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As was demonstrated in earlier studies, turbulence caiit iesa negative contribution to the effective mean magnetic
pressure, which, in turn, can cause a large-scale ingtakilithis study, hydromagnetic mean-field modelling isfpened

for an isothermally stratified layer in the presence of azwrial magnetic field, and the negative effective magnetic
pressure instability (NEMPI) is comprehensively inveateyl. It is shown that, if the effect of turbulence on the mean
magnetic tension force vanishes, which is consistent veisults from direct numerical simulations of forced turinaie,

the fastest growing eigenmodes of NEMPI are two-dimensidrige growth rate is found to be sensitive to details of the
dependence of the effective mean magnetic pressure on e magnetic field. A fit formula is proposed that gives the
growth rate as a function of turbulent kinematic viscostitypulent magnetic diffusivity, mean magnetic field strimg
and the degree of stratification. The formation of sunspotssmlar active regions is discussed as a possible applicati
of NEMPI.
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1 Introduction scale magnetic flux structures and perhaps even sunspots
and active regions.

The concept of turbulent viscosity is often used in astro- Recently, direct numerical simulations (DNS) of both
physical and other applications in recognition of the faainstratified and stratified forced turbulence (Brandenbtirg
that the microscopic viscosity is far too small to be releévaral. 2010, 2011; hereafter referred to as BKR and BKKR,
on the length scales under consideration. Turbulent viscagspectively) have substantiated this idea and have demon-
ity is the simplest parameterization of the Reynolds stresgrated that the effective magnetic pressure can indeed
tensoru;u;, whereu = U — U is the velocity fluctuation change sign. Similar results have now also been obtained
about a suitably defined average, denoted here by an ovier-turbulent convection (Kapyla et al. 2011a). Thesequap
bar. Turbulent viscosity is by far not the only contributiorhave provided mean-field calculations illustrating thatrén
to the Reynolds stress tensor. is a negative effective magnetic pressure instability €her

In addition to hydrodynamic contributions such as the after referred to as NEMPI) when there is sufficient density

effect (Rudiger 1980, 1989), which is relevant to explaini Stratification.
stellar differential rotation (Rudiger & Hollerbach 2004 This instability is the convective type instability as
and the anisotropic kinetic alpha effect (Frisch et al. J987vell as interchange instability in plasma (Tserkovnikov
which provides an important test case in mean-field hydr@960; Priest 1982) or magnetic buoyancy instability (Parke
dynamics (Brandenburg & von Rekowski 2001; Courvoisiel966). On the other hand, the source of free energy of
et al. 2010), there are magnetic contributions as well. ONEMPI is provided by the small-scale turbulence, while the
can think of them as a magnetic feedback on the hydrodiyee energy in interchange or magnetic buoyancy instabil-
namic stress tensor (Radler 1974; Rudiger 1974) or, esfig- is drawn from the gravitational field. The mechanism
cially when magnetic fluctuations are also considered, ad NEMPI works even under isothermal conditions when
mean-field contribution to the turbulent Lorentz force.  entropy evolution is ignored and an isothermal equation of
Work by Rudiger et al. (1986) suggested that the totSfate is used. Three-d_ime_nsional calculations have shown
magnetic tension force that includes the effects of fluctdPat the mean magnetic field develops structure along the
ations should be reduced and might even change sign.dkection of the field (BKR). However, while the mean-field
similar result was obtained by Kleeorin et al. (1989, 199dj@lculations have illustrated the nature of the instabifio
using spectrat approach who also found another effect opyStematic survey of solutions has yet been attempted.
a reversal of the effective magnetic pressure term; see also The purpose of this paper is to clarify some still puzzling
Kleeorin & Rogachevskii (1994) and Kleeorin et al. (1993aspects concerning NEMPI. This is particularly important
1996). Rogachevskii & Kleeorin (2007) argued that in turin view of the fact that no clear evidence of NEMPI has yet
bulent convection this can lead to the formation of largeseen seen in DNS (BKKR). In other words, although DNS
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have shown that the effective mean magnetic pressure aimensional modes (BKR). Before we begin addressing the
change sign, and although we know from mean-field modelarious points, we discuss first the mean-field model and
that this should lead to the formation of structures near thern then to the points raised above.

surface, this type of structure formation has not been seen

in DNS. .
2 Mean-field model
On the other hand, some type of structure formation has

recently been reported in Large-Eddy Simulations (LES), §§ view of future verifications of NEMPI with DNS, it is
one wonders whether this might be an indication of NEMPhgsential to be able to reduce the essential physics to a
We have here in mind the radiation magneto-convectigfinimum. We will therefore not make any attempt to con-
simulations of Kitiashvili et al. (2010), in which one seeg;iger other aspects that would make the model more realistic
the formation of whirlpool-like magnetic structures. Howsiih respect to the Sun. Given that NEMPI works even un-
ever, even in the absence of magnetic fields, one finds gy jsothermal conditions (BKKR), we adopt an isothermal
f_ormatpn qf whirlpools, although this requires rapid FOtagquation of state where the mean presgLigelinear in the
tion (Kapyla et al. 2011b). mean density, with = pc2, ande¢s = const being the
Most relevantto NEMPI is perhaps the work of Tao et aisothermal sound speed. We solve the evolution equations
(1998), who also considered magneto-convection and findé mean velocityl7, mean density, and mean vector po-
horizontal segregation into magnetized and non-magrktiziential A, in the form
regions. The size of the individual regions is such that

they encompass several turbulent eddies. This phenomenon— = —U - VU — 2VInp+g+ Fu + Fx, (1)
might therefore well be associated with an effect that could

. £ 8_ . .
also be modelled in terms of mean-field theory. However, 90 _ 7. V5-5v.T, @)

before we can make such an association, we need to find ¢

out more about the properties of NEMPI. In particular, we

need to know what is the optimal magnetic field strength, ——-

X - : ot

what are the requirements or restrictions in the turbulent v o

locity, and, finally, how much density stratification is nedd whereFy; is given by

to make NEMPI work. - - ﬁ?M — —%V[(l _ qp)EQ] + B-V [(1 _ QS)E} ’(4)
To connect the aforementioned requirements to DNS

. - ahd

we need to have a meaningful parameterization of the tur-— o L

bulence effects. The work done so far has been focussing Fx = (14 + v) (VQU +VV.U+ 2SV1nﬁ) (5)

on measuring a redut_:t|0n of the turbulent pressure and g’the total (turbulent plus microscopic) viscous forcerd{e

fective mean mqgnetlc pressure as a function of thg lo ZIJ _ %(UU YU — %%V .T is the traceless rate of

mean magnetic field strength. The shape of the resulting ' '

) ; rain tensor of the mean flow. As in earlier work (BKR,
pendence of the effective mean magnetic pressure on T@RKR), we approximatey, andg. by simple profiles that
mean magnetic field has been matched to a specific fit f P

YFe only functions of the ratié = |B|/B.,, i.€.,
mula that can be characterized by two fit parameters that, y 6= 1Bl/Beq

in turn, can be linked to the minimum effective mean mag- 4 (8) = gio[l — (2/7) arctan(3*/53)], (6)
netic pressure and the critical field strength above whieh thyhere » stands for subscripts p and s, respectively. The
effect is suppressed. However, there have been indicatiqfctionsq, andg, quantify the impact of the mean mag-

that this parameterization is not unique and that differefktic field on the effective pressure and tension forces, re-
combinations of the two fit parameters can result in similajpectively.

values of minimum effective pressure and the critical field A initial condition. we assume a hydrostatic stratifica-
strength. The question therefore arises whether this degggn, with 5(2) = poexp(—z/H,), whereH, = ¢2/g is
’ S

eracy is important for the properties of NEMPI. the scale height in a domain of siZe x L, x L., where
Finally, we mentioned already the fact that NEMPI is-1, /2 < z < L,/2. We normally usd., = L, = L and,

capable of exciting three-dimensional structures thatvshainless noted otherwise, alég = L. In most of the cases

variation along the direction of the mean magnetic fieldve useL, = L, = L. = L. We add a small perturbation to

This would raise the worry that the two-dimensional rethe velocity field. We allow for the presence of an imposed

sults presented so far may not reflect the properties of tfield in they direction, By = (0, By, 0). The total field is

fastest growing mode and may therefore not be relevantttten written as

describing NEMPI. However, it turns out that this is notthe — —

case, bec%use the degree to which three-dimensional modesB =Bo+ Vx4, ()

are excited depends on the sign of one of the turbulenge the departure from the imposed field is expressed in terms

parameters, namely the term characterizing turbulence éf-the mean magnetic vector potentil

fects on the magnetic tension force, and that simulations On the upper and lower boundaries we adopt stress-free

indicate that this sign is not favorable for exciting threeboundary conditions for velocity, i.él, , = U, . = U, =

=UxB—(ni+n)J, )
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Fig.1 Visualization of B, at the periphery of the computational domain near the entiekinematic growth phase.
Note the change of the field pattern with increasing valuegof=0, 5, 10, and 20 from left to right).

0, and a perfect conductor boundary condition for the ma®KKR and also Kapyla et al. (2011b) found from simula-
netic field, i.e.A, = A, = A, . = 0. Here, commas de- tions thatg,, =~ 0. In that case, the characteristic length
note partial differentiation. No boundary condition foeth scale along the direction of the field becomes infinite and the
density is required. All computations have been carried oaalculation essentially two-dimensional. Converselyewh
with the FenciL Copdl. studying NEMPI in two dimensions, changing the value of

Our model is characterized by the following set of ingso has no effect on structure formation and the growth rate;
put parameters. There are four parameters characterizBRg Tabl&]1l. However, it is now clear that this is an artifact
the hydrostatic equilibrium stratification, namejyc?, po,  Of restricting the solutions to be two-dimensional.

and L. The remaining parameters are the Alfvén speed at
top

the surfacep,® = By/./Propiio, turbulent viscosity and 3.2 Degeneracy in they, fit formula
magnetic diffusivity, as well as the parameteggg and 5, . P

Here, piop = poexp(—ziop/H,) is the density at the sur- We mentioned in the introduction that recent attempts to de-
face, which is usually at = 2o, = L. /2. termineg,,o from simulations faced the difficulty that the fit
formula possesses a degeneracy in that we can obtain a sim-
ilarly looking dependence of the effective mean magnetic
pressuréPes (8) = [1 — q,(B)] B2 over a wide range of val-

ues ofgy, by adjusting the value @i, correspondingly. The
core of the problem becomes clear from Fijy. 3, where we

Earlier work has suggested that the eigenmodes of NEMPPt the functionP.q(5) in the lower panel anehin(Pes)
can be three-dimensional (BKR). This could make two/€rSUSfeit in the upper panel. The paramef&t, is de-
dimensional calculations questionable if the first excitefined by the conditionPes (feric) = 0. It is evident that
mode were indeed the fastest growing one. However, it turtidl(Pesr) becomes more negative &, decreases and
out that the wavelength of the eigenmode in the direction g0 Increases. However, for a given value @f;, the fit
the field increases ag decreases. In BKR, where threeformula cannot produce a minimum Bt that is below a
dimensional ¢-dependent) solutions to NEMPI were firstCertain value. This minimum value is attained ggs — oo,
reported,g, was chosen to be arourid, and the fastest Ut even the graphs fag,o = 50 or 20 lie quite close to-
growing mode was indeed three-dimensional. In Fig. 1 w@ether. Conversely, for a given valueiain(Peg), there is
show that the effective wavenumber of the variation of th@ Minimum value ofic;; below which there is no solution.
field in they direction decreases with decreasing values &7 min(Perr) = —0.1, for example, there are no values of
g-. This is shown quantitatively in Fi§l 2, where we plotivo for e below about 0.3, while between 0.30 and 0.35

the dependence of the typical value of the field-alignel® Same value ofiin(Per) can be attained fay,o between
wavenumberk,, on the value ofi. Here,k, is evaluated 20 andco. This is shown more clearly in the second panel of

in a layer near the surface. For normalization purposes, we

define the lowest wavenumber in the computational doma.i%ble 1 Comparison of growth rates for different values

ask, = _27r/L. _ _ of L, andgs, including a two-dimensional (2D) simulation
We find that the typical value df, grows approximately (L, — )
Y .

linearly with increasing values @f,. As an approximate fit
formula we can uskg/k% ~ 1.3 gs. In addition, we find
that the growth rate of the instabilitk, grows withgy, ap- Ly ¢=0 ¢ =30
proximately linearly, oncegs, exceeds a value of around 5. sD L 00124  0.2070

fe eimif 3D &L 0.0137
The fact thatk, — 0 asqgqo — 0 is significant, because oD oo 00141 00141

3 Results

3.1 Two- and three-dimensional solutions

1 |http://mww.pencil-code.googlecode.com
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Fig.2 Dependence of, on ¢ (upper panel), together
with the corresponding growth rade(lower panel). Here) 0.0 0-1 0% B 03 04 0-5
is normalized by\; = g/cs.

Fig.3  Minimum effective magnetic pressure versiis,

for 5 values ofg,y (upper panel), and the corresponding
graphs ofP.g(8) for which P.g = —0.1. For two values
of gp0 (5 and 50) the correspondence betwggs, and the
zero point of P (3) for curves withmin(Peg) = —0.1 is
ghown by vertical lines.

Fig.[3, where we ploP.g(3) for different values of;,, and
values of3.,i that all cross the linenin(P.g) = —0.1 in
the upper panel of this figure. This shows that, whgnis
10 or larger, the graph &.¢(3) becomes quite insensitive
to the exact value of,, and that the same graphs can b
obtained for a set of different combinationsggh andg,.

In the family of similarly looking solutions, the optimal wherek, andk, are inverse length scales quantifying the
value O_pr 1S fOL}”d to decrease with increasing values aéffects of turbulent viscosity and turbulent magneticiff
dp0, @S is shown in the upper panel of Fiy. 4. However, evejiity,  is a function of the Alfvén speed at the tag;”,
though the graphs of,(5) are rather similar, mean-field the inverse scale heiglff, ' = g/c2, and other parameters
simulation show that the resulting growth rates are se®sitigescribing the functional form af,.
to the value ofy, in the parameter regime whef#/ B., is We now need to determine the various unknowns. We
small. An alternative would be to use a third observation Begin by determining,, and k., by varying either only,
fix the degeneracy of the model. One such parameter colf iy 1, at a time. In this way we obtain a linear fit for
be the position of the minimum @.g, i.e., the valu&min,  the growth rateA(n;) = const — ntk%, giving usk% as

for which Pegr (fmin) = min(Per) is obeyed. the slope of this graph; see the upper and lower panels of
Fig.[3 for the corresponding results foy andk,, respec-
3.3 Onset condition of NEMPI tively. It turns out that, ~ 0.77k; andk, ~ 1.1k;. The

) ] o ) surprising result is that, andk, are different from each
With a given prescription of,,(5), assuming hergso = 0,  giher by a factor of abou¢2. This was not the case in the
we can now compute two-dimensional mean-field modelgyyjier work of Kemel et al. (2011) using less accurate data.
Our goal is to obtain a simple description that can tell Uphe ey data seem sufficiently accurate so that this discrep-
how large the growth rate of the instability is, and what thg, oy cannot easily be explained by numerical errors. More
_cr|t|cal condition fort_he onset qf_the mstab_lllty is. Notuch plausibly, this discrepancy could be explained by a regidua
is known about the linear stability properties of NEMPI, S‘aependence ab on either; or 7, or both. Note, however
we have to rely on numerical determinations of the growify 5t the turbulent magnetic Prandtl number is of order unity

rates for different wavelengths in the different directda (Kleeorin & Rogachevskii 1994; Yousef et al. 2003), so this
obtain an approximate representation of the dispersion I§icertainty should be of no practical relevance.

lation. Earlier work of Kemel et al. (2011) has suggested a Accepting now the fit parametets andk, as they have

relation of the form been measured, we can proceed to determining the depen-
A= ®(vP, g/c2, apo, Berit) — ik — miky, (8) dence ofd onv}?, H,, and other fit physical input param-
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0.01 0.10 negative slope 1.2 of the upper panel.
B,/Beq

Fig.4  Dependence of the fit parametBy, on g0, the
corresponding growth ratg, and the dependence afon
B,,. Here,\ is normalized by\o = g/cs.

eters. We assume that this relation is multiplicative andl fin = ‘ 3

first the dependence af{’” by plotting® = AvikD ks 0.01 ) 0.10
againstvffp. It turns out that this is nearly a linear relation- !
ship. Thus, keeping all other parameters unchanged, we find o.10¢
® as a function ofvffp; see the first panel of Fif] 6. Next, :
we find® as a function ofj/c2, which results in an expo- *
nential relationship, whera @ is found to increase linearly

with g/c2 = H,''; see the middle panel of Figl 6. Thus, we ~ °0'¢

can writeln ® « 1/k,H,, wherek, is a new fit parameter. 0.6 0.8 1.0 12 14 18

Here,k, ~ 0.5 k;. Finally, we show in the third panel of g/

Fig.[G the dependence &f on the reconstructed fit, o010k i
(I)ﬁt - vf\c)pkA eXp(l/kaP) <P(QP07 ﬂp)v (9) o E o =5 ©

whereka ~ 0.26 k; gives the best fit. This combined fit ap- I s

pears reasonably accurate for most of the parameter regime, 0-01¢ ¢ 3

substantiating thus the general validity of the fit formulae 0.01 0.10

@)_@) Sy (va 9/cF)

1 Some commerts sbout e sytem s a1 et Hh.6  Dependence of on 15 (upper paneDsc

0 (middle panel), and the combined @#(v", g/c2) (lower

calculations with finitey extent, the value ofL, affects
the growth rates only slightly; see Talile 1. On the othd?
hand, doubling the: extent yields two pairs of rolls, but
at a slightly lower growth rate, indicating that our startlar
value of L, is still not quite in the asymptotic regime. Ex-does not change the results at all, but extending it in the up-
tending the domain downward (in the negativdirection) ward direction (positivez direction) changes the value of

nel).
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fully be improved further with future simulations. This for

mula can also be useful in connection with analytic esti-

mates concerning the regimes when NEMPI is expected in

DNS or under other more realistic circumstances.

4 Conclusions
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