits of
coinless algorithms. This approach has not been related
to stochastic processes, which underlie the motivation,
construction, and expected uses of the present frame-
work. We showed here how a very general formulation of
DTQW, unifying of other similar approaches [35], arises
naturally from Markov chains with memory.

Before moving to a full example we remark on the ver-
satility of this approach. It reproduces coined walks on
the line and Szegedy’s walk, and handles a walk on a
binary tree (next section)—each by a simple choice for
Uj . This demonstrates flexibility, and it seems that the
framework can help with problems that so far have been
prohibitively difficult.

III. A SYMMETRIC DISCRETE-TIME
QUANTUM WALK ON A BINARY TREE

The binary tree is a common model in physics, and
a structure of interest in quantum computing [36]. One
of the initiating works [8] used it as a model for deci-
sion trees, and one of the most successful algorithms [13]
solves a particular problem on connected binary trees,
both using CTQW. We have not seen such progress in
using DTQW on the binary tree, even though this would
be beneficial for many problems. This seems to be due
mostly to trouble in handling coin spaces that are nec-
essary for (coined) DTQW. In this section we use the
established framework to set and calculate a symmetric
DTQW on the semi-infinite binary tree. We orient our
tree with the root (single starting node) at the left with
the tree spanning to the right (Fig. 1).

level from

 root

root

FIG. 1. Conventions used for our binary tree.

We focus on the following basic question. The walk is
started from a pure state at a site in the tree at a level n,
and we examine its amplitude at the root as a function
of time (step) and the initial distance n.

The desired symmetric walk has equal probability to
step to either of the connecting nodes, having come from
either direction. (The analysis remains unchanged for
different choices of local Uj .) The state of the walk is
given in the direct product of spaces, each spanned by
states defined at nodes S = {|i〉}. Label a node in the
tree as j, and the nodes connected to it as i1 (to its left,
toward the root), i2, and i3 (to its right, away from the

5

root), as in Fig. 2. Consider an evolution step from a
pure state at j, for example, |ψ0〉 = |i2〉⊗|j〉. The action

of the interchange X̂ reverses the state. Next we want to
write down the Uj matrix, acting on |i2〉, such that the
evolved state has equal probabilities for either branch.
Formally Uj operate in the space of all nodes, but they
are reduced to the subspace of nodes to which transi-
tions are allowed; here the adjacent ones. Thus Uj can
be written in a block-diagonal form, with the non-trivial
transition matrix U red

j in {|i1〉, |i2〉, |i3〉}, and an iden-
tity matrix over the remaining dimensions. The matrix
elements need to satisfy the unitarity of Uj and equal
squared amplitudes of components of the state evolved
by it. The obtained evolution operator, with (reduced)
transition matrix U red

j in the basis {|i1〉, |i2〉, |i3〉}, is

Uj =

[
U red
j 0
0 I

]
, with U red

j =
1√
3

 1 a a
a 1 a
a a 1

 , (7)

where a = e2πi/3. This representation holds for graphs
of any degree, where dimensions of U red

j and I change.
At the root the walk can only get reflected, which is per-

formed by interchange X̂; then U0 is the identity ma-
trix. This will be accounted for. For all other states, we
now follow the prescription of Eqs. (5) and (6). With

Û =
∑
i∈S Πi ⊗ Ui, the step is

|ψ1〉 = ÛX̂ |ψ0〉 =

(∑
i∈S
|i〉〈i| ⊗ Ui

)
X̂ |i2〉 ⊗ |j〉

= |j〉 ⊗ Uj |i2〉 = |j〉 ⊗ 1√
3

(a , 1 , a , 0 , . . .)T. (8)

Thus the state is evolved by ÛX̂ to the superposition

|i2〉 ⊗ |j〉 → |j〉 ⊗
(
a√
3
|i1〉+

1√
3
|i2〉+

a√
3
|i3〉
)
. (9)

Each component of the superposition takes the next step
from its node in the same way, and the process spreads
over the tree [37].

FIG. 2. A step taken from a pure state |i2〉⊗|j〉 [Eqs. (7)–(9)].

The state is sent by ÛX̂ over all available paths. Probabilities
for either branch are chosen to be equal, regardless of how
the walk approaches the site j (the walk is symmetric). Each
component of a general (mixed) state is evolved this way.

In comparison with Markov processes, a quantum walk
can be considered as the evolution of the amplitude dis-
tribution. Also, the causality typical of the local dynam-
ics of the classical Markov evolution, seen in Sec. II A, is

reflected in the quantum walk. Note how the concerted

action of X̂ and Uj implements the “arrowed” (memo-
ried) nature of the evolution, mentioned in Sec. II B.

For organizing the calculation, it is useful to note
the connection between directionality and weights of the
components of the evolved state. The component that re-
verses the direction of the previous step has the coefficient
1/
√

3, while the other two have a/
√

3 (see Fig. 2). This
is always the case for this walk (not only for |i2〉 ⊗ |j〉),
since it is symmetric, as explicit in Eqs. (7)–(9).
Outline of the calculation. The amplitude at the root

at time t is computed as a sum of the contributions (am-
plitudes) of all possible (classical) paths that are at the
root at that time. This is practically a discrete form of
the path integral in quantum mechanics, and is a stan-
dard technique [1, 11]. So we count all such classical
paths on this structure, weighted appropriately.

The presence of a reflective boundary (the root) com-
plicates the classification and counting, and we use re-
generation structures, which are then handled via the
z transform. The obtained explicit expression for the
transform is complicated, and analytically the asymp-
totic of its inverse is found, using the method of steepest
descent. The full amplitude is calculated numerically.

For brevity in involved descriptions, we sometimes use
“paths h(t)” to refer to “those paths that contribute to
the part of the amplitude (that is named) h(t).”

A. Path counting and regeneration sums

Enumeration of paths, weighted with appropriate co-
efficients (amplitude), is a combinatorial problem. Given
the symmetry between up and down directions, the tree
can be projected to a line bisecting it. The paths on
the tree can be classified, and this results in rules for an
equivalent walk on that line.

A component of the state at a site is directed either
toward or away from the root; and it can either continue
in the same direction or reverse it in the next step. For
example, the component directed toward the root (to the
left) can continue toward the root (taking the branch to

the left), with the amplitude a/
√

3, or it can turn and
step away from the root, by directly reversing or (and)
by taking the other branch leading away, with the total
amplitude of (1 + a)/

√
3 [see Fig. 2 or Eq. (9)].

Summarized by the direction of the previous step, the
walk on the line can take the next step as follows:
When directed away from the root (to the right), it can:

(i) turn back, with the coefficient 1/
√

3 (left turn);

(ii) continue, with (a+ a)/
√

3 (right step).
When directed toward the root (to the left), it can:

(i) turn away, with (1 + a)/
√

3 (right turn);

(ii) continue, with a/
√

3 (left step).
There is a special case, not following the above clas-

sification, which complicates the counting of paths con-
siderably. We need to count weighted paths that are at

6

the root at time t. Paths generally reach the root in
fewer than t steps, then going back and forth in the tree,
possibly touching the root again in the process, before fi-
nally finding themselves at the root at time t. Whenever
they touch the root their next step can only be a turn
back, with the coefficient 1, and this does not fall into
the above classification. To account for it the paths need
be enumerated particularly carefully.

All paths that are at the root at time t have the follow-
ing structure. They touch the root for the first time at
one point (step s), and we call the amplitude for this part
of the path hn(s). Then they go out in the tree, eventu-
ally coming back to the root at step t, possibly touching
it multiple times in the process; we call the amplitude of
this part of the path G(t − s). This is encoded by the
convolution over the first contact with the root, and the
amplitude, represented by weighted paths that are at the
root at step t, starting from level n, is

Hn(t) =

t∑
s≥n

hn(s)G(t− s). (10)

After the root is touched for the first time, the remain-
der of the walk is a root–to–root path, considered in-
dependently as G(t) [accounting for the n = 0 case,
G(t) = H0(t)]. It consists of: a “simple loop” g(s), that
goes from the root into the tree and back to it (reaching
it again for the first time), followed by the rest of the
path G(t− s), which may touch the root multiple times,
so again comprised of simple root–to–root loops (Fig. 3).

level

rootroot

time

FIG. 3. The number of paths is a convolution w.r.t. the first
contact with root, with the regeneration structure of Eqs.
(10) and (11).

This is a convolution too, with one adjustment. To cor-
rectly account for t = 0, it must be that g(0) = 0, as well
as G(0) = 1 (since t = 0 ⇒ s = t). Thus δ0(t) need be
added. The amplitude of such root–to–root multi–loops
G(t) is

G(t) =

t∑
s=0

g(s)G(t− s) + δ0(t). (11)

The regeneration sums, Eqs. (10) and (11), organize path

counting. We work with them using the z transform,

f̂(z) =

∞∑
t=0

f(t)zt, |z| < 1.

Applying this transformation to Eqs. (10) and (11),

Ĥn(z) = ĥn(z) Ĝ(z), and Ĝ(z) = ĝ(z) Ĝ(z) + 1,

⇒ Ĥn(z) = ĥn(z)
1

1− ĝ(z)
. (12)

We need transforms of amplitudes of paths reaching the

root for the first time [ĥn(z)], and of simple loops [ĝ(z)].

At this point we note a known combinatorial result.
The number of paths on a lattice in two dimensions, going
from (0, 0) to (2n, 0), taking only Northeast or Southeast
steps, with k peaks, is given by Narayana numbers [38],

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
. (13)

This expression applies to the number of paths compris-
ing the simple loops g, where peaks are positions furthest
from the root. We first need to identify and enumerate
“steps” and “turns” in such paths, so that we can assign
weights to them accordingly.

A simple loop must take an even number of steps. The
first step is a reversal: it starts at the root, having arrived
to it from the first node, and it can only step back onto
the first node, so the coefficient for this step is 1. It is
straightforward to establish that paths with k peaks take
k left turns and k − 1 right turns. Also, loops of t steps
must take t−2

2 −(k−1) right, as well as left, steps. Loops
with t = 2 are different: they can only step away from
the root and return to it in the next step (left turn); their

coefficient is 1× 1/
√

3. Thus a simple loop with k peaks,
for t ≥ 4 steps, bears the coefficient:(

1√
3

)k (
1 + a√

3

)k−1(
a√
3

)t/2−k (
2a√

3

)t/2−k
=

1

(
√

3)t−1

(
1 + a

2a2

)k−1 (
2a2
)t/2−1

=
1

(
√

3)t−1

(
−1

2

)k−1 (
2a2
)t/2−1

(as a = e2πi/3).

For a = e2πi/3 we have 1 + a + a2 = 0, used above.
Summed over all possible numbers of peaks k, and with
the t = 2 case added, the amplitude of a simple loop is

g(t) =
1√
3
δ0(t− 2)

+

t−2
2∑

k=1

(
2a2
)t/2−1

(
√

3)t−1

(
−1

2

)k−1

N

(
t− 2

2
, k

)
.

7

Using the Narayana numbers (13), with t = 2m+ 2,

g(m) =
1√
3
δ0(m) +

1

m
√

3

(
2a2

3

)m
×
m−1∑
k=0

(
−1

2

)k (
m

k + 1

)(
m

k

)
.

Since we will need the transform of g(t), it is helpful to
write the above sum as an integral, using the identity

m−1∑
k=0

(αβ)k
(

m

k + 1

)(
m

k

)
=

1

2π

∫ 2π

0

(
1 + αeix

)m (
1 + βe−ix

)m e−ix

α
dx.

Employing this, under the constraint αβ = −1/2,

g(m) =
1√
3
δ0(m) +

1

2π

1

m
√

3

(
2a2

3

)m
(14)

×
∫ 2π

0

(
1

2
+ αeix + βe−ix

)m
e−ix

α
dx.

It is calculationally convenient to take the z–transform
of g(t) at this point. Since loops take even number of
steps, and ĝ(z)t=0 = g(0) = 0, with t = 2m+ 2,

ĝ(z) =

∞∑
t=0

g(t)zt = g(0) + g(2)z2 +
∑

t=4,6,...

g(t)zt

= ĝ(z)m=0 +

∞∑
m=1

g(m)z2m+2.

The transform of δ is 1, and Eq. (14) becomes

ĝ(z) =
1√
3
z2 +

1

2π
√

3
z2

∫ 2π

0

dx
e−ix

α

×

[∞∑
m=1

1

m

(
2a2

3

)m(
1

2
+ αeix + βe−ix

)m
z2m

]
.

Now we make use of
∑∞
n=1 x

n/n = − ln(1 − x), |x| < 1,

and at this point pick α = −β = 1/
√

2, arriving at

ĝ(z) =
z2

√
3

+
z2

2π

√
2

3

∫ 2π

0

dx e−ix

×
{
− ln

[
1− z2 2a2

3

(
1

2
+
eix − e−ix√

2

)]}
.

Using ω = e−ix and integrating by parts,

ĝ(z) =
1√
3
z2 − z4 1

2πi

2a2

3

×
∮
|ω|=1

(
1
ω + ω

)
dω

1− 2a2z2

3

[
1
2 + 1√

2

(
1
ω − ω

)] .

Here the Residue Theorem is used. The singularity at
ω = 0 is removable, while one of the two zeros of the
denominator is inside the integration contour. Finally,

ĝ(z) =

√
3

2a2

[
1 +

1

3
(az)2 −

√
1− 2

3
(az)2 + (az)4

]
. (15)

This closed-form expression analytically extends ĝ(z) be-
yond the disk |z| < 1 on which it was defined. We now

need to deal with ĥn(z).
Paths from the n-th level that reach the root for the

first time in s steps, with amplitude hn(s), first reach
the level n − 1, generally going out into the tree in the
meanwhile, then the level n−2, and so forth until the root
is hit. This is organized into paths dropping by one level
closer to the root (with amplitude h1), convoluted with
the rest of the walk, which itself is comprised of paths
getting closer to the root by one level, hn = h1 ∗ hn−1 =
. . . = h1 ∗ . . . ∗ h1 (n times). Then the transform is

ĥn(z) =
[
ĥ1(z)

]n
. (16)

Paths h1, that for the first time reach one level closer to
the root, are combinatorially equivalent to the paths that
start at level 1 and touch the root for the first time.

Consider such a path, starting at level 1 and finding
its way to the root for the first time, in more than one
step (Fig. 4). It must have come to level 1 from level 2,
and it first steps back to level 2. For comparison, now
recall a root–to–root simple loop g(s). It differs from h1

by: the first step of g (with coefficient 1) is not taken by
h1 (which is already at level 1), and the next step of g
(for paths with t > 2) is a right step, while the h1 path
takes a right turn.

loop

rootroot

level

any path

time

paths

FIG. 4. Combinatorial comparison of root–to–root loops (g)
and paths getting closer to root by one level (h1) (see text).

So we divide the expression for g(s) by the coefficient
associated with the second step of g that h1 does not
take, 2a/

√
3, and multiply it by the coefficient of the

step that h1 takes instead, (1 + a)/
√

3. We also divide
by the coefficient of the first step of g, not taken at all by
h1, which is 1. In the special case s = 1 a single step is
taken to the root from the first level, with a/

√
3. Finally,

this path takes one step more as compared to g(s), so we
use the expression for g(s+ 1), starting from s = 3 since

8

g(2) corresponds to the special case h1(1). This gives us
the expression for the amplitude h1,

h1(s) =
a√
3
δ0(s− 1) +

1+a√
3

1× 2a√
3

g(s+ 1)× 1s∈{3,5,...}.

Its transform is, using 1 + a+ a2 = 0 (as a = e2πi/3),

ĥ1(z) =
a√
3
z +

1 + a

2a

[
1

z

∑
t=3,5,...

zt+1g(t+ 1)

]
(17)

=
a z√

3
− a

2 z

(
ĝ(z)− z2

√
3

)
=
a
√

3

2
z − a

2

ĝ(z)

z
.

The sum is the transform of g(t ≥ 4)
[
ĝt≥4

]
, written as

ĝ − ĝt=2. With Eqs. (12), (16), and (17), the generating
function for the amplitude of the process at the root is

Ĥn(z) =
[
−a

2

]n [ĝ(z)−
√

3 z2

z

]n
1

1− ĝ(z)
, (18)

with ĝ(z) given in Eq. (15). Now we need to invert this.

B. Inverse transform: Hn(t) asymptotic

We take the inverse z–transform via an integral, and
using Laurent expansion and the Residue theorem,

Hn(t) =
1

2πi

∮
|z|=r<1

Ĥn(z)

zt+1
dz

=
1

2πi

[
−a

2

]n ∮ 1

zt+1

[
ĝ(z)−

√
3 z2

z

]n
dz

1− ĝ(z)
.

This integral is too complicated to yield a closed-form
solution. We look for its asymptotic behavior in the form

Hn(t) =
(−a)n

2πi

1

2n

∮
|z|=r

[
ĝ(z)−

√
3 z2

]n
1− ĝ(z)

dz

zt+n+1
, (19)

using the steepest descent method. The calculation is
discussed in Appendix A. The asymptotic of the ampli-
tude of the process at the root, starting from a level n in
the tree, with τ ≡ t− n, is

Hn(t) ∼ (−a)n

2πi

1

2n
× (
√

2)n(−1)n (20)

×
[
c1n e

−iγn e
−iλ1

τ
2

τ3/2
− c2n e

iγn e
−iλ2

τ
2

τ3/2

]
.

Constants c1n and c2n are linear in n, while γ and λ’s are
real constants (Appendix A). The probability is

|Hn(t)|2 ∼
C2 − 2 Re

{
c1c
∗
2 e
−i[2γn+(λ1−λ2) τ2]

}
4π2 2n τ3

, (21)

where C2 = |c1|2 + |c2|2 ∼ n2. The oscillations of the
exponential term are rapid at large times (and/or n),
and this function behaves as ∼ τ−3. The n dependence
is ∼ n2/2n at large times. Also, we see that the walk
is transient, in the sense introduced in [39, 40], since∑∞
t |Hn(t)|2 is finite.

The observed power law decay differs sharply from
the exponential tail of the classical walk (Appendix B).
On finite graphs built with binary trees, this exponen-
tially slower decay may lead to algorithms with signifi-
cant speedups. The treatment in this section is meant to
lay the groundwork for such investigations.

This behavior should also have general implications for
physics of systems modeled with a binary tree.

C. Inverse transform: Hn(t) computed

The transform is defined as Ĥn(z) =
∑
t≥nHn(t)zt,

and using its Taylor expansion and equating coefficients,

Hn(t) =
Ĥ

(t)
n (z)|z=0

t!
. (22)

This can be evaluated efficiently, for a range of values of t
for a fixed n, providing the full amplitude. Symbolic cal-
culation of derivatives (with Mathematica) allows for
values of n in the thousands. We note that the amplitude
shows an interference pattern, with the main peak fol-
lowed by (much) smaller, rapidly diminishing, secondary
peaks. Probability at the root with time is shown in
Fig. 5, for n = 50. The shape does not depend on n.
At long times this exact result can be compared with
asymptotics (21), see inset in Fig. 5. The tail exhibits
t−3 dependence, in agreement with Eq. (21).

60 100 200

0.5

1.5

time steps

10
12
ÈH

n
2

n=50
æ numerical à asymptotic

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

34 450 34 480

1

3

10
26
ÈH

n
2

FIG. 5. (Color online) Probability at the root with time
(n = 50), computed via Eq. (22). Inset compares this (points)
with the steepest descent asymptotic (21) at same time steps
(red squares).

9

D. Comparison and algorithmic aspects

We considered an algorithm of finding the root start-
ing at the n–th generation in the tree. Here we compare
the quantum and classical walks, and their estimated
run times, using data calculated via Eqs. (22) and (B3).
Probability peaks and times at which they are reached,
for quantum and classical walks, are shown in Table I
for a few initial levels n. Probability at the root for the
classical walk is shown in Fig. 6.

100 150 200

1

4

time @stepsD

10
17

p t
H5

0,
0L

n=50

FIG. 6. (Color online) Classical walk, probability at the root
(Appendix B).

The best run time for a given n is estimated as fol-
lows. The inverse of the probability is the average num-
ber of times needed to run in order to hit the root; mul-
tiplying it by its time gives the total running time to
hit the root. We need its minimum over all time steps,
min

{
t
/
|Hn(t)|2

}
, usually the values for the peak. We

use data up to n = 5000 in steps of 100 for the quantum
walk, and up to n = 2000 in steps of 50 for the classical
walk (numerical integration is more demanding). Using
smaller increments in n does not affect results. We fit
the natural logarithm (ln) of run times with a polyno-
mial and linear (Fig. 7).

The polynomial fit establishes a linear trend (reached
at n ∼ a few hundred), so the run time of the quantum
walk is exponential in the initial distance from the root,
∼ ebn. The same holds for the classical walk, and then
the ratio of slopes of their linear fits compares their run
times.

This ratio does not change much over the whole range
of data, being within a few percent of 2/3. Still, since an
exponential complexity is fully felt at large n, the later
portions of data are more relevant for algorithmic com-
parison. For the last quarter of data ranges, indicated in
Fig. 7 by lines fit through data, the ratio of quantum to
classical slopes is ≈ 0.685, within 3% of 2/3. Thus it ap-
pears reasonable to conjecture the algorithmic speedup
of the order of 2/3. (For a run time T for the classical
walk, one expects the run time on the order of T 2/3 for
the quantum walk.)

We note the behavior of peaks times with n. For the

à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

100 1000 2000 3000 4000 5000

1

2

n Hinitial levelL

10
-

3
ln
HT
�p

ro
bL

m
in

polynomial fit, ~ np

pq = 0.99907 ± 0.00003 HqwL

pc = 0.99875 ± 0.00002 HclL

linear fit, b � n

bq = 0.475234 ± 0.000005 HqwL

bc = 0.69401 ± 0.00002 HclL

FIG. 7. (Color online) Natural log (ln) of run time with
initial level in the tree, for quantum (points) and classical
(blue squares) walks. For plot clarity not all points are shown.
Parameter values for polynomial (∼ np) and linear (bn) fits
are shown, with lines through data used for fits (see text). The
run time is ∼ ebn, and bq/bc → 2/3 estimates the quantum
over classical walk speedup.

classical walk, tclmax(n) = 3n − 8 (exact), while for the
quantum walk tqwmax(n) ≈ 1.46n (where data allows for a
fit of ∼ 1.5n, and for an ∼ lnn correction).

IV. CONCLUDING REMARKS

Quantum walks are quantum processes with a specific
mixing of states; particular unitary processes. In this
vein, we propose to approach and study them using ideas
from classical random walks with memory.

We have demonstrated how a general framework for
discrete-time quantum walks arises as a natural analog of
a specific representation of a classical memory–2 Markov
chain. Walks are implemented by constructing a local
operator with no restrictions other than unitarity. The
framework needs no “coin” degrees of freedom, is flexible,
and is applicable to general graphs. This approach may
make it easier to obtain walks on structures for which
significant speedups are expected.

The evolution operator works separately on each com-
ponent of the amplitude, reducing the state space, and
effectively deconstructing the amplitude [as in in the bi-
nary tree example, Eqs. (7–9)]. This makes quantum-
mechanical correlations and interference transparent in
quantum walks, making their explicit study easier. It
should also aid the use of quantum walks as a general
tool for exploration and modeling of physical systems.

In Sec. III we use the framework to build a symmet-
ric discrete-time quantum walk on a semi-infinite binary
tree. We start the walk at a level n in the tree and find its
amplitude at the root as a function of time and n. The
construction of the walk is simple, but the calculation
is complicated by a (reflective) boundary. The gener-
ating function of the amplitude is found explicitly, and

10

initial level n 10 20 50 100 200 500

max |Hn|2 (at t) 6.8× 10−4 (16) 3.9× 10−6 (30) 1.7× 10−12 (76) 5.3× 10−23 (150) 7.6× 10−44 (298) 5.1× 10−106 (738)

max pt(n) (at t) 1.2× 10−4 (22) 7.2× 10−8 (52) 4.2× 10−17 (142) 2.6× 10−32 (292) 1.4× 10−62 (592) 4.5× 10−153 (1492)

TABLE I. Probability peaks at the root with their times, for quantum
[
|Hn(t)|2

]
and classical

[
pt(n, 0)

]
walks, with n.

its asymptotic is found via the steepest descent method.
The full solution is computed numerically.

These solutions show interesting features. The asymp-
totic decays in time by the power law (as opposed to the
exponential tail of the classical walk), representing long–
range correlations. This hints at significant speedups on
restricted structures. The amplitude exhibits a damped
interference pattern, with a distinct and sharp peak.
In comparison with the classical walk, the probability
peak is reached more quickly, and is orders of magnitude
greater, already at small n. The run time for hitting the
root on a semi-infinite binary tree is exponential with
n for the quantum walk, as it is for the classical walk.
It is still clearly slower in n and, following suggestive
data trends, we conjecture the polynomial algorithmic
speedup of the order of 2/3 over a classical walk.

Appendix A: Steepest descent calculation summary

Integrals suitable for analysis by the steepest descent
method are typically of the form [41]

I(k) =

∫
C

f(ω) ekΦ(ω) dω. (A1)

We use Eq. (19), where the exponent will be formed from
powers of z. As z is always squared we first change vari-
ables via z2 = ξ. Accounting for the double winding,

I(t;n) = 2× 1

2

∮
|
√
ξ|=r

[
ĝ(ξ)
ξ −

√
3

]n
1− ĝ(ξ)

1

ξ

dξ

ξ
t−n
2

.

We now use ĝ(ξ)/ξ = ω, to transfer some of the inte-
grand’s complexity into the exponent,

ĝ(ξ)

ξ
= ω, ξ = ϕ(ω) = a

√
3

ω − 1√
3

(ω + 1√
3
)(ω − 2√

3
)
.

Carrying out the substitution, we have

I(t;n) =

∮
|√ϕ|=r

(ω − √3)
n

(1− ω ϕ)

ϕ′
ϕ
ϕ−

t−n
2 dω, (A2)

in the form (A1), with ϕ−
t−n
2 = e

t−n
2 ln(ϕ−1), and

f =
(ω − √3)

n

(1− ω ϕ)

ϕ′
ϕ
, Φ = − lnϕ, k =

t− n
2

. (A3)

Keeping ϕ′/ϕ will be useful. Consider the critical points.

A pole of order t−n+2
2 is at ϕ = 0 ⇒ ωp = 1/

√
3. Two

simple poles are at − 1√
3
, 2√

3
. The logarithm’s branch

point is at ϕ = 1, and since this is not at ωp = 1/
√

3,
what the contour must enclose, we can take any conve-
nient branch. Two simple saddle points are

(lnϕ)′ = 0 ⇒ ωs1/s2 =
1± i

√
2√

3
= e± i arctan

√
2.

The main contribution to this integral comes from sad-
dle points. A branch of the original integration contour
|√ϕ| = r can be chosen (via r) for use with steepest
descent paths. There are no issues with deforming the
contour, as no critical points are in the way, any branch
of the logarithm is good, and k = t−n

2 ∈ Z (Fig. 8).

-0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0
saddle point

saddle point

pole
pole

pole

Re@ΩD

Im@ΩD

FIG. 8. (Color online) Original integration contour (solid),
steepest descent paths (dashed and dotted), and critical
points.

In the steepest descent method decreasing orders of
contribution are computed mostly via expansion around
saddles. (There are theorems and formulas for the first–
order contribution, but here it is zero.) Around ωs we

have Φ(ω) = Φ(ωs) + 1
2!

[
Φ(ω)

]′′
ωs

(ω − ωs)2 + o(ω2), and

the usual change of variables Φ(ω)− Φ(ωs) = −y gives

ω = ∓b√y + ωs, b =

√
2[

lnϕ(ω)
]′′
ω=ωs

, (A4)

where y is zero at the saddle and real along the steep-

est descent path. We used
√

(lnϕ−1)
′′

= i
√(

lnϕ
)′′

.

11

Now y = ln
[
ϕ(ω)/ϕ(ωs)

]
and dy =

[
ϕ(ω)′/ϕ(ω)

]
dω,

and with ϕ(ω) = ϕ(ωs) e
y the integral (A2) and (A3)

becomes

I(k) ∼ ekΦ(ωs)

∮ [
ω(y)− √3

]n
1− ω(y)ϕ(ωs) ey

e−ky dy. (A5)

Now we can directly expand around y = 0 (to any order),
restricting integration to the line along the steepest de-
scent path, close to saddles. The signs in Eq. (A4) cor-
respond to the opposite directions from the saddle; we
label +/− as “R/L.” Substituting ω(y) and expanding,

I ∼ Aϕ−ks
∫ δ

0

(
1±B√y

)
e−ky dy, δ ∼ o(1), (A6)

A =

[
ωs −

√
3
]n

1− ωs ϕs
, B =

(
b ϕs

1− ωsϕs
+

b

ωs −
√

3
n

)
.

For compactness we use ϕs ≡ ϕ(ωs) = eiλs , with λs1 =
arctan [(9

√
3+8
√

2)/23], λs2 = arctan [(9
√

3−8
√

2)/23] − π.

Note that A(n) ∼ (
√

2)n, as ωs −
√

3 =
√

2eiγs , with
γs1/s2 = ∓ [arctan(1/

√
2)− π] ≡ ∓(γ − π), and we will

extract π later. The integral is dominated around ωs
(δ ≈ 0), so it can be formally extended, δ → ∞, and we
get I ∼ A

∫∞
0

(
1±B√y

)
e−ky dy. This results in

IR/L (k;n) ∼ An

(
1

k
±
√
π

2

Bn

k
√
k

)
ϕ(ωs)

−k. (A7)

Subtracting contributions along opposite directions, the
first non–zero order for either saddle is

Is ∼ (
√

2)n ei γsn (as + ds n)
e−iλsk

k
√
k
. (A8)

We broke up the AnBn term found in IR − IL, to show

the structure of n dependence, where as = b ϕs
√
π

(1−ωsϕs)2 and

ds = b
√
π

(1−ωsϕs)(ωs−
√

3)
are of order ∼ 1. Here we extract

π from γs, and will use eiγs = (−1)e∓iγ . Contributions
for saddles are subtracted (for consistency of ±√y direc-
tions) and, with cs,n ≡ as + dsn, we get Eq. (20).

The full expansion of the integral (A5) results in nested
sums of a Gamma function. This cannot capture the
peak of the amplitude though, and is not needed for our
asymptotic analysis, so we do not pursue it here.

Appendix B: Random walk on a semi-infinite line

For completeness here we provide the application of the
method developed in [42, 43] (based on Karlin-McGregor
spectral approach to random walks) to a classical walk
on a binary tree.

If P is a reversible Markov chain over a sample space
Ω, and π is a reversibility function (not necessarily a
probability distribution), then P is a self-adjoint operator
in `2(π), the space generated by the inner product

< f, g >π=
∑
x∈S

f(x)g(x)π(x)

induced by π. If P is tridiagonal operator (i.e. a nearest-
neighbor random walk) on Ω = {0, 1, 2, . . . }, then it must
have a simple spectrum, and is diagonalizable via orthog-
onal polynomials, as it was studied in the 1950s and 1960s
by Karlin and McGregor. There the extended eigenfunc-
tions Qj(λ) (Q0 ≡ 1) are orthogonal polynomials with
respect to a probability measure ψ and

pt(i, j) = πj

∫ 1

−1

λtQi(λ)Qj(λ)dψ(λ) ∀i, j ∈ Ω,

where πj (π0 = 1) is the reversibility measure of P . Con-
sider the following Markov chain

P =

0 1 0 0 . . .

q 0 p 0 . . .

0 q 0 p
. . .

...
...

. . .
. . .

. . .

 p > q.

Orthogonal polynomials are obtained via solving a simple
linear recursion: Q0 = 1, Q1 = λ, and

Qn(λ) = c1(λ)ρn1 (λ) + c2(λ)ρn2 (λ),

where ρ1(λ) =
λ+
√
λ2−4pq

2p and ρ2(λ) =
λ−
√
λ2−4pq

2p are

the roots of the characteristic equation for the recursion,
and c1 = ρ2−λ

ρ2−ρ1 and c2 = λ−ρ1
ρ2−ρ1 . Now π0 = 1 and

πn = pn−1

qn (n ≥ 1). Also, we observe that

|ρ2(λ)| >
√
q/p on [−1,−2

√
pq),

|ρ2(λ)| <
√
q/p on (2

√
pq, 1],

|ρ2(λ)| =
√
q/p on [−2

√
pq, 2
√
pq],

and ρ1ρ2 = q
p . The above will help us to identify the

point mass locations in the measure ψ since each point
mass in ψ occurs when

∑
k πkQ

2
k(λ) < ∞. Thus we

need to find all λ ∈ (2
√
pq, 1] such that c1(λ) = 0 and

all λ ∈ [−1,−2
√
pq) such that c2(λ) = 0. But there

are no such roots, as c1(−1) = 0 and c2(1) = 0, while
−1 6∈ (2

√
pq, 1] and 1 6∈ [−1,−2

√
pq). Thus there are

no point mass atoms in ψ, and the mass of ψ must be
continuously distributed inside [−2

√
pq, 2
√
pq]. In order

to find the density of ψ inside [−2
√
pq, 2
√
pq] we need to

find [e0, (P − sI)−1e0] for Im(s) 6= 0, i.e. the upper left
element in the resolvent of P .

Let (a0(s), a1(s), . . .)T = (P − sI)−1e0, then

−sa0 + a1 = 1, and qan−1 − san + pan+1 = 0

Thus an(s) = α1ρ1(s)n+α2ρ2(s)n, with α1 = a0(ρ2−s)−1
ρ2(s)−ρ1(s)

and α2 = 1−a0(ρ1−s)
ρ2(s)−ρ1(s) . Since (a0, a1, . . .) ∈ `2(C, π),

|an|
√
pn

qn
→ 0 as n→ +∞

12

Hence when |ρ1(s)| 6= |ρ2(s)|, either α1 = 0 or α2 = 0,
and therefore

a0(s) =
1|ρ1(s)|<

√
q
p

ρ1(s)− s
+
1|ρ2(s)|<

√
q
p

ρ2(s)− s
. (B1)

Also dψ(z) = ϕ(z)dz, where ϕ(z) is an atom-less density
function over [−2

√
pq, 2
√
pq], and

a0(s) =

∫ +2
√
pq

−2
√
pq

dψ(z)

z − s
=

∫ +2
√
pq

−2
√
pq

ϕ(z)dz

z − s
.

Next we use the following basic property of Cauchy trans-

forms Cf(s) = 1
2πi

∫
R
f(z)dz
z−s that can be derived using the

Cauchy integral formula, or similarly, an approximation
to the identity formula:

C+ − C− = I. (B2)

Observe that the curve in the integral need not be in R
for C+ − C− = I to hold. Here

C+f(z) = lim
s→z: Im(s)>0

Cf(s), and

C−f(z) = lim
s→z: Im(s)<0

Cf(s),

for all z ∈ R. The relation (B2) implies

ϕ(x) =
1

2πi

 lim
s=x+iε :
ε→0+

a0(s)− lim
s=x−iε :
ε→0+

a0(s)

 ,

for all x ∈ (−2
√
pq, 2
√
pq). Recalling (B1), we express

ϕ as ϕ(x) = ρ1(x)−ρ2(x)
2πi(ρ1(x)−x)(ρ2(x)−x) for x ∈ (−2

√
pq, 2
√
pq),

which in turn simplifies to

ϕ(x) =

{ √
4pq−x2

2πq(1−x2) if x ∈ (−2
√
pq, 2
√
pq),

0 otherwise.

Here ϕ(x) always integrates to 1 over (−2
√
pq, 2
√
pq).

Now

pt(n, 0) =

∫ +2
√
pq

−2
√
pq

λtQn(λ)ϕ(λ)dλ

=

∫ +2
√
pq

−2
√
pq

λt(c1ρ
n
1 + c2ρ

n
2)

(ρ1 − ρ2) dλ

2πi(ρ1 − λ)(ρ2 − λ)
,

and therefore, since c1 = ρ2−λ
ρ2−ρ1 and c2 = λ−ρ1

ρ2−ρ1 ,

pt(n, 0) =
1

2πi

∫ +2
√
pq

−2
√
pq

λt
(

ρn2
ρ2 − λ

− ρn1
ρ1 − λ

)
dλ. (B3)

This can be treated as a complex integral, for example,
with steepest descent. But one can observe directly in
Eq. (B3) that the tail of pt(n, 0) decays as (2

√
pq)t when

t → +∞. Thus, using p = 2/3 and q = 1/3 for the
classical symmetric walk on the semi-infinite binary tree,
the decay rate will be (2

√
2/3)t, giving us the exponen-

tial asymptotics. The probability integral (B3) can be
efficiently evaluated numerically (see Fig. 6).

[1] D. A. Meyer, J. Stat. Phys. 85, 551 (1996).
[2] Y. Shikano, K. Chisaki, E. Segawa, and N. Konno, Phys.

Rev. A 81, 062129 (2010).
[3] X. Martin, D. O’Connor, and R. D. Sorkin, Phys. Rev.

D 71, 024029 (2005).
[4] O. Mülken, A. Blumen, T. Amthor, C. Giese, M. Reetz-

Lamour, and M. Weidemüller, Phys. Rev. Lett. 99,
090601 (2007); A. Thilagam, Phys. Rev. A 81, 032309
(2010).

[5] T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler,
Phys. Rev. A 82, 033429 (2010).

[6] O. Mülken and A. Blumen, Phys. Rept. 502, 37 (2011).
[7] A. M. Childs, Phys. Rev. Lett. 102, 180501 (2009).
[8] E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 (1998).
[9] J. Watrous, J. Comput. Syst. Sci. 62, 376 (2001).

[10] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev.
A 48, 1687 (1993).

[11] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and
J. Watrous, in Proceedings of the 33rd Annual ACM Sym-
posium on Theory of Computation, STOC ’01 (ACM,
New York, 2001) pp. 37–49.

[12] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani,
in Proceedings of the 33rd Annual ACM Symposium on
Theory of Computation, STOC ’01 (ACM, New York,
2001) pp. 50–59.

[13] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann,

and D. A. Spielman, in Proceedings of the 35th Annual
ACM Symposium on Theory of Computation, STOC ’03
(ACM, New York, 2003) pp. 59–68.

[14] A. M. Childs, L. J. Schulman, and U. V. Vazirani, in
Foundations of Computer Science, 2007. FOCS ’07. 48th
Annual IEEE Symposium on (2007) pp. 395 –404.

[15] C. A. Ryan, M. Laforest, J. C. Boileau, and
R. Laflamme, Phys. Rev. A 72, 062317 (2005);
H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert,
M. Enderlein, T. Huber, and T. Schaetz, Phys. Rev.
Lett. 103, 090504 (2009); M. Karski, L. Förster, J.-M.
Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera,
Science 325, 174 (2009); A. Schreiber, K. N. Cassemiro,
V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex,
and C. Silberhorn, Phys. Rev. Lett. 104, 050502 (2010);
F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano,
R. Blatt, and C. F. Roos, Phys. Rev. Lett. 104, 100503
(2010); M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kas-
sal, A. Aspuru-Guzik, and A. G. White, Phys. Rev.
Lett. 104, 153602 (2010); A. Peruzzo et al., Science 329,
1500 (2010); A. Schreiber, K. N. Cassemiro, V. Potoček,
A. Gábris, I. Jex, and C. Silberhorn, Phys. Rev. Lett.
106, 180403 (2011).

[16] J. Kempe, Contemp. Phys. 44, 307 (2003).
[17] A. M. Childs, Commun. Math. Phys. 294, 581 (2009).
[18] M. Szegedy, in Proceedings of the 45th Annual IEEE

http://dx.doi.org/10.1007/BF02199356
http://dx.doi.org/ 10.1103/PhysRevA.81.062129
http://dx.doi.org/ 10.1103/PhysRevA.81.062129
http://dx.doi.org/10.1103/PhysRevD.71.024029
http://dx.doi.org/10.1103/PhysRevD.71.024029
http://dx.doi.org/ 10.1103/PhysRevLett.99.090601
http://dx.doi.org/ 10.1103/PhysRevLett.99.090601
http://dx.doi.org/10.1103/PhysRevA.81.032309
http://dx.doi.org/10.1103/PhysRevA.81.032309
http://dx.doi.org/10.1103/PhysRevA.82.033429
http://dx.doi.org/10.1016/j.physrep.2011.01.002
http://dx.doi.org/10.1103/PhysRevLett.102.180501
http://dx.doi.org/10.1103/PhysRevA.58.915
http://dx.doi.org/DOI: 10.1006/jcss.2000.1732
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://doi.acm.org/10.1145/380752.380757
http://doi.acm.org/10.1145/380752.380757
http://doi.acm.org/10.1145/380752.380758
http://doi.acm.org/10.1145/380752.380758
http://dx.doi.org/ 10.1145/780542.780552
http://dx.doi.org/ 10.1145/780542.780552
http://dx.doi.org/10.1109/FOCS.2007.18
http://dx.doi.org/10.1109/FOCS.2007.18
http://dx.doi.org/10.1103/PhysRevA.72.062317
http://dx.doi.org/ 10.1103/PhysRevLett.103.090504
http://dx.doi.org/ 10.1103/PhysRevLett.103.090504
http://dx.doi.org/10.1126/science.1174436
http://dx.doi.org/10.1103/PhysRevLett.104.050502
http://dx.doi.org/ 10.1103/PhysRevLett.104.100503
http://dx.doi.org/ 10.1103/PhysRevLett.104.100503
http://dx.doi.org/ 10.1103/PhysRevLett.104.153602
http://dx.doi.org/ 10.1103/PhysRevLett.104.153602
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/ 10.1103/PhysRevLett.106.180403
http://dx.doi.org/ 10.1103/PhysRevLett.106.180403
http://dx.doi.org/10.1007/s00220-009-0930-1
http://dx.doi.org/10.1109/FOCS.2004.53

13

Symposium on Foundations of Computer Science (IEEE
Computer Society, Washington, DC, 2004) pp. 32–41.

[19] B. Tregenna, W. Flanagan, R. Maile, and V. Kendon,
New J. Phys. 5, 83 (2003).

[20] A. Romanelli, A. Schifino, R. Siri, G. Abal, A. Auyuanet,
and R. Donangelo, Physica A 338, 395 (2004).

[21] C. M. Chandrashekar, R. Srikanth, and R. Laflamme,
Phys. Rev. A 77, 032326 (2008).

[22] P. Xue, B. C. Sanders, and D. Leibfried, Phys. Rev. Lett.
103, 183602 (2009).

[23] D. A. Meyer and H. Blumer, J. Stat. Phys. 107, 225
(2002).

[24] N. Konno, Stochastic Models 25, 28 (2009).
[25] F. W. Strauch, Phys. Rev. A 74, 030301 (2006).
[26] This representation is not explored in the literature.
[27] T. A. Brun, H. A. Carteret, and A. Ambainis, Phys. Rev.

A 67, 052317 (2003); Phys. Rev. A 67, 032304 (2003).
[28] J. Koš́ık, V. Bužek, and M. Hillery, Phys. Rev. A 74,

022310 (2006).
[29] M. Mc Gettrick, Quantum Inf. Comput. 10, 0509 (2010);

N. Konno and T. Machida, 10, 1004 (2010).
[30] M. Hillery, J. Bergou, and E. Feldman, Phys. Rev. A

68, 032314 (2003).
[31] E. Feldman and M. Hillery, Phys. Lett. A 324, 277

(2004).
[32] D. Reitzner, M. Hillery, E. Feldman, and V. Bužek, Phys.

Rev. A 79, 012323 (2009).
[33] M. Hillery, D. Reitzner, and V. Bužek, Phys. Rev. A 81,

062324 (2010).

[34] E. Feldman, M. Hillery, H.-W. Lee, D. Reitzner,
H. Zheng, and V. Bužek, Phys. Rev. A 82, 040301
(2010).

[35] Uj implements (one-step) memory by acting on the origi-
nating site, it can be interpreted as a scattering operator
on j, and it mixes components (à la coined walks).

[36] For instance: E. Farhi, J. Goldstone, and S. Gutmann,
Theory Comput. 4, 169 (2008); Y.-Y. Shi, L.-M. Duan,
and G. Vidal, Phys. Rev. A 74, 022320 (2006); P. Reben-
trost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-
Guzik, New J. Phys. 11, 033003 (2009); P. Silvi, V. Gio-
vannetti, S. Montangero, M. Rizzi, J. I. Cirac, and
R. Fazio, Phys. Rev. A 81, 062335 (2010).

[37] For a mixed state at j, Uj acts on each originating state,

ÛX̂ |ψ〉(j) = ÛX̂
∑

i∈S cij |i〉⊗|j〉 =
∑

i∈S cij |j〉 ⊗ Uj |i〉,
fully specifying propagation over site j. We only need
the evolution step of a pure state for this calculation.

[38] P. A. MacMahon, Combinatorial Analysis, Vols. 1 and 2
(Cambridge University Press, 1915).

[39] M. Štefaňák, I. Jex, and T. Kiss, Phys. Rev. Lett. 100,
020501 (2008); M. Štefaňák, T. Kiss, and I. Jex, Phys.
Rev. A 78, 032306 (2008).

[40] M. Cantero, L. Moral, F. A. Grünbaum, and L. Velzquez,
Commun. Pure Appl. Math. 63, 464 (2010).

[41] R. Wong, Asumptotic Approximations of Integrals (Aca-
demic Press, 1989); N. Bleistein and R. A. Handelsman,
Asymptotic expansions of integrals (Dover, 1986).

[42] Y. Kovchegov, Elect. Comm. in Probab. 14, 90 (2009).
[43] Y. Kovchegov, Elect. Comm. in Probab. 15, 59 (2010).

http://dx.doi.org/10.1109/FOCS.2004.53
http://dx.doi.org/ 10.1088/1367-2630/5/1/383
http://dx.doi.org/ 10.1016/j.physa.2004.02.061
http://dx.doi.org/10.1103/PhysRevA.77.032326
http://dx.doi.org/10.1103/PhysRevLett.103.183602
http://dx.doi.org/10.1103/PhysRevLett.103.183602
http://dx.doi.org/10.1007/BF02199356
http://dx.doi.org/10.1007/BF02199356
http://dx.doi.org/10.1103/PhysRevA.74.030301
http://dx.doi.org/10.1103/PhysRevA.67.052317
http://dx.doi.org/10.1103/PhysRevA.67.052317
http://dx.doi.org/10.1103/PhysRevA.67.032304
http://dx.doi.org/10.1103/PhysRevA.74.022310
http://dx.doi.org/10.1103/PhysRevA.74.022310
http://dx.doi.org/10.1103/PhysRevA.68.032314
http://dx.doi.org/10.1103/PhysRevA.68.032314
http://dx.doi.org/10.1016/j.physleta.2004.03.005
http://dx.doi.org/10.1016/j.physleta.2004.03.005
http://dx.doi.org/10.1103/PhysRevA.79.012323
http://dx.doi.org/10.1103/PhysRevA.79.012323
http://dx.doi.org/ 10.1103/PhysRevA.81.062324
http://dx.doi.org/ 10.1103/PhysRevA.81.062324
http://dx.doi.org/10.1103/PhysRevA.82.040301
http://dx.doi.org/10.1103/PhysRevA.82.040301
http://dx.doi.org/10.4086/toc.2008.v004a008
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/ 10.1088/1367-2630/11/3/033003
http://dx.doi.org/ 10.1103/PhysRevA.81.062335
http://dx.doi.org/10.1103/PhysRevLett.100.020501
http://dx.doi.org/10.1103/PhysRevLett.100.020501
http://dx.doi.org/10.1103/PhysRevA.78.032306
http://dx.doi.org/10.1103/PhysRevA.78.032306
http://dx.doi.org/10.1002/cpa.20312
http://www.math.washington.edu/~ejpecp/ECP/viewarticle.php?id=2078&layout=abstract
http://www.math.washington.edu/~ejpecp/ECP/viewarticle.php?id=2171&layout=abstract

