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On the equilibrium of self-gravitating neutrons, protons and electrons in β-equilibrium

Michael Rotondo, Jorge A. Rueda, Remo Ruffini,∗ and She-Sheng Xue
Dipartimento di Fisica and ICRA, Sapienza Università di Roma, P.le Aldo Moro 5, I–00185 Rome, Italy and
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We have recently proved the impossibility of imposing the condition of local charge neutrality in a
self-gravitating system of degenerate neutrons, protons and electrons in β-equilibrium. The coupled
system of the general relativistic Thomas-Fermi equations and the Einstein-Maxwell equations have
been shown to supersede the traditional Tolman-Oppenheimer-Volkoff equations. Here we present
the Newtonian limit of the new equilibrium equations. We also extend the treatment to the case
of finite temperatures and finally we give the explicit demonstration of the constancy of the Klein
potentials in the case of finite temperatures generalizing the condition of constancy of the general
relativistic Fermi energies in the case of zero temperatures.

I. INTRODUCTION

It is well known that the classic work of Oppenheimer
and Volkoff [1] addresses the problem of neutron star
equilibrium configurations composed only of neutrons.
For the more general case when protons and electrons
are also considered, in nearly all of the scientific litera-
ture on neutron stars it is assumed that the condition of
local charge neutrality applies identically to all points of
the equilibrium configuration (see e.g. [2]). Consequently,
the corresponding solutions of the Einstein equations for
a non-rotating neutron star, following the work of Tolman
[3] and of Oppenheimer and Volkoff [1], have been sys-
tematically applied. However, the necessity of processes
leading to electrodynamical phenomena during the grav-
itational collapse to a black hole [4] suggests a critical
reexamination of the current treatment of neutron stars.
In this regard in a set of recent articles (see e.g. [5, 6])
we have developed the first steps toward a new consistent
treatment for the description of neutron stars overcoming
the traditional Tolman-Oppenheimer-Volkoff equations.
We have recently proved the impossibility of impos-

ing the condition of local charge neutrality in a self-
gravitating system of degenerate neutrons, protons and
electrons in β-equilibrium [6]. It has been there discussed
that the traditional approach for the description of neu-
tron stars adopting the condition of local charge neutral-
ity is inconsistent with the Einstein-Maxwell equations
and with micro-physical conditions of equilibrium within
the quantum statistics. We emphasize the basic role of
the constancy of the general relativistic Fermi energy
of each species. Consequently, the traditional Tolman-
Oppenheimer-Volkoff system of equations has been su-
perseded by the coupled system of the general relativis-
tic Thomas-Fermi equations and the Einstein-Maxwell
equations. We have been guided in this new approach
by the generalization of the Feynman-Metropolis-Teller
treatment of compressed atoms to the relativistic regimes
[5]. There, using the existence of scaling laws [7–9], the
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results were extended from heavy nuclei to the case of
globally neutral nuclear matter cores of stellar dimen-
sions with mass numbers A ≈ (mPlanck/mn)

3 ≈ 1057 or
Mcore ≈ M⊙.

In the present article we first recall in Sec. II the new
system of general relativistic Einstein-Maxwell-Thomas-
Fermi governing a self-gravitating system of neutrons,
protons and electrons in β-equilibrium. We then address
three new aspects of the problem: 1) we study the New-
tonian limit of the equilibrium equations (see Sec. III); 2)
we consider the proper generalization of the above treat-
ment to the case of finite temperatures (see Sec. IV);
3) we generalize and prove the constancy of the Klein
potentials of each species generalizing the condition of
constancy of the general relativistic Fermi energies en-
countered in the case of zero temperatures (see Sec. IV).
We finally show that the thermal effects do not affect the
electrodynamical structure of the equilibrium configura-
tions and the results are qualitatively and quantitatively
quite similar to the ones obtained with the degenerate
approximation (see Sec. IV).

II. EINSTEIN-MAXWELL-THOMAS-FERMI

EQUATIONS IN THE DEGENERATE CASE

Following [6] we consider the equilibrium configura-
tions of a degenerate gas of neutrons, protons and elec-
trons with total matter energy density and total matter
pressure

E =
∑

i=n,p,e

2

(2π~)3

∫ PF
i

0

ǫi(p) 4πp
2dp , (1)

P =
∑

i=n,p,e

1

3

2

(2π~)3

∫ PF
i

0

p2

ǫi(p)
4πp2dp , (2)

where ǫi(p) =
√

c2p2 +m2
i c

4 is the relativistic single par-
ticle energy and PF

i denote the Fermi momentum, related
to the particle number density ni by ni = (PF

i )3/(3π2
~
3).

Introducing the metric for a spherically symmetric
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non-rotating configuration

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (3)

the extension to general relativity of the Thomas-Fermi
equilibrium condition on the generalized Fermi energies

EF
i = eν/2µi −mic

2 + qiV , (4)

(i = n, p, e, qi = 0, e,−e) and the condition of β-
equilibrium between neutrons, protons and electrons

EF
n +mnc

2 = EF
p +mpc

2 + EF
e +mec

2 , (5)

the full system of equations composed by the Einstein-
Maxwell-Thomas-Fermi equations can be written as (see
[6] for details)

M ′ = 4πr2
E

c2
−

4πr3

c2
e−ν/2V̂ ′

{

np

−
e−3ν/2

3π2
[V̂ 2 + 2mec

2V̂ −m2
ec

4(eν − 1)]3/2

}

, (6)

ν′ =
2G

c2
4πr3P/c2 +M − r3E2/c2

r2
(

1− 2GM
c2r + Gr2

c4 E2
) , (7)

EF
e = eν/2µe −mec

2 − eV = constant, (8)

EF
p = eν/2µp −mpc

2 + eV = constant, (9)

EF
n = EF

e + EF
p − (mn −me −mp)c

2, (10)

V̂ ′′ +
2

r
V̂ ′

[

1−
r(ν′ + λ′)

4

]

= −4πα~c eν/2eλ

{

np

−
e−3ν/2

3π2
[V̂ 2 + 2mec

2V̂ −m2
ec

4(eν − 1)]3/2

}

. (11)

where e is the fundamental charge, α is the fine struc-
ture constant, V is the Coulomb potential, µi =

∂E/∂ni =
√

c2(PF
i )2 +m2

i c
4 is the free-chemical poten-

tial of particle-species, λ(r) is the metric function re-
lated to the mass M(r) and the electric field E(r) =
−e−(ν+λ)/2V ′ (a prime stands for radial derivative)
through

e−λ = 1−
2GM(r)

c2r
+

G

c4
r2E2(r) . (12)

and V̂ = EF
e + eV .

The condition ne = np often adopted in literature is
not consistent with Eqs. (8) and (9) (see Fig. 1) there-
fore we consider the equilibrium configurations fulfilling
only global charge neutrality (details are given in [6]).
We solve self-consistently Eq. (6) and (7) for the metric,
Eqs. (8)–(10) for the equilibrium of the three degenerate
fermion species and for the β-equilibrium. The crucial
equation relating the proton and the electron distribu-
tions is then given by the general relativistic Thomas-
Fermi equation (11). The boundary conditions are: for
Eq. (6) the regularity at the origin: M(0) = 0, for

Eqs. (8)–(10) a given value of the central density, and
for Eq. (11) the regularity at the origin ne(0) = np(0),
and a second condition at infinity which results in an
eigenvalue problem determined by imposing the global
charge neutrality conditions

V̂ (Re) = EF
e , V̂ ′(Re) = 0 , (13)

at the radius Re of the electron distribution defined by

PF
e (Re) = 0 , (14)

from which follows

EF
e = mec

2eν(Re)/2 −mec
2

= mec
2

√

1−
2GM(Re)

c2Re
−mec

2 . (15)

Then the eigenvalue problem consists in determining the
gravitational potential and the Coulomb potential at the
center of the configuration that satisfy the conditions
(13)–(15) at the boundary. The solution for the den-
sity, the gravitational potential and electric potential are
shown in Fig. (2) for a configuration with central den-
sity ρ(0) = 3.94ρnuc. One particular interesting new
feature is the approach to the boundary of the config-
uration: three different radii are present corresponding
to distinct radii at which the individual particle Fermi
pressures vanish. The radius Re for the electron compo-
nent corresponding to PF

e (Re) = 0, the radius Rp for the
proton component corresponding to PF

p (Rp) = 0 and the
radius Rn for the neutron component corresponding to
PF
n (Rn) = 0. For the configuration of Fig. 2 we found

Rn ≃ 12.735 km, Rp ≃ 12.863 km and Re ≃ Rp + 103λe

where λe = ~/(mec) denotes the electron Compton wave-
length. We find that the electron component follows
closely the proton component up to the radius Rp and
neutralizes the configuration at Re without having a net
charge, contrary to the results e.g in [10].

III. NEWTONIAN LIMIT

Despite the fact that the strong gravitational field of
neutron stars requires a general relativistic treatment, it
is interesting to explore the Newtonian limit of all the
above considerations. This can help to elucidate if the
gravito-electromagnetic effects we have found are of gen-
eral relativistic nature or to prove their validity in a New-
tonian regime.
The Newtonian limit of the equilibrium equations can

be obtained by the weak-field non-relativistic limit. We
expand the gravitational potential at first-order eν/2 ≈
1 + Φ, where the Newtonian gravitational potential is
Φ(r) = ν(r)/2. In the non-relativistic mechanics limit
c → ∞, the particle chemical potential becomes µi →
µ̃i + mic

2, where µ̃i = (PF
i )2/(2mi) denotes the non-

relativistic free-chemical potential. Applying these con-
siderations, the electron equilibrium law (4) becomes

EF,Newt
e = µ̃e +meΦ− eV , (16)
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FIG. 1: Fermi energies for neutrons, protons and electrons
in units of the pion rest-mass energy for a locally neutral
configuration with central density ρ(0) = 3.94ρnuc, where
ρnuc = 2.7× 1014 g cm−3 denotes the nuclear density.

which is the classical condition of thermodynamic equi-
librium in presence of external gravitational an electro-
static fields (see e.g. [11] and [12]) applied to a gas of
electrons.
In the weak-field non-relativistic limit, the Einstein-

Maxwell equations (6)–(11) become

M ′ = 4πr2ρ(r) , (17)

Φ′ =
GM

r2
, (18)

P ′ = −
GM

r2
ρ−

[

np −
(2me)

3/2

3π2~3
(V̂ −meΦ)

3/2

]

V̂ ′ ,

(19)

V̂ ′′ +
2

r
V̂ ′ = −4πe2

[

np −
(2me)

3/2

3π2~3
(V̂ −meΦ)

3/2

]

,

(20)

where ρ in this case is the rest-mass density

ρ =
∑

i=n,p,e

mini . (21)

The solution of Eqs. (16), (17)–(20) together with the
β-equilibrium condition

EF,Newt
n = EF,Newt

p + EF,Newt
e , (22)

leads to qualitatively similar electrodynamical properties
as the one obtained in the general relativistic case. In
Fig. 4 we show the electric field in the region r < Rn

(RNewt
n < RGR

n ) both for the Newtonian as well as for the
General Relativistic configuration for the given central
density ρ(0) = 3.94ρnuc. From the quantitative point
of view, the electric field of the Newtonian configuration
is larger than the electric field of the general relativistic
configuration.

IV. FINITE TEMPERATURE EFFECTS

The above results have been obtained within the zero
temperature approximation. It is worth to recall that
temperatures of the order of ∼ 106 K expected to exist at
the surface of old neutron stars [13, 14], or temperatures
of 107− 108 K which could, in principle, exist in neutron
star interiors, should not affect the considerations here
introduced. For neutron stars, the Fermi temperature

TF
i =

µi −mic
2

k
, (23)

where k is the Boltzmann constant, can be as large as
∼ 1012 K for electrons, ∼ 1011 K for protons and ∼ 1013

K for neutrons for typical central densities of neutron
stars, which means that neutron star interiors are, at a
high degree of accuracy, degenerate systems. However,
the thermal energy associated to temperatures T ∼ 108

K, Eth ∼ (4π/3)R3aT 4 ∼ 1038 erg, is much larger than
the Coulomb energy EC ∼ (1/6)R3E2 ∼ 1016 erg, given
by the internal electric field here considered (see Fig. 4).
Here R is the radius of the configuration and a = σ/c
being σ the Stefan-Boltzmann constant. It can be then
of interest to ask the question if our electrodynamical
structure will still occur in presence of thermal effects.
In this more general case, the equation of state given

by Eqs. (1) and (2), must be abandoned and replaced by

E =
∑

i=n,p,e

2

(2π~)3

∫ ∞

0

ǫ̃i(p)fi(p) 4πp
2dp , (24)

P =
∑

i=n,p,e

1

3

2

(2π~)3

∫ ∞

0

p2fi(p)

ǫ̃i(p) +mic2
4πp2dp ,(25)

where

fi(p) =
1

1 + e
ǫ̃i(p)−µ̃i

kT

, (26)

is the Fermi-Dirac fermion distribution function which
gives the particle number density ni

ni =
2

(2π~)3

∫ ∞

0

fi(p) 4πp
2dp, , (27)

where, for numerical purposes, the free single particle
energy ǫ̃i(p) = ǫi(p)−mic

2 =
√

c2p2 +m2
i c

4 −mic
2 and

the free particle chemical potential µ̃i, have been defined
subtracting the particle rest mass-energy.
We turn now to demonstrate the constancy of the Klein

potentials throughout the configuration. The equation of
state (24)–(25) satisfies the thermodynamic law

E + P − Ts =
∑

i=n,p,e

niµi , (28)

where s = S/V is the entropy per unit volume and µi =
∂E/∂ni is the free-chemical potential of the i-specie. At

zero-temperature T = 0, µi =
√

(PF
i )2 + m̃2

i and ni =
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FIG. 3: Left panel: electron number density for r ≥ Rp normalized to its value at r = Rp. Right panel: electric field for r ≥ Rp

normalized to its value at r = Rp. We have also shown the behavior of the solution for two different eigenvalues of the general
relativistic Thomas-Fermi equation (11) close to the one which gives the globally neutral configuration (see [6] for details).

(PF
i )3/(3π2), where PF

i denotes the Fermi momentum of
the i-specie.

From Eq. (28) follows the Gibbs-Duhem relation

dP =
∑

i=n,p,e

nidµi + sdT , (29)

which can be rewritten as

dP =
∑

i=n,p,e

nidµi +



E + P −
∑

i=n,p,e

niµi





dT

T
. (30)

Introducing the metric given by Eq. (3) the Einstein-

Maxwell system of equations is

M ′ = 4πr2
E

c2
−

4πr3

c2
e−ν/2V ′(np − ne) , (31)

ν′ =
2G

c2
4πr3P/c2 +M − r3E2/c2

r2
(

1− 2GM
c2r + Gr2

c4 E2
) , (32)

P ′ +
ν′

2
(E + P ) = −e−ν/2V ′(np − ne) , (33)

V ′′ +
2

r
V ′

[

1−
r(ν′ + λ′)

4

]

= −4πα~c eν/2eλ(np

−ne) . (34)

Using the Gibbs-Duhem relation (30) the energy-
momentum conservation equation (33) can be rewritten
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3.94ρnuc where ρnuc = 2.7×1014 g cm−3 is the nuclear density.

as

eν/2
∑

i=n,p,e

ni

(

dµi −
dT

T
µi

)

+ (E + P )eν/2
(

dT

T

+
1

2
dν

)

+ e(np − ne)dV = 0 . (35)

The Tolman isothermal condition [15] (see also [11])
demands the constancy of the gravitationally red-shifted
temperature

dT

T
+

1

2
dν = 0 , or T∞ = eν/2T = constant ,

(36)
which can be used into Eq. (35) to obtain

∑

i=n,p,e

nid(e
ν/2µi) + e(np − ne)dV = 0 . (37)

We now introduce the generalized chemical potentials,
or Klein potentials, for electrons Ee, protons Ep and neu-
trons En

Ee = eν/2µe −mec
2 − eV , (38)

Ep = eν/2µp −mpc
2 + eV , (39)

En = eν/2µn −mnc
2 , (40)

which in the zero temperature limit are the generalized
Fermi energies for electrons Ee = EF

e , neutrons En = EF
n

and protons Ep = EF
p introduced in Sec. II (see Eq. (4)).

Using Eqs. (38), (39) and (40), Eq. (37) becomes

∑

i=n,p,e

nidEi = 0 , (41)

which leads for independent and non-zero particle num-
ber densities ni 6= 0 to the constancy of the Klein poten-
tials (38)–(40) for each particle-species, i.e.

Ee = eν/2µe −mec
2 − eV = constant , (42)

Ep = eν/2µp −mpc
2 + eV = constant , (43)

En = eν/2µn −mnc
2 = constant . (44)

In the zero temperature limit the constancy of the
Klein potential of each particle-specie becomes the con-
stancy of the generalized Fermi energies introduced in
Sec. II (see Eqs. (8) and (9)). This is a crucial point
because, as discussed in [6], the constancy of the gener-
alized Fermi energies proves the impossibility of having a
self-consistent configuration fulfilling the condition of lo-
cal charge neutrality and β-equilibrium (see e.g. Fig. 1).
Further, as shown in [16], the constancy of the Klein po-
tentials holds in the more general case when the strong
interactions between nucleons are taken into account.
Therefore, introducing the new dimensionless variables

ηi = µ̃i/(kT ) and βi = kT/(mic
2), the new set of

Einstein-Maxwell-Thomas-Fermi equations generalizing
the system (6)–(11) to the case of finite temperatures
is

M ′ = 4πr2
E

c2
−

4πr3

c2
e−ν/2V̂ ′(np − ne) , (45)

ν′ =
2G

c2
4πr3P/c2 +M − r3E2/c2

r2
(

1− 2GM
c2r + Gr2

c4 E2
) , (46)

Ee = mec
2eν/2(1 + βeηe)−mec

2 − eV

= constant, (47)

Ep = mpc
2eν/2(1 + βpηp)−mpc

2 + eV

= constant, (48)

En = Ee + Ep − (mn −me −mp)c
2, (49)

V̂ ′′ +
2

r
V̂ ′

[

1−
r(ν′ + λ′)

4

]

= −4πα~c eν/2eλ(np

−ne) , (50)

eν/2βi = constant , i = n, p, e . (51)

where Eq. (49) is the condition of β-equilibrium between
neutrons, protons and electrons, and the number density
of the i-specie is given by

ni =
21/2m3

i c
3

π2~3
β
3/2
i (F i

1/2 + βiF
i
3/2) , (52)

where we have introduced the relativistic Fermi-Dirac in-
tegrals of order j

F i
j = Fj(ηi, βi) =

∫ ∞

0

xj
(

1 + 1
2βix

)1/2

1 + ex−ηi
dx . (53)

We have integrated numerically the system of equa-
tions (45)–(51) for given temperatures T∞ 6= 0. As ex-
pected, the results are both qualitatively and quantita-
tively similar to the ones obtained with the degenerate
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a finite temperature of T∞ = 2.3× 105 K.

approximation. The largest difference we found is at the
surface boundary of the configuration, where due to the
low density finite temperature effects are more effective.
In Fig. 5 we compare the electron density for r > Rp

in the degenerate and in the non-degenerate case for
T∞ = 2.3×105 K. For distances r < Rp the results are es-
sentially the same as in the degenerate case. In the region
r << Rn at large densities > ρnuc = 2.7 × 1014 g/cm3,
the electrodynamical properties of the configuration i.e.
Coulomb potential and electric field remain unperturbed
even for very large temperatures T∞ ∼ 1011 K. This is
due to the fact that thermal effects are largely compen-
sated by the gravitational potential as given by Eq. (36);
the Coulomb interaction is not involved in this balance
and is not affected by the thermal energy.

V. CONCLUSIONS

In this article we have addressed three new aspects of
the description of a self gravitating system of neutrons,
protons and electrons in β-equilibrium:
1) We have presented the Newtonian limit of the treat-

ment by taking the weak field approximation and the

non-relativistic c → ∞ limit of the general relativis-
tic Thomas-Fermi and Einstein-Maxwell equations (6)–
(11). The numerical integration of the Newtonian equa-
tions shows that the gravito-electrodynamic structure ev-
idenced in [6] (see also Sec. II) is not of general relativistic
nature but is already present in the Newtonian regime.
However, in view of the large quantitative discrepancies
of the Newtonian regime in the description of other neu-
tron star properties like mass and radius (see e.g. Fig. 3
in [17]), a general relativistic treatment is mandatory in
any astrophysical consideration.
2) It has been also presented the extension of the pre-

vious treatment [6] to finite temperatures. Although the
thermal energy expected to be stored in old neutron stars
with surface temperatures ∼ 106 K [13, 14] is much larger
than the internal Coulomb energy (see Sec. IV), still the
electromagnetic structure (see Fig. 4) is unaffected by
the presence of the thermal component. Physically this
is due to the very large Fermi energy of the neutrons ∼ 1
GeV, of the protons ∼ 10 MeV and of the electrons ∼ 0.1
GeV, as can be seen from Eq. (23).
3) More generally, we have given the explicit demon-

stration of the constancy throughout the configuration of
the Klein potentials of each species present in the system
in the more general case of finite temperatures. This gen-
eralizes the condition of the constancy of the general rel-
ativistic Fermi energies derived in the special case T = 0
in [6].
All these results are relevant to the generalization of

the Feynman-Metropolis-Teller treatment of compressed
atoms to relativistic regimes in presence of thermal ef-
fects and they will necessarily also apply in the case of
additional particle species and of the inclusion of strong
interactions in neutron stars [16].
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