
ar
X

iv
:1

10
7.

27
52

v1
  [

as
tr

o-
ph

.S
R

]  
14

 J
ul

 2
01

1
Astron. Nachr. / AN000, No. 00, 1 – 6 (0000) /DOI please set DOI!

Properties of the negative effective magnetic pressure instability

K. Kemel1,2, A. Brandenburg1,2, N. Kleeorin3, I. Rogachevskii3

1 NORDITA, AlbaNova University Center, Roslagstullsbacken23, SE 10691 Stockholm, Sweden
2 Department of Astronomy, AlbaNova University Center, Stockholm University, SE 10691 Stockholm, Sweden
3 Department of Mechanical Engineering, The Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel

July 15, 2011, Revision: 1.42

Key words magnetohydrodynamics (MHD) – instabilities – turbulence

As was demonstrated in earlier studies, turbulence can result in a negative contribution to the effective mean magnetic
pressure, which, in turn, can cause a large-scale instability. In this study, hydromagnetic mean-field modelling is performed
for an isothermally stratified layer in the presence of a horizontal magnetic field, and the negative effective magnetic
pressure instability (NEMPI) is comprehensively investigated. It is shown that, if the effect of turbulence on the mean
magnetic tension force vanishes, which is consistent with results from direct numerical simulations of forced turbulence,
the fastest growing eigenmodes of NEMPI are two-dimensional. The growth rate is found to be sensitive to details of the
dependence of the effective mean magnetic pressure on the mean magnetic field. A fit formula is proposed that gives the
growth rate as a function of turbulent kinematic viscosity,turbulent magnetic diffusivity, mean magnetic field strength,
and the degree of stratification. The formation of sunspots and solar active regions is discussed as a possible application
of NEMPI.
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1 Introduction

The concept of turbulent viscosity is often used in astro-
physical and other applications in recognition of the fact
that the microscopic viscosity is far too small to be relevant
on the length scales under consideration. Turbulent viscos-
ity is the simplest parameterization of the Reynolds stress
tensor,uiuj, whereu = U − U is the velocity fluctuation
about a suitably defined average, denoted here by an over-
bar. Turbulent viscosity is by far not the only contribution
to the Reynolds stress tensor.

In addition to hydrodynamic contributions such as theΛ
effect (Rüdiger 1980, 1989), which is relevant to explaining
stellar differential rotation (Rüdiger & Hollerbach 2004),
and the anisotropic kinetic alpha effect (Frisch et al. 1987),
which provides an important test case in mean-field hydro-
dynamics (Brandenburg & von Rekowski 2001; Courvoisier
et al. 2010), there are magnetic contributions as well. One
can think of them as a magnetic feedback on the hydrody-
namic stress tensor (Rädler 1974; Rüdiger 1974) or, espe-
cially when magnetic fluctuations are also considered, as a
mean-field contribution to the turbulent Lorentz force.

Work by Rüdiger et al. (1986) suggested that the total
magnetic tension force that includes the effects of fluctu-
ations should be reduced and might even change sign. A
similar result was obtained by Kleeorin et al. (1989, 1990)
using spectralτ approach who also found another effect of
a reversal of the effective magnetic pressure term; see also
Kleeorin & Rogachevskii (1994) and Kleeorin et al. (1993,
1996). Rogachevskii & Kleeorin (2007) argued that in tur-
bulent convection this can lead to the formation of large-

scale magnetic flux structures and perhaps even sunspots
and active regions.

Recently, direct numerical simulations (DNS) of both
unstratified and stratified forced turbulence (Brandenburget
al. 2010, 2011; hereafter referred to as BKR and BKKR,
respectively) have substantiated this idea and have demon-
strated that the effective magnetic pressure can indeed
change sign. Similar results have now also been obtained
for turbulent convection (Käpylä et al. 2011a). These papers
have provided mean-field calculations illustrating that there
is a negative effective magnetic pressure instability (here-
after referred to as NEMPI) when there is sufficient density
stratification.

This instability is the convective type instability as
well as interchange instability in plasma (Tserkovnikov
1960; Priest 1982) or magnetic buoyancy instability (Parker
1966). On the other hand, the source of free energy of
NEMPI is provided by the small-scale turbulence, while the
free energy in interchange or magnetic buoyancy instabil-
ity is drawn from the gravitational field. The mechanism
of NEMPI works even under isothermal conditions when
entropy evolution is ignored and an isothermal equation of
state is used. Three-dimensional calculations have shown
that the mean magnetic field develops structure along the
direction of the field (BKR). However, while the mean-field
calculations have illustrated the nature of the instability, no
systematic survey of solutions has yet been attempted.

The purpose of this paper is to clarify some still puzzling
aspects concerning NEMPI. This is particularly important
in view of the fact that no clear evidence of NEMPI has yet
been seen in DNS (BKKR). In other words, although DNS
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2 K. Kemel et al.: Negative effective magnetic pressure instability

have shown that the effective mean magnetic pressure can
change sign, and although we know from mean-field models
that this should lead to the formation of structures near the
surface, this type of structure formation has not been seen
in DNS.

On the other hand, some type of structure formation has
recently been reported in Large-Eddy Simulations (LES), so
one wonders whether this might be an indication of NEMPI.
We have here in mind the radiation magneto-convection
simulations of Kitiashvili et al. (2010), in which one sees
the formation of whirlpool-like magnetic structures. How-
ever, even in the absence of magnetic fields, one finds the
formation of whirlpools, although this requires rapid rota-
tion (Käpylä et al. 2011b).

Most relevant to NEMPI is perhaps the work of Tao et al.
(1998), who also considered magneto-convection and find a
horizontal segregation into magnetized and non-magnetized
regions. The size of the individual regions is such that
they encompass several turbulent eddies. This phenomenon
might therefore well be associated with an effect that could
also be modelled in terms of mean-field theory. However,
before we can make such an association, we need to find
out more about the properties of NEMPI. In particular, we
need to know what is the optimal magnetic field strength,
what are the requirements or restrictions in the turbulent ve-
locity, and, finally, how much density stratification is needed
to make NEMPI work.

To connect the aforementioned requirements to DNS,
we need to have a meaningful parameterization of the tur-
bulence effects. The work done so far has been focussing
on measuring a reduction of the turbulent pressure and ef-
fective mean magnetic pressure as a function of the local
mean magnetic field strength. The shape of the resulting de-
pendence of the effective mean magnetic pressure on the
mean magnetic field has been matched to a specific fit for-
mula that can be characterized by two fit parameters that,
in turn, can be linked to the minimum effective mean mag-
netic pressure and the critical field strength above which the
effect is suppressed. However, there have been indications
that this parameterization is not unique and that different
combinations of the two fit parameters can result in similar
values of minimum effective pressure and the critical field
strength. The question therefore arises whether this degen-
eracy is important for the properties of NEMPI.

Finally, we mentioned already the fact that NEMPI is
capable of exciting three-dimensional structures that show
variation along the direction of the mean magnetic field.
This would raise the worry that the two-dimensional re-
sults presented so far may not reflect the properties of the
fastest growing mode and may therefore not be relevant to
describing NEMPI. However, it turns out that this is not the
case, because the degree to which three-dimensional modes
are excited depends on the sign of one of the turbulence
parameters, namely the term characterizing turbulence ef-
fects on the magnetic tension force, and that simulations
indicate that this sign is not favorable for exciting three-

dimensional modes (BKR). Before we begin addressing the
various points, we discuss first the mean-field model and
turn then to the points raised above.

2 Mean-field model

In view of future verifications of NEMPI with DNS, it is
essential to be able to reduce the essential physics to a
minimum. We will therefore not make any attempt to con-
sider other aspects that would make the model more realistic
with respect to the Sun. Given that NEMPI works even un-
der isothermal conditions (BKKR), we adopt an isothermal
equation of state where the mean pressurep is linear in the
mean densityρ, with p = ρc2s , andcs = const being the
isothermal sound speed. We solve the evolution equations
for mean velocityU , mean densityρ, and mean vector po-
tentialA, in the form

∂U

∂t
= −U ·∇U − c2s∇ ln ρ+ g +FM +FK, (1)

∂ρ

∂t
= −U ·∇ρ− ρ∇ ·U , (2)

∂A

∂t
= U ×B − (ηt + η)J , (3)

whereFM is given by

ρFM = − 1
2
∇[(1− qp)B

2] +B ·∇
[

(1− qs)B
]

, (4)

and

FK = (νt + ν)
(

∇2U +∇∇ ·U + 2S∇ ln ρ
)

(5)

is the total (turbulent plus microscopic) viscous force. Here,
Sij = 1

2
(U i,j + U j,i) − 1

3
δij∇ · U is the traceless rate of

strain tensor of the mean flow. As in earlier work (BKR,
BKKR), we approximateqp andqs by simple profiles that
are only functions of the ratioβ ≡ |B|/Beq, i.e.,

qσ(β) = qi0[1− (2/π) arctan(β2/β2
σ)], (6)

whereσ stands for subscripts p and s, respectively. The
functionsqp andqs quantify the impact of the mean mag-
netic field on the effective pressure and tension forces, re-
spectively.

As initial condition, we assume a hydrostatic stratifica-
tion with ρ(z) = ρ0 exp(−z/Hρ), whereHρ = c2s/g is
the scale height in a domain of sizeLx × Ly × Lz, where
−Lz/2 ≤ z ≤ Lz/2. We normally useLx = Ly ≡ L and,
unless noted otherwise, alsoLz = L. In most of the cases
we useLx = Ly = Lz ≡ L. We add a small perturbation to
the velocity field. We allow for the presence of an imposed
field in they direction,B0 = (0, B0, 0). The total field is
then written as

B = B0 +∇×A, (7)

so the departure from the imposed field is expressed in terms
of the mean magnetic vector potentialA.

On the upper and lower boundaries we adopt stress-free
boundary conditions for velocity, i.e.Ux,z = Uy,z = Uz =

c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org



Astron. Nachr. / AN (0000) 3

Fig. 1 Visualization ofBy at the periphery of the computational domain near the end of the kinematic growth phase.
Note the change of the field pattern with increasing values ofqs0 (=0, 5, 10, and 20 from left to right).

0, and a perfect conductor boundary condition for the mag-
netic field, i.e.Ax = Ay = Az,z = 0. Here, commas de-
note partial differentiation. No boundary condition for the
density is required. All computations have been carried out
with the PENCIL CODE1.

Our model is characterized by the following set of in-
put parameters. There are four parameters characterizing
the hydrostatic equilibrium stratification, namelyg, c2s , ρ0,
andLz. The remaining parameters are the Alfvén speed at
the surface,vtopA = B0/

√
ρtopµ0, turbulent viscosity and

magnetic diffusivity, as well as the parametersqσ0 andβσ.
Here,ρtop = ρ0 exp(−ztop/Hρ) is the density at the sur-
face, which is usually atz ≡ ztop = Lz/2.

3 Results

3.1 Two- and three-dimensional solutions

Earlier work has suggested that the eigenmodes of NEMPI
can be three-dimensional (BKR). This could make two-
dimensional calculations questionable if the first excited
mode were indeed the fastest growing one. However, it turns
out that the wavelength of the eigenmode in the direction of
the field increases asqs decreases. In BKR, where three-
dimensional (y-dependent) solutions to NEMPI were first
reported,qs was chosen to be around10, and the fastest
growing mode was indeed three-dimensional. In Fig. 1 we
show that the effective wavenumber of the variation of the
field in they direction decreases with decreasing values of
qs. This is shown quantitatively in Fig. 2, where we plot
the dependence of the typical value of the field-aligned
wavenumber,ky, on the value ofqs0. Here,ky is evaluated
in a layer near the surface. For normalization purposes, we
define the lowest wavenumber in the computational domain
ask1 = 2π/L.

We find that the typical value ofky grows approximately
linearly with increasing values ofqs0. As an approximate fit
formula we can usek2y/k

2
1 ≈ 1.3 qs0. In addition, we find

that the growth rate of the instability,λ, grows withqs0 ap-
proximately linearly, onceqs0 exceeds a value of around 5.
The fact thatky → 0 as qs0 → 0 is significant, because

1 http://www.pencil-code.googlecode.com

BKKR and also Käpylä et al. (2011b) found from simula-
tions thatqs0 ≈ 0. In that case, the characteristic length
scale along the direction of the field becomes infinite and the
calculation essentially two-dimensional. Conversely, when
studying NEMPI in two dimensions, changing the value of
qs0 has no effect on structure formation and the growth rate;
see Table 1. However, it is now clear that this is an artifact
of restricting the solutions to be two-dimensional.

3.2 Degeneracy in theqp fit formula

We mentioned in the introduction that recent attempts to de-
termineqp0 from simulations faced the difficulty that the fit
formula possesses a degeneracy in that we can obtain a sim-
ilarly looking dependence of the effective mean magnetic
pressurePeff(β) = [1− qp(β)]β

2 over a wide range of val-
ues ofqp0 by adjusting the value ofβp correspondingly. The
core of the problem becomes clear from Fig. 3, where we
plot the functionPeff(β) in the lower panel andmin(Peff)
versusβcrit in the upper panel. The parameterβcrit is de-
fined by the conditionPeff(βcrit) = 0. It is evident that
min(Peff) becomes more negative asβcrit decreases and
qp0 increases. However, for a given value ofβcrit, the fit
formula cannot produce a minimum ofPeff that is below a
certain value. This minimum value is attained forqp0 → ∞,
but even the graphs forqp0 = 50 or 20 lie quite close to-
gether. Conversely, for a given value ofmin(Peff), there is
a minimum value ofβcrit below which there is no solution.
Formin(Peff) = −0.1, for example, there are no values of
qp0 for βcrit below about 0.3, while between 0.30 and 0.35
the same value ofmin(Peff) can be attained forqp0 between
20 and∞. This is shown more clearly in the second panel of

Table 1 Comparison of growth rates for different values
of Ly andqs, including a two-dimensional (2D) simulation
(Ly → ∞).

Ly qs = 0 qs = 30

3D L 0.0124 0.2070
3D 8L 0.0137
2D ∞ 0.0141 0.0141

www.an-journal.org c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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4 K. Kemel et al.: Negative effective magnetic pressure instability

Fig. 2 Dependence ofky on qs0 (upper panel), together
with the corresponding growth rateλ (lower panel). Here,λ
is normalized byλ0 ≡ g/cs.

Fig. 3, where we plotPeff(β) for different values ofqp0 and
values ofβcrit that all cross the linemin(Peff) = −0.1 in
the upper panel of this figure. This shows that, whenqp0 is
10 or larger, the graph ofPeff(β) becomes quite insensitive
to the exact value ofqp0, and that the same graphs can be
obtained for a set of different combinations ofqp0 andβp.

In the family of similarly looking solutions, the optimal
value ofBp is found to decrease with increasing values of
qp0, as is shown in the upper panel of Fig. 4. However, even
though the graphs ofqp(β) are rather similar, mean-field
simulation show that the resulting growth rates are sensitive
to the value ofqp in the parameter regime whereB/Beq is
small. An alternative would be to use a third observation to
fix the degeneracy of the model. One such parameter could
be the position of the minimum ofPeff , i.e., the valueβmin,
for whichPeff(βmin) = min(Peff) is obeyed.

3.3 Onset condition of NEMPI

With a given prescription ofqp(β), assuming hereqs0 = 0,
we can now compute two-dimensional mean-field models.
Our goal is to obtain a simple description that can tell us
how large the growth rate of the instability is, and what the
critical condition for the onset of the instability is. Not much
is known about the linear stability properties of NEMPI, so
we have to rely on numerical determinations of the growth
rates for different wavelengths in the different directions to
obtain an approximate representation of the dispersion re-
lation. Earlier work of Kemel et al. (2011) has suggested a
relation of the form

λ = Φ(vtopA , g/c2s , qp0, βcrit)− νtk
2
ν − ηtk

2
η, (8)

Fig. 3 Minimum effective magnetic pressure versusβcrit

for 5 values ofqp0 (upper panel), and the corresponding
graphs ofPeff(β) for which Peff = −0.1. For two values
of qp0 (5 and 50) the correspondence betweenβcrit and the
zero point ofPeff(β) for curves withmin(Peff) = −0.1 is
shown by vertical lines.

wherekν andkη are inverse length scales quantifying the
effects of turbulent viscosity and turbulent magnetic diffu-
sivity, Φ is a function of the Alfvén speed at the top,vtopA ,
the inverse scale heightH−1

ρ = g/c2s , and other parameters
describing the functional form ofqp.

We now need to determine the various unknowns. We
begin by determiningkν andkη by varying either onlyνt
or only ηt at a time. In this way we obtain a linear fit for
the growth rate,λ(ηt) = const − ηtk

2
η, giving usk2η as

the slope of this graph; see the upper and lower panels of
Fig. 5 for the corresponding results forkν andkη, respec-
tively. It turns out thatkν ≈ 0.77 k1 andkη ≈ 1.1 k1. The
surprising result is thatkν andkη are different from each
other by a factor of about

√
2. This was not the case in the

earlier work of Kemel et al. (2011) using less accurate data.
The new data seem sufficiently accurate so that this discrep-
ancy cannot easily be explained by numerical errors. More
plausibly, this discrepancy could be explained by a residual
dependence ofΦ on eitherνt or ηt, or both. Note, however,
that the turbulent magnetic Prandtl number is of order unity
(Kleeorin & Rogachevskii 1994; Yousef et al. 2003), so this
uncertainty should be of no practical relevance.

Accepting now the fit parameterskν andkη as they have
been measured, we can proceed to determining the depen-
dence ofΦ onvtopA , Hρ, and other fit physical input param-
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Fig. 4 Dependence of the fit parameterBp on qp0, the
corresponding growth rateλ, and the dependence ofλ on
Bp. Here,λ is normalized byλ0 ≡ g/cs.

eters. We assume that this relation is multiplicative and find
first the dependence onvtopA by plottingΦ = λ+νtk

2
ν+ηtk

2
η

againstvtopA . It turns out that this is nearly a linear relation-
ship. Thus, keeping all other parameters unchanged, we find
Φ as a function ofvtopA ; see the first panel of Fig. 6. Next,
we findΦ as a function ofg/c2s , which results in an expo-
nential relationship, wherelnΦ is found to increase linearly
with g/c2s ≡ H−1

ρ ; see the middle panel of Fig. 6. Thus, we
can writelnΦ ∝ 1/kρHρ, wherekρ is a new fit parameter.
Here,kρ ≈ 0.5 k1. Finally, we show in the third panel of
Fig. 6 the dependence ofΦ on the reconstructed fit,

Φfit = vtopA kA exp(1/kρHρ)ϕ(qp0, βp), (9)

wherekA ≈ 0.26 k1 gives the best fit. This combined fit ap-
pears reasonably accurate for most of the parameter regime,
substantiating thus the general validity of the fit formulae
(8)–(9).

Some comments about the system size are in order. In
all cases withqs0 = 0, we find that in three-dimensional
calculations with finitey extent, the value ofLy affects
the growth rates only slightly; see Table 1. On the other
hand, doubling thex extent yields two pairs of rolls, but
at a slightly lower growth rate, indicating that our standard
value ofLx is still not quite in the asymptotic regime. Ex-
tending the domain downward (in the negativez direction)

Fig. 5 Dependence ofλ onηt (upper panel) andνt (lower
panel). In the two panels, the straight lines represent the
negative slopesk2η ≈ 1.2 andk2ν ≈ 0.6, approximately. In
the lower panel, the dotted line gives, for comparison, the
negative slope 1.2 of the upper panel.

Fig. 6 Dependence of̃λ on vtopA (upper panel),g/c2s
(middle panel), and the combined fitΦ(vtopA , g/c2s ) (lower
panel).

does not change the results at all, but extending it in the up-
ward direction (positivez direction) changes the value of

www.an-journal.org c© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



6 K. Kemel et al.: Negative effective magnetic pressure instability

ρtop and hence the value ofvtopA in a way that is already
fully described by our scaling law in Eq. (9).

4 Conclusions

The present work has clarified a number of puzzling as-
pects of NEMPI. Firstly, it is now clear that we can pro-
ceed with two-dimensional simulations as long as we know
that qs0 = 0 (or negative). However, this may not always
be the case. The fact that three-dimensional structures can
emerge from NEMPI was initially thought to be an inter-
esting aspect, because it could readily explain the formation
of bipolar regions (BKR). However, given that simulations
now indicate thatqs0 ≈ 0 (or perhaps even negative), this
proposal would no longer be an option, unless some other
as yet unexplored effect begins to play a role. In principle,
all turbulent transport processes are nonlocal and must be
described by a convolution with the mean field rather than
a multiplication. In Fourier space, the convolution corre-
sponds to a multiplication with a scale-dependent turbulent
transport coefficient. Thus, the idea of explaining bipolar
regions would again become viable if this effect only ex-
isted at intermediate length scales. This would be a task for
future simulations to clarify, because none of the currently
available techniques are yet equipped to addressing this pos-
sibility.

Next, we have seen that the degeneracy in the fit for-
mula used forqp(β) andPeff(β) is significant in that differ-
ent combinations ofqp0 andβp result in similar values of
min(Peff) andβcrit, but the growth rates can still be quite
different. This means that it is not sufficient to measure only
min(Peff) andβcrit. Instead, to characterize the functional
form of Peff(β) more accurately, we need some other char-
acteristics to represent the dependence of this function near
the origin. One such possibility is to use the field strength
for which the minimum of the effective magnetic pressure
is reached.

Finally, we have tried to establish an approximate dis-
persion relation to predict the growth rate of NEMPI as a
function of turbulent viscosity, turbulent magnetic diffusiv-
ity, mean field strength, and the strength of stratification.
This formula may serve as a first orientation and can hope-
fully be improved further with future simulations. This for-
mula can also be useful in connection with analytic esti-
mates concerning the regimes when NEMPI is expected in
DNS or under other more realistic circumstances.
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