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Abstract. We consider the mean time to absorption by an absorbing target of a

diffusive particle with the addition of a process whereby the particle is reset to its initial

position with rate r. We consider several generalisations of the model of M. R. Evans

and S. N. Majumdar (2011), Diffusion with stochastic resetting, Phys. Rev. Lett. 106,

160601: (i) a space dependent resetting rate r(x) ii) resetting to a random position z

drawn from a resetting distribution P(z) iii) a spatial distribution for the absorbing

target PT (x). As an example of (i) we show that the introduction of a non-resetting

window around the initial position can reduce the mean time to absorption provided

that the intial position is sufficiently far from the target. We address the problem of

optimal resetting, that is, minimising the mean time to absorption for a given target

distribution. For an exponentially decaying target distribution centred at the origin

we show that a transition in the optimal resetting distribution occurs as the target

distribution narrows.

1. Introduction

Search problems occur in a variety of contexts: from animal foraging [1] to the target

search of proteins on DNA molecules [2–4]; from internet search algorithms to the more

mundane matter of locating one’s mislaid possessions. Often search strategies involve

a mixture of local steps and long-range moves [5–9]. For human searchers at least, a

natural tendency is to return to the starting point of the search after the length of time

spent searching becomes excessive.

In a recent paper [10] we modelled such a strategy as a diffusion process with an

additional rate of resetting to the starting point x0 with rate r. Considering the object

of the search to be an absorbing target at the origin, the duration of the search becomes

the time for the diffusing particle to reach the origin. Statistics such as the mean time

to absorption of the process then give a measure of the efficiency of the search strategy,

defined by the resetting rate r. Moreover, the model provides a system where the

statistics of absorption times can be computed exactly.

A related model, where searchers have some probabilistic lifetime after which

another searcher will be sent out, has been studied by Gelenbe [11] and mean times

http://arxiv.org/abs/1107.4225v2
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to absorption computed. Also, in the mathematical literature the mean first passage

time for random walkers that have the option of restarting at the initial position has

been considered [12].

In [10] it was shown that the mean first passage time (MFPT) to the origin for

a single diffusive searcher becomes finite in the presence of resetting (in contrast to a

purely diffusive search where the MFPT diverges). Moreover the MFPT has a minimum

value as a function of the resetting rate r to the fixed initial position x0. Thus, there is

an optimal resetting rate r as a function of the distance to the target x0.

In this work we address the question of resetting strategies which optimise the

MFPT in a wider context. To this end, we make several generalisations of single-

particle diffusion with resetting studied in [10]. First, we consider a space dependent

resetting rate r(x). Second, we consider resetting to a random position z (rather than

a fixed x0) drawn from a resetting distribution P(z). Finally, we consider a probability

distribution for the absorbing target PT (x). The general question we ask is: what are

the optimal functions r(x), P(x) that minimise the MFPT for a given PT (x)? Although

we do not propose a general solution, the examples we study turn up some surprising

results and illustrate that answers to the problem may be non trivial.

The paper is organised as follows. In section 2 we review the calculation of the

mean first passage time for one-dimensional duffusion in the presence of resetting to the

intial position with rate r. In section 3 we introduce spatial dependent resetting r(x)

and work out the example of a non resetting window of width a around the intial point.

In section 4 we consider the generalisation to a resetting distribution P(z) and to a

distribution of the target site PT (x). In section 5 we formulate the general problem of

optimising the mean first passage time with respect to the resetting distribution P(z).

We consider the example of an exponential target distribution and show that there is a

transition in the optimal resetting distribution. We conclude in section 6.

2. First passage time for single particle diffusion with resetting

We begin by briefly reviewing the one-dimensional case of diffusion with resetting to

the initial position x0 (see Fig. 1), introduced in Ref. [10]. The Master equation for

p(x, t|x0), the probability distribution for the particle at time t having started from

initial position x0, reads

∂p(x, t|x0)

∂t
= D

∂2p(x, t|x0)

∂x2
− rp(x, t|x0) + rδ(x− x0) (1)

with initial condition p(x, 0|x0) = δ(x − x0). In Eq. (1) D is the diffusion constant of

the particle and r is the resetting rate to the initial position x0. The second term on the

right hand side (rhs) of Eq. 1 denotes the loss of probability from the position x due to

reset to the initial position x0, while the third term denotes the gain of probability at

x0 due to resetting from all other positions.
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Figure 1. Schematic space-time trajectory of a one dimensional Brownian motion

that starts at x0 and resets stochastically to its initial position x0 at rate r.

The stationary state of (1) is the solution of

D
∂2p∗(x|x0)

∂x2
− rp∗(x|x0) = −rδ(x− x0) (2)

which is determined by the elementary Green function technique, which we now recall.

The solutions to the homogeneous counterpart of (2) are e±α0x where

α0 =
√
r/D . (3)

The solution to (2) is constructed from linear combinations of these solutions which

satisfy the following boundary conditions: p∗ → 0 as x → ±∞, and p∗ is continuous at

x = x0. Imposing these conditions yields

p∗(x|x0) = A exp(−α0|x− x0|) . (4)

Note that (4) has a cusp at x = x0. The constant A is fixed by the discontinuity of

the first derivative at x = x0 which is determined by integrating (2) over a small region

about x0

∂p∗(x|x0)

∂x

∣∣∣∣∣
x→x+

0

−
∂p∗(x|x0)

∂x

∣∣∣∣∣
x→x−

0

= −α2
0 . (5)

Carrying this out yields A = α0/2 so that

p∗(x|x0) =
α0

2
exp(−α0|x− x0|) . (6)

Alternatively, the constant A in (4) could be fixed by the normalisation of the probability

distribution (4).

Note that (6) is a non-equilibrium stationary state by which it is meant that there

is circulation of probability even in the one-dimensional geometry. At all points x there

is always a diffusive flux of probability in the direction away from x0 given by −D∂p/∂x,

and a nonlocal resetting flux in the opposite direction from all points x 6= x0 to x0.
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2.1. Mean first passage time

We now consider the mean first passage time for the diffusing particle to reach the origin.

One can think of an absorbing target at the origin which instantaneously absorbs the

particle (see e.g. [13]).

A standard approach to first-passage problems is to use the backward Master

equation where one treats the initial position as a variable (for a review see Ref. [14]). Let

Q(x, t) denote the survival probability of the particle up to time t (i.e. the probability

that the particle has not visited the origin up to time t) starting from the initial position

x. The boundary and initial conditions are Q(0, t) = 0, Q(x, 0) = 1 (see e.g. [15] for

more general reaction boundary conditions).

The backward Master equation (where the variable x is now the initial position)

reads for the survival probability Q(x, t)

∂Q(x, t)

∂t
= D

∂2Q(x, t)

∂x2
− rQ(x, t) + rQ(x0, t) . (7)

Note that Q(x, t) depends implicitly on the resetting position x0 due to the third term

on the right hand side of (7). The second and third terms on the rhs correspond to the

resetting of the initial position from x to x0, which implies a loss of probability from

Q(x, t) and a gain of probability to Q(x0, t).

Equation (7) may be derived as follows. We consider the survival probability

Q(x, t+∆t) up to time t+∆t, where ∆t is a small interval of time. We divide the time

interval [0, t+∆t] into two intervals: [0,∆t] and [t, t+∆t]. In the first interval [0,∆t],

there are two possibilities: (i) with probability r∆t, the particle may be reset to x0 and

then for the subsequent interval [∆t, t + ∆t] this x0 will be the new starting position

and (ii) with probability (1 − r∆t), no resetting takes place, but instead the particle

diffuses to a new position (x + ξ) in time ∆t where ξ is a random variable distributed

according to a gaussian distribution P (ξ) = (4πD∆t)−1/2 exp(−ξ2/4D∆t). This new

position (x + ξ) then becomes the starting position for the subsequent second interval

[∆t, t+∆t]. One then sums over all possible values of ξ drawn from P (ξ). Note that we

are implicitly using the Markov property of the process whereby for the second interval

[∆t, t+∆t], only the end position of the first interval [0,∆t] matters. Taking into acount

these two possibilities, one then gets

Q(x, t +∆t) = r∆tQ(x0, t) + (1− r∆t)
∫

dξP (ξ)Q(x+ ξ, t) (8)

which can be rewritten as

Q(x, t +∆t)−Q(x, t)

∆t
=
∫

dξ

∆t
P (ξ)(Q(x+ξ, t)−Q(x, t))+rQ(x0, t)−rQ(x, t)+O(∆t) .(9)

Taking the limit ∆t → 0 then yields (7).

The mean first passage time T to the origin beginning from position x is obtained

by noting that −∂Q(x,t)
∂t

dt is the probability of absorption by the target in time t → t+dt.

Therefore, on integrating by parts, we have

T = −
∫ ∞

0
t
∂Q(x, t)

∂t
dt =

∫ ∞

0
Q(x, t)dt (10)
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(assuming that tQ(x, t) → 0 as t → ∞). Integrating (7) with respect to time yields

− 1 = D
∂2T (x)

∂x2
− rT (x) + rT (x0) (11)

with boundary conditions T (0) = 0 and T (x) finite as x → ∞.

To solve for the mean first passage time beginning at the resetting position x = x0

we first consider the initial position to be at x > 0, different from the resetting position

x0, then solve (11) with arbitrary x and x0. Once we have this solution we set x = x0

to determine T (x0) self-consistently.

The general solution to (11) is

T (x) = Aeα0x +Be−α0x +
1 + rT (x0)

r
(12)

where α0 =
√
r/D. The boundary condition that T (x) is finite as x → ∞ implies A = 0

and the boundary condition T (0) = 0 fixes B. Thus

T (x) =
1 + rT (x0)

r

[
1− e−α0x

]
. (13)

Solving for T (x0) self-consistently yields

T (x0) =
1

r
[exp(α0x0)− 1] =

1

r

[
exp

(√
r/D x0

)
− 1

]
. (14)

Note from (14) that, for fixed x0, T is finite for 0 < r < ∞. As a function of r for

fixed x0, T diverges when r → 0 as

T ≃
x0

(Dr)1/2
. (15)

This is expected since as r → 0, one should recover the pure diffusive behaviour (no

resetting) for which the T is divergent–due to the large excursions that take the diffusing

particle away from the target at the origin. Also T diverges rapidly as r → ∞, the

explanation being that as the reset rate increases the diffusing particle has less time

between resets to reach the origin. In other words, the high resetting rate to x0 cuts off

the trajectories that bring the diffusing particle towards the target.

We now consider T as a function of r for a given value of x0 and define the reduced

variable

z = α0x0 =
(
r

D

)1/2

x0. (16)

Since T diverges as r → 0 and r → ∞ it is clear that there must be a minimum of T

with respect to r (see Fig. 2). The condition for the minimum,
dT

dr
= 0, reduces to the

transcendental equation
z

2
= 1− e−z (17)

which has a unique non-zero solution z∗ = 1.59362.... In terms of the restting rate,

this means an optimal resetting rate r∗ = (z∗)2D/x2
0 = (2.53962 . . .)D/x2

0, for which the

mean first passage time T (x0) is minimum. The dimensionless variable z (16) is a ratio

of two lengths: x0, the distance from the resetting point to the target, and (D/r)1/2,
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Figure 2. The mean first passage time T = 1
r

[
exp

(√
r/D x0

)
− 1
]
plotted as a

function of r for fixed x0 = 1 and D = 1. clearly T diverges as r → 0 and as r → ∞

with a single minimum at r∗ = 2.53962 . . ..

which is the typical distance diffused between resetting events. Thus, for fixed D and

x0 the mean first passage time of the particle can be minimised by choosing r so that

this ratio takes the value z∗.

3. Space-dependent resetting rate

In this section we generalise the model of section 2 to the case of space-dependent

resetting rate r(x).

The master equation for the probability distribution p(x, t|x0) is generalised from

(1) to

∂p(x, t|x0)

∂t
= D

∂2p(x, t|x0)

∂x2
−r(x)p(x, t|x0)+

∫
dx′r(x′)p(x′, t|x0) δ(x−x0)(18)

The third term on the right hand side now represents the flux of probability injected at

x0 through resetting from all points x 6= x0.

The stationary distribution p∗(x|x0) satisfies

D
∂2p∗(x|x0)

∂x2
− r(x)p∗(x|x0) = −

∫
dx′r(x′)p∗(x′|x0) δ(x− x0) . (19)

In general the stationary state is difficult to determine unless r(x) has some simple
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form. The equation for the mean first passage time becomes

− 1 = D
∂2T (x)

∂x2
− r(x)T (x) + r(x)T (x0) (20)

Again, this is difficult to solve generally for arbitrary r(x).

In the following we consider a solvable example where r(x) is zero in a window

around x0 and is constant outside this window.

3.1. Example of a non-resetting window

We consider the case of a non-resetting window of width a about |x0|, within which the

resetting process does not occur:

r(x) = 0 for |x− x0| < a (21)

= r for |x− x0| ≥ a . (22)

This choice is a rather natural one in the sense that a typical searcher usually doesn’t

reset when it is close to its starting point, but rather the resetting event occurs when it

diffuses a certain threshold distance a away from its initial position.

The Master equation reads

∂p(x, t|x0)

∂t
= D

∂2p(x, t|x0)

∂x2
+ rh(t)δ(x− x0) |x− x0| < a (23)

= D
∂2p(x, t|x0)

∂x2
− rp(x, t|x0) |x− x0| ≥ a (24)

where

h(t) =
∫

dx p(x, t|x0)θ(|x− x0| − a) , (25)

with initial condition p(x, 0) = δ(x− x0). Thus h(t) is the probability that the particle

is outside the non-resetting window, i.e., in the resetting zone at time t; the particle is

reset to the origin with a total rate h(t)r.

First, we consider the stationary state. One can solve for the stationary probability

using the Green function technique of section 1. For |x− x0| > a (outside the window),

p∗(x|x0) satisfies D ∂2p∗(x|x0)
∂x2 = rp∗(x|x0) and should tend to zero as |x| → ∞. For

0 < |x − x0| < a (inside the window), p∗(x|x0) satisfies D ∂2p∗(x|x0)
∂x2 = 0 for all x 6= x0.

The solution should be continuous at x = x0, but its derivative must undergo a jump

at x = x0 and the jump discontinuity can be computed by integrating Eq. 23 across

x = x0.

Thus, noting that the solution should be symmetric about x = x0, one has

p∗(x|x0) = A exp−α0(|x− x0| − a) for |x− x0| > a (26)

= A− B (|x− x0| − a)) for |x− x0| < a (27)

where α0 =
√
r/D and the constants A and B are determined by the discontinuity in

the derivative of p∗(x|x0) at x = x0 and the continuity of the derivative at |x− x0| = a.
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Figure 3. The stationary solution p∗(x|x0) in Eq. 26-27 plotted as a function of x, for

the choice x0 = 1, a = 1, r = 1 and D = 1. The nonresetting window is over x ∈ [0, 2]

with the initial position at x0 = 1. The solution is symmetric around x0 = 1 with a

cusp at x = x0 = 1.

The result is

A =
α2
0

2 + 2aα0 + a2α2
0

B = α0A (28)

The solution has a cusp at x = x0 and a discontinuity in the second derivative at

|x− x0| = a (see Fig. 3).

We now consider an absorbing trap at the origin. The backward equation for T (x),

the mean time to absorption beginning from x, reads

− 1 = D
∂2T (x)

∂x2
− rT (x) + rT (x0) for |x− x0| > a (29)

−1 = D
∂2T (x)

∂x2
for |x− x0| < a . (30)

The general solution to (29,30) is

T (x) = Ax+B −
x2

2D
(31)

and the solution that does not diverge as x → ∞ is

T (x) =
1 + rT (x0)

r
+ Ce−α0(x−x0−a) for x > x0 + a (32)

T (x) =
1 + rT (x0)

r
+ Ee−α0x + F eα0x for x < x0 − a . (33)
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The constants A,B,C,E, F are determined by the continuity of T (x) and T ′(x) at

|x− x0| = a and the boundary condition T (0) = 0. The result for T (x0) is

T (x0) =
1

r(1 + aα0)

[
coshα0(x0 − a)

(
1 + 2aα0 +

3a2α2
0

2
+ a3α3

0

)

+ sinhα0(x0 − a)

(
1 + 2aα0 +

3a2α2
0

2

)]
−

1

r
. (34)

We now consider the reduced parameters z = α0x0 and y = α0a, and T as a function

y for z fixed. The allowed values of y are 0 ≤ y ≤ z. At y = z, one can show that
dT
dy

∣∣∣
y=z

> 0. Therefore the minimum of T with respect to y is either at y = 0 or at a

non trivial minimum 0 ≤ y ≤ z.

The condition for a minimum dT
dy

= 0 reduces to

2 + y

4 + 5y + 2y2
= tanh(z − y) (35)

Therefore the condition for there to be a nontrivial minimum for y > 0 is given by

tanh z > 1/2 or equivalently z > (log 3)/2 = 0.5493 . . ..

In summary, the analysis of the condition for T (y) to be a minimum reveals that:

if z < (log 3)/2 then y = 0 is the minimum of T (y); if z > (log 3)/2 then T (y) has a

nontrivial minimum at 0 < y < z. Therefore, when z < (log 3)/2 the introduction of

a window around the initial site where resetting does not take place does not reduce

the mean time to absorption. A strategy of introducing a non-resetting window is

an effective one only when the initial point is sufficiently far from the search target.

Otherwise it is advantageous to always reset.

3.2. Optimal resetting function

Having seen in the previous example that non-trivial behaviour emerges for a simple

spatial-dependent resetting rate r(x), one can ask for the optimal function r(x). The

optimisation problem would be to minimise T under certain constraints pertaining to

the information available to the searcher. Clearly if there are no constraints, that is

one can use full information about the target position, the optimal strategy is to reset

immediately whenever x > x0 and not reset when x < x0. This corresponds to the

choice

r(x) = 0 for x < x0

r(x) = ∞ for x > x0 .

In this case problem (20) reduces to the mean first passage time of a diffusive particle

with reflecting barrier at x0 the solution of which is

T ∗(x0) =
x2
0

2D
. (36)

Thus, (36) gives the lowest possible mean first passage time for a diffusive process. One

can then ask about how close simple strategies, such as a spatially constant resetting

rate r or non-resetting window, come to approaching this bound.
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For example, the case of spatially constant resetting rate r considered in section 2

yields a minimum MFPT using (17)

T =
x2
0

D

(ez − 1)

z2
=

x2
0

2D

ez
∗

z∗
= 3.0883... T ∗(x0) (37)

As noted in section 3.1 the value 3.0883 may be improved upon by considering a non-

resetting window around x0.

However, (36) uses the crucial information of whether the target (at x = 0) is to

the right or left of the resetting site x0. More realistically, the searcher would not have

this information. The relevant optimisation problem is to find the optimal resetting rate

r(|x−x0|) (constrained to be a function of the distance |x− x0| from the resetting site)

that minimises T (x0). This remains an open problem.

4. Resetting distribution and target distribution

In this section we consider the generalisation to a system with resetting to points

distributed according to P(z). We shall also consider a distribution of the target site

PT (x).

4.1. Stationary state

We begin by considering again the one-dimensional case of diffusion but this time with

resetting to a random position: at rate r the particle is reset to a random position

z → z + dz drawn with probability P(z)dz. We refer to P(z) as the reset distribution.

For simplicity we take the initial position x0 to be distributed according to the same

distribution as the reset position p(x0, 0) = P(x0).

The Master equation for the probability density p(x, t) now reads

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
− rp(x, t) + rP(x) . (38)

The stationary solution to (38) is simply found using (6) as the Green function:

p∗(x) =
∫
dz P(z)p∗(x|z) (39)

which, using p∗(x|x0) given by (6), yields

p∗(x) =
α0

2

∫
dz P(z) exp(−α0|x− z|)) . (40)

4.2. Mean first passage time

The mean first passage time, T (x0, xT ), to a target point xT , starting from x0 with

resetting distribution P(z), satisfies

− 1 = D
∂2T (x0, xT )

∂x2
0

− rT (x0, xT ) + r
∫
dzP(z) T (z, xT ) (41)

with boundary condition T (xT , xT ) = 0. To solve this equation we let

F (xT ) =
∫

dzP(z)T (z, xT ) (42)
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then write down the general solution to (41) and solve for F (xT ) self-consistently.

The general solution of (41) which is finite as x0 → ∞ is

T (x0, xT ) = Ae−α0|x0−xT | +
1

r
+ F (xT ) (43)

The boundary condition T (xT , xT ) = 0 implies A = −
(
1
r
+ F

)
. Then substituting this

expression for A in (43) and integrating we find

F (xT ) =
(
1

r
+ F (xT )

)(
1−

∫
dzP(z)e−α0 |z−xT |

)
(44)

which yields

F (xT ) =
1

r

(
α0

2p∗(xT )
− 1

)
. (45)

Inserting this into (43) we obtain

T (x0, xT ) =
α0

2rp∗(xT )
[1− exp(−α0|x0 − xT |)] . (46)

As noted above it is convenient to choose the same distribution for x0 as the resetting

distribution. Averaging over x0 then gives using (39)

T (xT ) =
1

r

[
α0

2p∗(xT )
− 1

]
. (47)

Equation (47) gives the expression for the mean first passage time to a target positioned

at xT . Let us check the case of a single position x0 to which the particle is reset

P(z) = δ(z − x0). In this case (47) becomes

T (xT ) =
1

r

[
α0

2

1

p∗(xT )
− 1

]
(48)

which recovers (14) when xT is set to 0.

Finally, we average over possible target positions drawn from a target distribution:

PT (xT )

T =
1

r

[
α0

2

∫
dxT

PT (xT )

p∗(xT )
− 1

]
. (49)

Equation (49) gives the main result of this section— the MFPT for a resetting

distribution P(x0) and averaged over target distribution PT (xT ).

5. Extremisation of mean first passage time

Let us now consider the problem of extremising T given by (49), for a given target

distribution PT (x), with respect to the resetting distribution P(z). Throughout

this section we will assume a symmetric target distribution: PT (x) = PT (−x) and

P ′
T (x) = −P ′

T (−x).

The problem is to minimize the functional appearing in (49):
∫
dxPT (x)

p∗(x)
where

p∗(x) =
α0

2

∫
dz P(z)e−α0|z−x| , (50)
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subject to the constraint
∫
dzP(z) = 1. The functional derivative to be satisfied is

δ

δP(y)

[∫
dx

PT (x)

p∗(x)
+ λ

∫
dxP(x)

]
= 0 (51)

where λ is a Lagrange multiplier. Condition (51) yields
∫

dx
PT (x)

[p∗(x)]2
e−α0|y−x| =

2λ

α0
. (52)

For (52) to hold for all y requires that

PT (x)

[p∗(x)]2
= λ , (53)

or fixing λ through the normalisation of p∗(x)

p∗(x) =
P

1/2
T (x)

∫
dzP

1/2
T (z)

. (54)

Equation (54) implies that to minimise T the stationary probability distribution

should be given by the square root of the target distribution. This result has been derived

in [16] for the case of searching for the target by sampling a probability distribution P(x).

This corresponds to the limit r → ∞ of our model. For r < ∞ we have the additional

constraint that the optimal p∗ should be realisable from a resetting distribution P(z)

through formula (50).

Equation (50) may be solved for P(z) for a desired p∗(x) by taking the Fourier

transform and using the convolution theorem to give

P̃(k) =

(
1 +

k2

α2
0

)
p̃∗(k) (55)

where P̃(k) is the Fourier transform of P(x) and p̃∗(k) is the Fourier transform of p∗(x).

We may invert the Fourier transformation to find

P(x) = p∗(x)−
1

α2
0

d2p∗(x)

dx2
. (56)

However this solution may become negative in which case the solution to the

optimisation problem is unphysical.

5.1. Example of an exponential target distribution

As a simple example, we consider an exponentially decaying target distribution peaked

at x = 0:

PT (x) =
β

2
e−β|x| . (57)

We first note that for a delta function resetting distribution P(z) = δ(z− x0) the mean

first passage time (49) diverges when α0 > β. Therefore, for small β (a broad target

distribution) one expects an optimal resetting distribution (for fixed α0) that differs

from a delta function.
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For β < 2α0, the optimal stationary distribution is from (54)

p∗(x) =
β

4
e−β|x|/2 (58)

This expression yields from (56) a resetting distribution that is always positive, thus

the optimal resetting distribution

P(z) =
β

4
e−β|z|/2

[
1−

β2

4α2
0

]
+

β2

4α2
0

δ(z) (59)

For β > 2α0, (59) always gives negative probabilities due to the first term. Therefore

we anticipate that P(x) = δ(x) is at least a locally optimal solution. In fact one can prove

this is the case by showing that any distribution of the form P(x) = (1− ǫ)δ(x)+ ǫf(x),

where f(x) ≥ 0 and
∫
dxf(x) = 1 leads to an increase in (49) at first order in ǫ when

β > 2α0. (As the proof is straightforward but somewhat tedious we did not include it

here.) Thus a transition in the form of the optimal resetting distribution, from a single

delta function to (59), occurs at β = 2α0.

5.2. Inversion of p∗(x)

As noted above, the constraint P(x) ≥ 0 means that the optimal p∗(x) given by (54)

may not be realisable from a physical resetting distribution P(z). We are therefore led

to the general question of when a desired stationary distribution (e.g. (54)) which we

denote g(x) may be generated from (50) i.e. when can we invert

g(x) =
α0

2

∫
dzP(z)e−α0 |z−x| (60)

to obtain a physical P(z)?

Let us first discuss a sufficient condition for the resetting distribution implied by

(60) to be physical.

Equation (55) relates the characteristic functions of the two distributions P(x) and

g(x) (given there by p∗(x)). In terms of the characteristic function, Polya’s theorem [17]

states that if a function φ(k) satisfies: φ(0) = 1; φ(k) is even; φ(k) is convex for k > 0,

and φ(∞) = 0; then φ(k) is the characteristic function of an absolutely continuous

symmetric distribution. Polya’s theorem therefore gives a sufficient condition for P(x)

implied by p∗(x) to be physical.

The condition for convexity becomes in one dimension

d2

dk2

[(
1 +

k2

α2
0

)
g(k)

]
≥ 0 for all k ≥ 0 . (61)

If the function P̃(k) does not satisfy the conditions of Polya’s theorem, the solution of

(60) is invalid as a probability distribution i.e. the desired g(x) cannot be realised from

any resetting probability distribution P(z).

In the case where (60) may not be inverted to give a physical P(x), it may be

possible to generate the desired form for g(x) on a finite region by choosing a compact
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support for P(z). Let us assume g(x) to be a symmetric function of x. Then if we

choose

P(z) = λ

[
g(z)−

1

α2
0

d2g(z)

dz2

]
for |z| ≤ y0 (62)

= 0 for |z| > y0 , (63)

where λ is a normalising constant, we find

p∗(x) = λg(x) for |x| ≤ y0 (64)

p∗(x) = λg(y0)e
α0(y0−|x|) for |x| ≥ y0 (65)

provided that y0 is chosen so that

g(y0) +
1

α0

g′(y0) = 0 (66)

g(−y0)−
1

α0

g′(−y0) = 0 . (67)

(see Appendix A). The second condition follows from the first by the assumed symmetry

of g(x). As an example, we consider the gaussian distribution

g(x) =

(
β

π

)1/2

e−βx2

(68)

The inversion of (60) using (56) yields

P(x) = g(x)−
1

α2
0

d2g(x)

dx2
=

(
β

π

)1/2

e−βx2

[
1 +

2β

α2
0

−
4β2x2

α2
0

]
(69)

which becomes negative for

|x| >
α0

2β

(
1 +

2β

α2
0

)1/2

(70)

However, choosing a compact support for P(z) according to (67), yields

y0 =
α0

2β
(71)

and we find that the resulting distribution (70) is positive for all x.

6. Conclusion

In this paper we have considered some generalisations of diffusion with stochastic

resetting to the case of spatial-dependent resetting rate and a resetting distribution.

We have considered the mean first passage time to a target which may be situated at a

fixed point (the origin) or distributed according to a distribution and derived the result

(49). The minimisation of this quantity may then be formulated as an optimisation

problem of which we have studied some examples.

In particular we have seen some perhaps unexpected results. First, the introduction

of a non-resetting window around a fixed resetting position reduces the MFPT when the

target is sufficiently far away. This suggests that the optimal resetting distribution, in
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the case where we consider a resetting rate that is symmetric about the restting point,

r(|x − x0|) may be non-trivial. We have also seen that in the case of an exponentially

distributed target (57) the optimal resetting distribution undergoes a transition from

(59) to a pure delta function at the origin.

Generally, the computation of an optimal resetting distribution is an open problem

since the resetting distribution that minimises T may be become negative over some

domain and therefore nonphysical. In the case where (56) becomes unphysical, although

we do not have a solution to the extremisation problem of minimising T subject to the

additional constraint P(x) ≥ 0 we may propose likely candidates for extremal solutions.

One possibility for the optimal physical solution is one that has compact support i.e.

since the constraint for the distribution to be physical is that P(x) ≥ 0, one might

expect that the optimal solution lies on the boundary where P(x) = 0 for some regions

of x. However, we have no proof that this is the case.

Further considerations for optimising mean first passage times in a more realistic

search process would be to add a cost to resetting since in the present model the

diffusive particle instantaneously resets to its selected resetting position. This could

be implemented by attributing some time penalty to each resetting event, as is the case

in the framework intermittent searching.

Appendix A. Proof that (63) yields (65)

We wish to show that expression (63) for P(x)

P(z) = λ

[
g(z)−

1

α2
0

d2g(z)

dz2

]
for |z| ≤ y0 (A.1)

= 0 otherwise , (A.2)

yields (64)-(65) for the stationary distribution given by (40), provided that (66)-(67)

holds.

We begin by inserting (A.1)-(A.2) into (40) in the case |x| < y0:

p∗(x) =
α0λ

2

{∫ x

−y0

[
g(z)−

1

α2
0

d2g(z)

dz2

]
e−α0(x−z)

+
∫ y0

x

[
g(z)−

1

α2
0

d2g(z)

dz2

]
e−α0(z−x)

}
(A.3)

We use the following integration by parts, valid for all α0 6= 0
∫ b

a

[
g(z)−

1

α2
0

d2g(z)

dz2

]
eα0zdz =

[
g(b)−

1

α0

dg(z)

dz

∣∣∣∣∣
z=b

]
eα0b

α0
−

[
g(a)−

1

α0

dg(z)

dz

∣∣∣∣∣
z=a

]
eα0a

α0
(A.4)

Inserting this into (A.3) and cancelling terms yields

p∗(x) =
α0λ

2





2g(x)

α0
+

e−α0(x+y0)

α0



g(−y0)−
1

α0

dg(z)

dz

∣∣∣∣∣
z=−y0





+
eα0(x−y0)

α0



−g(y0)−
1

α0

dg(z)

dz

∣∣∣∣∣
z=y0







 (A.5)
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Then conditions (66)-(67) ensure that p∗(x) = λg(x) for |x| < y0.

In the case x > y0 we find

p∗(x) =
α0λ

2

∫ y0

−y0

[
g(z)−

1

α2
0

d2g(z)

dz2

]
e−α0(x−z)dz

=
α0λ

2
e−α0x




eα0y0

α0



g(y0)−
1

α0

dg(z)

dz

∣∣∣∣∣
z=y0



−
e−α0y0

α0



g(−y0)−
1

α0

dg(z)

dz

∣∣∣∣∣
z=−y0









= λe−α0(x−y0)g(y0) (A.6)

where conditions (66)-(67) have been used.

Similarly in the case x < −y0 we obtain p∗(x) = λg(−y0)e
α0(y0+x).
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