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We construct supersymmetric K field theories (i.e., theories with a non-standard

kinetic term) in 1+1 and 2+1 dimensions such that the bosonic sector just consists

of a nonstandard kinetic term plus a potential. Further, we study the possibility of

topological defect formation in these supersymmetric models. Finally, we consider

more general supersymmetric K field theories where, again, topological defects exist

in some cases.
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I. INTRODUCTION

Topological defects are of fundamental importance in a wide range of physical theories.

Both in particle theory and in condensed matter physics, topological defects may exist as

stable, particle-like excitations above the ground state of a theory. In some cases, states

containing topological defects are even energetically preferred over the homogeneous state,

such that the true ground state of the system is a condensate or lattice of topological

defects. Another field where topological defects are deemed relevant is cosmology. On the

one hand, topological defects are crucial in inflationary scenarios, where they may form

domain walls separating different vacua of some primordial fields in the symmetry-breaking

phase. As a consequence, it is widely believed that a pattern of these topological defects

might be responsible for the structure formation in the very early universe, see e.g. [1],

[2], [3]. On the other hand, topological defects also play an important role in the so-called

brane-world scenario, where it is assumed that the visible universe is a 3+1 dimensional

subspace (”brane”) in a higher-dimensional bulk universe. The brane may be either strictly

3+1 dimensional (”thin brane”) or have a small but nonzero extension also in the additional

dimensions (”thick brane”). In the latter, thick brane case, these branes are normally

topological defects in the higher-dimensional bulk space [4] - [9]. In all these cosmological

applications, the relevant topological defects are usually solutions of some effective field

theories of one or several scalar fields. The scalar field theories may either consist of the

standard kinetic term of the scalar fields plus a potential, in which case the specific properties

of the defects are related to the properties of the potential. Or one may relax the condition on

http://arxiv.org/abs/1107.4370v1
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the kinetic term and allow for more general field theories with a Lagrangian depending both

on the fields and their first derivatives. These so-called K field theories have been increasing

in importance during the last years, beginning with the observation about a decade ago that

they might be relevant for the solution of some problems in cosmology, like K-inflation [10]

and K-essence [11]. K field theories have found their applications in cosmology [12] - [18],

and they introduce some qualitatively new phenomena, like the formation of solitons with

compact support, so-called compactons [19] - [28].

If K field theories turn out to be relevant for the cosmological problems described above

at sufficiently early times (e.g., in the inflationary epoch) and/or sufficiently small scales,

then the question of supersymmetric extensions of these theories naturally arises (see, e.g.,

[29], [30]). Here the situation is quite different for theories supporting topological defects

with standard kinetic term (possibly coupled to gauge fields), on the one hand, and K field

theories, on the other hand. Standard scalar field theories (for co-dimension one defects),

the abelian Higgs (or Chern–Simons Higgs) models (for co-dimensions two defects), the

tHooft-Polyakov monopole theory (for co-dimension 3 defects) and pure Yang–Mills theory

(for co-dimension 4 defects) are all well-known to allow for supersymmetric extensions [31],

[32], [33], [34], [35], and these supersymmetric extensions have been studied intensively over

the last decades.

On the contrary, much less is known about supersymmetric extensions of K field theories

supporting topological solitons. To the best of our knowledge, the problem of supersym-

metric extensions was first investigated in relation to the Skyrme model [36], which is one

of the best-known theories supporting topological solitons and possessing a non-standard

kinetic term. Concretely, the supersymmetric extensions of a S2 (or CP(1)) restriction of

the Skyrme model (the so-called Skyrme–Faddeev–Niemi (SFN) model [37]) were investi-

gated in [38] and in [39]. In both papers, a formulation of the SFN model was used where

the CP(1) restriction of the Skyrme model is achieved via a gauging of the third, unwanted

degree of freedom. As a result, the SFN model is expressed by two complex scalar fields

and an undynamical gauge field, which are then promoted to two chiral superfields and

a real vector superfield in the Wess–Zumino gauge, respectively. The result of the analy-

sis is that the SFN model in its original form cannot be supersymmetrically extended by

these methods. Instead, the supersymmetric extension contains further terms already in the

bosonic sector, and also the field equations of the bosonic fields are different. Recently, we

were able to show, using methods similar to the ones employed in the present article, that

the baby Skyrme model in 2+1 dimensions does allow for a supersymmetric extension [40].

Quite recently, the investigation of the problem of possible supersymmetric extensions of

scalar K field theories has gained momentum, [41], [42], [43], [44]. Here, [41] and [42] stud-

ied supersymmetric extensions of K field theories in 1+1 and in 2+1 dimensions, whereas

the investigations of [43] and [44] are for 3+1 dimensional K theories, and related to some

concrete cosmological applications (ghost condensates and Galileons).

It is the purpose of the present article to introduce and study a large class of supersym-
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metric extensions of scalar K field theories as well as their static topological defect solutions.

The supersymmetric field theories we construct exist both in 1+1 and in 2+1 dimensional

Minkowski space, due to the similarity of the spin structure in these two spaces. The topo-

logical defect solutions we study, on the other hand, all will belong to the class of defects

in 1+1 dimensions (kinks), or to co-dimension one defects in a more general setting. Con-

cretely, in Section 2 we introduce a set of supersymmetric Lagrangians which we shall use

as ”building blocks” for the specific supersymmetric Lagrangians we want to construct. We

find that it is possible to construct supersymmetric Lagrangians such that their bosonic

sectors just consist of a generalized kinetic term plus a potential term. We also investigate

stability issues (energy positivity and the null energy condition). In Section 3, we investigate

topological defect solutions of the theories introduced in Section 2. We find that there exist

two classes of solutions, namely the so-called ”generic” ones, which exist for a whole class

of Lagrangians, and ”specific” ones which depend on the specific Lagrangian under con-

sideration. As these non-linear theories are rather uncommon, we discuss one prototypical

example of the ”specific” solutions in some detail. In this example, it results that all specific

topological kink solutions belong to the class C1 of continuous functions with a continuous

first derivative. We then briefly discuss some further examples, where both compact solitons

and C∞ functions may be found among the specific solutions. In Section 4, we introduce

and study a more general class of supersymmetric Lagrangians, where the bosonic sector

no longer can be expressed as a sum of a generalized kinetic term and a potential. We also

comment on the relation of our results with the results of Bazeia, Menezes, and Petrov [41].

Finally, Section 5 contains a discussion of our results.

II. SUPERSYMMETRIC MODELS

A. Conventions

Our supersymmetry conventions are based on the widely used ones of [45], where our

only difference with their conventions is our choice of the Minkowski space metric ηµν =

diag(+,−,−) (or its restriction to 1+1 dimensions, where appropriate). All sign differences

between this paper and [45] can be traced back to this difference. Concretely, we use the

superfield

Φ(x, θ) = φ(x) + θγψγ(x)− θ2F (x) (1)

where φ is a real scalar field, ψα is a fermionic two-component Majorana spinor, and F is

the auxiliary field. Further, θα are the two Grassmann-valued superspace coordinates, and

θ2 ≡ (1/2)θαθα. Spinor indices are risen and lowered with the spinor metric Cαβ = −Cαβ =

(σ2)αβ, i.e., ψ
α = Cαβψβ and ψα = ψβCβα. The superderivative is

Dα = ∂α + iθβ∂αβ = ∂α − iγµα
βθβ∂µ (2)
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and obeys the following useful relations (D2 ≡ 1
2
DαDα):

DαDβ = i∂αβ + CαβD
2 ; DβDαDβ = 0 ; (D2)2 = −� (3)

D2Dα = −DαD
2 = i∂αβD

β ; ∂αγ∂βγ = −δγβ� (4)

and

D2 =
1

2
∂α∂α − iθα∂βα∂

β + θ2� (5)

D2Φ = F − iθγ∂δγψ
δ + θ2�φ (6)

D2(Φ1Φ2) = (D2Φ1)Φ2 + (DαΦ1)(DαΦ2) + Φ1D
2Φ2 (7)

The components of superfields can be extracted with the help of the following projections

φ(x) = Φ(z)|, ψα(x) = DαΦ(z)|, F (x) = D2Φ(z)|, (8)

where the vertical line | denotes evaluation at θα = 0.

B. Lagrangians

For the models we will construct we need the following superfields

DαΦDαΦ = 2ψ2 − 2θα(ψαF + iψβ∂αβφ) + 2θ2(F 2 − iψα∂αβψ
β + ∂µφ∂

µφ) (9)

DβDαΦDβDαΦ = 2

(

∂µφ∂
µφ− θγ∂αβψγ∂αβφ+ θ2∂αβφ∂αβF +

1

2
θ2∂αβψγ∂αβψγ

+F 2 − 2iFθγ∂δγψ
δ + 2θ2F�φ+ θ2∂δ

γψδ∂βγψ
β
)

(10)

D2ΦD2Φ = F 2 − 2iFθγ∂δγψ
δ + 2θ2F�φ+ θ2∂δ

γψδ∂βγψ
β (11)

as well as their purely bosonic parts (we remark that all spinorial contributions to the

lagrangians we shall consider are at least quadratic in the spinors, therefore it is consistent

to study the subsector with ψα = 0)

(DαΦDαΦ)ψ=0 = 2θ2(F 2 + ∂µφ∂µφ) (12)

(DβDαΦDβDαΦ)ψ=0 = 2(F 2 + ∂µφ∂µφ) + 4θ2(F�φ− ∂µφ∂
µF ) (13)

(D2ΦD2Φ)ψ=0 = F 2 + 2θ2F�φ. (14)

Next, let us construct the supersymmetric actions we want to investigate. A supersymmetric

action always is the superspace integral of a superfield. Further, due to the Grassmann in-

tegration rules
∫

d2θ = 0,
∫

d2θθα = 0,
∫

d2θθ2 = −1 = D2θ2, the corresponding Lagrangian

in ordinary space-time always is the θ2 component of the superfield. Besides, we are mainly

interested in the bosonic sectors of the resulting theories, therefore we shall restrict to the
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purely bosonic sector in the sequel. We will use the following supersymmetric Lagrangian

densities (in ordinary space-time) as building blocks,

(L(k,n))ψ=0 = −
(

D2[(
1

2
DαΦDαΦ)(

1

2
DβDαΦDβDαΦ)

k−1(D2ΦD2Φ)n]|
)

ψ=0

= (F 2 + ∂µφ∂
µφ)kF 2n (15)

where k = 1, 2, . . . and n = 0, 1, 2, . . .. The idea now is to choose certain linear combinations

of the L(k,n) with specific properties. We observe that a general linear combination contains

terms where powers of the auxiliary field F couple to the kinetic term ∂µφ∂
µφ. But there

exists a specific linear combination where these mixed terms are absent, namely

(L(k))ψ=0 ≡ (L(k,0))ψ=0 −
(

k

1

)

(L(k−1,1))ψ=0 +

(

k

2

)

(L(k−2,2))ψ=0 + . . . (16)

. . .+ (−1)k−1

(

k

k − 1

)

(L(1,k−1))ψ=0 = (∂µφ∂µφ)
k + (−1)k−1F 2k.

The Lagrangians we want to consider are linear combinations of the above, where we also

want to include a potential term, because we are mainly interested in topological solitons

and defect solutions. That is to say, we add a prepotential P (Φ) to the action density in

superspace which, in ordinary space-time, induces the bosonic Lagrangian density (D2P )| =
P ′(φ)F (here the prime denotes a derivative w.r.t. the argument φ). Therefore, the class of

Lagrangians we want to consider is

L(α,P )
b =

N
∑

k=1

αk(L(k))ψ=0 + P ′F

=
N
∑

k=1

αk[(∂
µφ∂µφ)

k + (−1)k−1F 2k] + P ′(φ)F (17)

where the lower index b means ”bosonic” (we only consider the bosonic sector of a su-

persymmetric Lagrangian), and the upper index α should be understood as a multiindex

α = (α1, α2, . . . , αN) of coupling constants. Further, N is a positive integer. In a next step,

we eliminate F via its algebraic field equation

N
∑

k=1

(−1)k−12kαkF
2k−1 + P ′(φ) = 0. (18)

For a given function P (φ) this is, in general, a rather complicated algebraic equation for F .

However, we made no assumption yet about the functional dependence of P , therefore we

may understand this equation in a second, equivalent way: we assume that F is an arbitrary

given function of φ, which in turn determines the prepotential P (φ). This second way of

interpreting Eq. (18) is more useful for our purposes. Eliminating the resulting P ′(φ) we
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arrive at the Lagrangian density

L(α,F )
b =

N
∑

k=1

αk[(∂
µφ∂µφ)

k − (−1)k−1(2k − 1)F 2k] (19)

where now F = F (φ) is a given function of φ which we may choose freely depending on the

theory or physical problem under consideration.

C. Energy considerations

We would like to end this section with some considerations on the positivity of the energy.

The energy density corresponding to the Lagrangian (19) is (in 1+1 dimensions and with

φ̇ = ∂tφ, φ
′ = ∂xφ)

E (α,F )
b =

N
∑

k=1

αk

(

(φ̇2 − φ′2)k−1((2k − 1)φ̇2 + φ′2) + (−1)k−1(2k − 1)F 2k
)

. (20)

This expression is obviously positive semi-definite if only the αk with odd k are nonzero

and positive. It remains positive semi-definite if both the lowest (usually k = 1) and the

highest value of k (k = N) with a nonzero and positive αk are odd, provided that the

intermediate αk for even k are not too large. For a given value of N , inequalities for the

coefficients αk guaranteeing positive semi-definiteness of the energy density can be derived

without difficulties.

A second, less restrictive condition which is deemed sufficient to guarantee stability is the

so-called null energy condition

Tµνn
µnν ≥ 0 (21)

where Tµν is the energy-momentum tensor and nµ is an arbitrary null vector. For general

Lagrangians L(X, φ) where X ≡ 1
2
∂µφ∂

µφ, the energy momentum tensor reads

Tµν = L,X∂µφ∂νφ− gµνL (22)

(here L,X is the X derivative of L), and the null energy condition simply is L,X ≥ 0. For

our specific class of Lagrangians (19), the null energy condition therefore reads

(L(α,F )
b ),X =

N
∑

k=1

2kαk(∂µφ∂
µφ)k−1 ≥ 0. (23)

Again, this condition is automatically satisfied if only αk for odd k are nonzero, or if the αk
for even k obey certain restrictions.

Remark: in [42] a class of models based on the superfield (82) of Section 4.2 were intro-

duced. These models satisfy neither energy positivity nor the null energy condition. They

support, nevertheless, topological kink solutions, and their energy densities can be expressed

as the squares of the corresponding supercharges. A more complete analysis of these models

which would resolve the issue of stability is, therefore, an open problem at the moment

which requires further investigation.
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III. SOLUTIONS

The Euler-Lagrange equation for the Lagrangian density (19) is

N
∑

k=1

2kαk
(

∂µ[(∂νφ∂
νφ)k−1∂µφ] + (−1)k−1(2k − 1)F 2k−1F,φ

)

= 0 (24)

which, in 1+1 dimensions and for static (time-independent) fields simplifies to

N
∑

k=1

2k(−1)k−1αk
(

−∂x(φ2k−1
,x ) + (2k − 1)F 2k−1F,φ

)

= 0. (25)

A. Generic static solutions

First of all, we want to demonstrate that, due to the restrictions imposed by supersym-

metry, this equation has a class of static, one-dimensional solutions which are completely

independent of the coefficients αk, which we shall call the ”generic” solutions. Indeed, if we

impose equation (25) for each k (i.e., for each term in the sum) independently, the resulting

equation is

∂x(φ
2k−1
,x ) = (2k − 1)F 2k−1F,φ (26)

or, after multiplying by φ,x and dividing by (2k − 1),

φ2k−1
,x φ,xx = F 2k−1F,φφ,x (27)

which may be integrated to φ2k
,x = F 2k and, therefore, to the k independent solution

φ,x ≡ φ′ = ±F. (28)

That is to say, these solutions only depend on the choice of F = F (φ), but do not depend on

the αk and, therefore, exist for an infinite number of theories defined by different values of

the αk. Depending on the choice for F (φ), the static solutions may be topological solitons.

E.g. for the simple choice F = 1 − φ2, the solution of (28) is just the well-known φ4 kink

solution φ(x) = tanh(x− x0) where x0 is an integration constant (the position of the kink).

As another example, for F =
√

|1− φ2|, we get the compacton solution

φ(x) =











−1 x− x0 ≤ −π
2

sin(x− x0) −π
2
≤ x− x0 ≤ π

2

1 x− x0 ≥ π
2

(29)

where, again, x0 is an integration constant.

The energy of a generic supersymmetric kink solution may be calculated with the help

of the first order formalism, which has the advantage that an explicit knowledge of the

kink solution is not needed for the determination of its energy (for details on the first order
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formalism we refer to [16]). All that is needed is the field equation of a generic solution

φ′ = ±F (we shall choose the plus sign corresponding to the kink, for concreteness). The

idea now is to separate a factor φ′ in the energy density with the help of the field equation,

because this allows to rewrite the base space integral of the energy functional as a target

space integral with the help of the relation φ′dx ≡ dφ. Concretely, we get for the energy

density of the generic kink solution

E =

N
∑

k=1

(−1)k−1αk(φ
′2k + (2k − 1)F 2k) =

N
∑

k=1

(−1)k−1αk2kF
2k

= φ′
N
∑

k=1

(−1)k−1αk2kF
2k−1 ≡ φ′W,φ (30)

where W,φ and its φ integral W (φ) are understood as functions of φ. For the energy this

leads to

E =

∫ ∞

−∞
dxφ′W,φ =

∫ φ(∞)

φ(−∞)

dφW,φ =W (φ(∞))−W (φ(−∞)). (31)

As indicated, all that is needed for the evaluation of this energy is the root φ′ = F (φ) and

the asymptotic behaviour φ(±∞) of the kink. We remark that the integrating function

W (φ) of the first order formalism is identical to the prepotential P (φ),

W (φ) = P (φ) (32)

as is obvious from Eq. (18). This is exactly as in the case of the standard supersymmetric

scalar field theory with the standard, quadratic kinetic term. It also remains true for the

class of models introduced and studied in [41], as we shall discuss in some more detail in

Section 4.B. Both for the standard supersymmetric scalar field theories and for the models

introduced in [41] it is, in fact, possible to rewrite the energy functional for static field

configurations in a BPS form, such that both the first order field equations for static fields

and the simple, topological expressions E = P (φ(∞))−P (φ(−∞)) for the resulting energies

are a consequence of the BPS property of the energy functional (for the models introduced

in [41] we briefly recapitulate the BPS property of static kink solutions in Section 4.B). On

the contrary, for the models introduced in the previous section there is no obvious way to

rewrite them in a BPS form, despite the applicability of the first order formalism, because

the energy functional contains, in general, many more than two terms (just two terms are

needed to complete a square and arrive at the BPS form).

On the other hand, for the additional, specific solutions of the theories of Section 2 to be

discussed in the following two subsections, the relation W = P is no longer true, although

it is still possible to calculate the energies of the specific solutions with the help of the first

order formalism.
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B. Specific solutions: an example

Next, we want to study whether in addition to the solutions φ2
,x = F 2, which do not

depend on the specific Lagrangian (i.e., on the coefficients αk), there exist further (static)

solutions which do depend on the Lagrangian. Both the existence of such additional solu-

tions and their properties (e.g., being topological solitons) will depend on the Lagrangian,

therefore the results will be less general and have to be discussed separately for each model.

So, let us select a specific Lagrangian (specific values for the αk) as an example. Concretely,

we want to study the simplest case which gives rise to a potential with several vacua and

obeys certain additional restrictions (positivity of the energy). Positivity of the energy re-

quires that both the highest and the lowest nonzero αk are for odd k, so we choose nonzero

α3 and α1 for the simplest case. Further, we want that the potential factorizes and gives

rise to several vacua, so we choose the concrete example α3 =
1
5
, α2 =

2
3
, and α1 = 1, which

gives rise to the Lagrangian density

Lexb =
1

5
(∂µφ∂

µφ)3 +
2

3
(∂µφ∂

µφ)2 + ∂µφ∂
µφ− F 6 + 2F 4 − F 2 (33)

where, indeed, the potential in terms of F factorizes, F 6−2F 4+F 2 = F 2(1−F 2)2. Next, we

want to assume the simplest relation between F and φ, namely F 2(φ) = φ2. The resulting

Lagrangian is

Lexb =
1

5
(∂µφ∂

µφ)3 +
2

3
(∂µφ∂

µφ)2 + ∂µφ∂
µφ− φ2(1− φ2)2. (34)

We already know that it gives rise to the static solutions

(φ,x)
2 = φ2 ⇒ φ(x) = exp±(x− x0). (35)

These solutions have infinite energy and are not solitons. We want to investigate whether

there exist additonal solutions and, specifically, whether there exist topological solitons. The

potential has the three vacua φ = (0, 1,−1), therefore topological solitons (static solutions

which interpolate between these vacua) are not excluded. We shall find that these solitons

exist in the space C1 of continuous functions with a continuous first derivative, but not in

the spaces Cn (with continuous first n derivatives) for n > 1.

The once-integrated field equation for static solutions (with the integration constant set

equal to zero, as required by the finiteness of the energy) reads (φ′ ≡ φ,x)

φ′6 − 2φ′4 + φ′2 = φ6 − 2φ4 + φ2 (36)

and obviously has the solutions (35). For a better understanding of further solutions the

following observations are useful. Firstly, for a fixed value x = x̃ of the independent variable

x, the field φ and its derivative φ′ have to obey the equation

V (φ) = V (φ′) = c (37)
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where c is a real, positive constant (or zero) and

V (λ) ≡ λ6 − 2λ4 + λ2 = λ2(1− λ2)2 (38)

is the potential (see Figure (1)). In general, the equation V (λ) = c has six solutions

λ = ±λi(c), i = 1 . . . 3. In other words, if we choose the initial condition φ(x̃) = φ̃, then

φ′(x̃) is not uniquely determined (as would be the case for a linear first order equation) and

may take any of the six values ±λi(c) such that V (±λi(c)) = V (φ̃) = c. Obviously, the

choice φ′(x̃) = ±φ̃ leads to the exponential solutions (35), whereas other choices will lead to

additional solutions.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Φ

0.05

0.10

0.15

0.20

0.25

0.30
V

FIG. 1: The potential V (φ) = φ6 − 2φ4 + φ2.

Secondly, the field equation (36) leads to the following equation for the second derivative

φ′′ =
(3φ4 − 4φ2 + 1)φ

3φ′4 − 4φ′2 + 1
(39)

where the numerator is zero for all critical points (minima and maxima) φ = (0,±1,± 1√
3
) of

the potential V (φ), whereas the denominator is zero for the critical points φ′ = (±1,± 1√
3
).

For later convenience we also remark that at the two local maxima φ = ± 1√
3
the potential

takes the value V (± 1√
3
) = 4

27
and that the equation V (λ) = 4

27
has the two further solutions

λ = ± 2√
3
which are not critical points.

We observe that the equation V (φ′) = V (φ) can in fact be solved algebraically for φ′ and

leads to the solutions

φ′ = ±φ (40)

(that is, the exponential solutions (35)) and to the four further solutions

φ′ = ±1

2

(

φ±
√

4− 3φ2
)

. (41)
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For this last expression, reality of φ′ requires that |φ| ≤ 2√
3
. The resulting integral for φ

∫ φ

0

dφ̃

±(φ±
√

4− 3φ2)
=

1

2
(x− x0) (42)

may be resolved explicitly, providing an implicit solution x − x0 = H(φ) where, for each

choice of signs, H(φ) is a combination of logaritms and inverse trigonometric functions. The

explicit expressions for H are, however, rather lenghty and not particularly illuminating,

therefore we prefer to continue our discussion with a combination of qualitative arguments

and numerical calculations. We want to remark, however, that the graphs of the numerical

solutions shown in the figures below agree exactly with the graphs of the analytic solutions

(42) (we remind the reader that for the graph of a function the implicit solution is sufficient).

For the qualitative discussion, we now assume that we choose an ”initial value” at a

given point x̃. Due to translational invariance we may choose this point at zero x̃ = 0, i.e.

φ(0) = φ0, without loss of generality. For 0 < |φ0| < 1√
3
, 1√

3
< |φ0| < 1 and 1 < |φ0| < 2√

3
,

φ′(0) may take any of the six real solutions of the equation V (φ′) = V (φ0). Further, φ′′(0)

as well as all higher order derivatives at x = 0 are uniquely determined by linear equations,

as we shall see in a moment. Therefore, for these ”initial conditions” φ0, there exist indeed

the six solutions (35) and (42). For |φ0| > 2√
3
, only the two solutions φ′(0) = ±φ0 of

the equation V (φ′) = V (φ0) are real, therefore only the two exponential solutions (35)

exist. At the critical points φ0 = 0,±1 and φ0 = ± 1√
3
,± 2√

3
the situation is slightly more

complicated (strictly speaking φ0 = ± 2√
3
are not critical points, because V ′(± 2√

3
) 6= 0;

however, φ0 = ± 2√
3
provides the same level height of the potential like the critical points

φ0 = ± 1√
3
, that is, V (± 1√

3
) = V (± 2√

3
) = 4

27
, therefore these points play a special role in

the analysis, too). In order to understand what happens it is useful to insert the Taylor

expansion about x = 0,

φ(x) =
∞
∑

k=0

fkx
k (43)

into the field equation V (φ)− V (φ′) = 0, which, up to second order, reads

0 = f 2
0 (1− f 2

0 )
2 − f 2

1 (1− f 2
1 )

2 + (44)

[2f0(1− 4f 2
0 + 3f 4

0 )f1 − 4f1(1− 4f 2
1 + 3f 4

1 )f2]x+ (45)

[(1− 12f 2
0 + 15f 4

0 )f
2
1 + 2f0(1− 4f 2

0 + 3f 4
0 )f2 −

−4(1− 12f 2
1 + 15f 4

1 )f
2
2 − 6f1(1− 4f 2

1 + 3f 4
1 )f3]x

2 + . . . (46)

It can be inferred easily that for generic values of f0 and f1 (values which are not critical

points), f2 is determined uniquely by a linear equation from the term of order x1. On the

other hand, if f1 takes a critical value, then the coefficient multiplying f2 in the order x1

term is zero, and f2 is determined, instead, by a quadratic equation coming from the term of

order x2. These points will be important in the following, because precisely at these points

we may join different solutions such that the resulting solution belongs to the class C1 of
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continuous functions with a continuous first derivative. Specifically, we find the following

possible values for f1 and f2 for a given, critical f0 (we only consider the cases f0 ≥ 0 because

of the obvious symmetry φ→ −φ of the theory). For f0 = 0

(f0, f1, f2) = (0, 0, 0) or (0,±1,±1

4
) (47)

where the first case corresponds to the trivial vacuum solution φ ≡ 0, and the second

case corresponds to the four solutions (42). The exponential solutions (35) are obviously

incompatible with the ”initial condition” φ(0) = 0 (the vacuum solution φ(x) = 0 can

be understood as a limiting case of the two exponential solutions for infinite integration

constant x0). Next, for f0 = 1

(f0, f1, f2) = (1, 0, 0) or (1,±1,±1

2
) (48)

where the first case corresponds to the trivial vacuum solution φ ≡ 1. The second case

consists of the exponential solutions (two solutions) and of two of the four solutions (42).

The other two are incompatible with the ”initial conditions”. For f0 =
1√
3
we get

(f0, f1, f2) = (
1√
3
,± 1√

3
,± 1

2
√
3
) or (

1√
3
,± 2√

3
, 0) (49)

where the first case contains both the two exponential solutions and two of the four solutions

(42), and the second case corresponds to the other two solutions (42). Finally, for f0 =
2√
3

we find

(f0, f1, f2) = (
2√
3
,± 2√

3
,
1√
3
) or (

2√
3
,± 1√

3
,∞) (50)

where the first case provides the two exponentail solutions (35), whereas the second case

shows that the solutions (42) run into a singularity when |f0| = 2√
3
.

Now let us study some of these cases in more detail. Concretely, we investigate the case

(f0, f1, f2) = (0, 1, 1
4
). Firstly, for negative x, φ(x) diminishes from φ(0) = 0 towards −1,

and φ′(x) diminishes from φ′(0) = 1 towards 0, such that for a fixed value of x φ and φ′ have

the same height on the graph of V , see Fig. (1). If x is sufficiently negative such that φ(x) is

close to its vacuum value −1 and φ′(x) is close to zero, the field equation may be linearized

about the vacuum −1, and it follows easily that the vacuum is approached exponentially,

like φ(x) ∼ −1 + exp(4x) (remember that x is negative). In other words, for negative x

the solution behaves like a nice kink or topological soliton and does not reach the vacuum

value −1 for finite x. For positive x, in a first instant both φ(x) and φ′(x) grow till they

reach the values φ(x1) = 1√
3
and φ′(x1) = 2√

3
for some x1 > 0. At this point φ′′(x1) = 0

therefore φ′ may change direction in a smooth way. For x > x1, φ continues to grow while

φ′ shrinks till they reach the values φ(x2) =
2√
3
and φ′(x2) =

1√
3
for some x = x2. At this

point φ′′(x2) = ∞, and the solution hits a singularity. A numerical integration confirms

these findings, see Figure (2).
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FIG. 2: For the ”initial condition” φ(0) = 0 all the five solutions (including the trivial solution

φ ≡ 0) φ(x) (left figure) and the first derivatives φ′(x) (right figure). The singularity at φ(x2) =

± 2√
3
, φ′(x2) = ± 1√

3
for some x2, where the integration breaks down, is clearly visible.

There exists, however, the possibility to form a topological soliton or kink solution in

the class C1 of continuous functions with continuous first derivatives by simply joining the

solution (f0, f1, f2) = (0, 1, 1
4
) for negative x with the solution (f0, f1, f2) = (0, 1,−1

4
) for

positive x. Indeed, both φ(0) and φ′(0) agree, so the resulting solution is C1. Further,

φ′ in the second case diminishes for positive x because φ′′(0) is negative. Therefore, φ(x)

approaches 1 and φ′ approaches 0 for large positive x, and a linearized analysis reveals that

in that region φ(x) ∼ 1− exp(−4x). As a consequence, the solution obtained by the joining

procedure behaves exactly like a kink interpolating between the vacuum −1 at x = −∞
and the vacuum +1 at x = ∞. For the corresponding result of a numerical integration, see

Figure (3).

-4 -2 2 4
x

-1.5

-1.0

-0.5

0.5

1.0

1.5
Φ

-4 -2 2 4
x

-1.5

-1.0

-0.5

0.5

1.0

1.5
Φ¢

FIG. 3: For the ”initial condition” φ(0) = 0, the kink solution interpolating between φ = −1 and

φ = 1 (left figure) and its first derivative (right figure).

Finally, let us discuss the possibility to form a kink in the class of C1 functions which inter-

polates, e.g., between the vacuum 0 and the vacuum 1. For this purpose, we should join the

solution (f0, f1, f2) = ( 1√
3
, 1√

3
, 1
2
√
3
) for x < 0 with the solution (f0, f1, f2) = ( 1√

3
, 1√

3
,− 1

2
√
3
)
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for x > 0. Indeed, the solution (f0, f1, f2) = ( 1√
3
, 1√

3
, 1
2
√
3
) is just the exponential solu-

tion exp x and behaves well (approaches 0 exponentially) for negative x. For the solution

(f0, f1, f2) = ( 1√
3
, 1√

3
,− 1

2
√
3
), on the other hand, both φ(0) and φ′(0) are equal to 1√

3
at

x = 0. For increasing x, φ(x) increases and φ′(x) decreases until they get close to 1 and 0,

respectively. But near these values, again, a linearized analysis applies and tells us that φ

behaves like φ(x) ∼ 1−exp(−4x). Therefore, the solution produced by the joining procedure

describes a kink which interpolates between the vacuum φ = 0 at x = −∞ and the vacuum

φ = 1 at x = ∞. The general solution for the initial condition φ(0) = 1√
3
is displayed in

Figure (4), and the kink solution is shown in Figure (5).
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FIG. 4: For the ”initial condition” φ(0) = 1√
3
all six solutions φ(x) (left figure) and the first

derivatives φ′(x) (right figure). Again, the singularities at φ(x2) = ± 2√
3
, φ′(x2) = ± 1√

3
for some

x2 for the non-exponential solutions are clearly visible.
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FIG. 5: For the ”initial condition” φ(0) = 1√
3
, the kink solution interpolating between φ = 0 and

φ = 1 (left figure) and its first derivative (right figure).

The remaining kink and antikink solutions which we have not discussed explicitly may

be easily found with the help of the obvious symmetries x → −x and φ → −φ. We remark

that from the point of view of the variational calculus, solutions in the C1 class of functions

are perfectly valid. They provide well-defined energy densities and, therefore, well-defined
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critical points of the energy functional. Whether they are acceptable from a physics point

of view depends, of course, on the concrete physical problem under consideration.

Finally, we want to calculate the energies of the kinks constructed by the joining procedure

described above. These energies can again be calculated exactly and do not require the

knowledge of the explicit solutions φ(x) but, instead, just the knowledge of the six roots

(40), (41) of the first order equation V (φ) = V (φ′), Eq. (36). Indeed, with the help of the

first order equation we find for the energy density for static solutions

E = −Lexb =
1

5
φ′6 − 2

3
φ′4 + φ′2 + φ2(1− φ2)2 =

6

5
φ′6 − 8

3
φ′4 + 2φ′2 (51)

and for the energy

E =

∫ ∞

−∞
dxE =

∫ ∞

−∞
dxφ′(

6

5
φ′5 − 8

3
φ′3 + 2φ′)

≡
∫ ∞

−∞
dxφ′W,φ =

∫ φ(∞)

φ(−∞)

dφW,φ = W (φ(∞))−W (φ(−∞)) (52)

where

W,φ(φ) =
6

5
φ′5 − 8

3
φ′3 + 2φ′ (53)

(and its φ integral W (φ)) must be understood as a function of φ which results when evalu-

ating the above expression for one of the six roots (40), (41) for φ′. Here we use again the

first order formalism of [16] to which refer for a detailed discussion.

In our case, the kinks are constructed by joining two different solutions, therefore the

expression for the energy is slightly more complicated and reads

E =W (2)(φ(∞))−W (2)(φ(0)) +W (1)(φ(0))−W (1)(φ(−∞)) (54)

where W (2) and W (1) are the functions which result from evaluating the expression (53) for

the two different roots φ′ which form the specific kink solution, and from performing the

corresponding φ integrals. The joining may be done at any point x0 in base space (because of

translational invariance) but we chose x0 = 0 in our specific examples, therefore the joining

point in target space is φ(0).

Concretely, for the soliton of Figure 3 which interpolates between φ(−∞) = −1 and

φ(∞) = 1, with joining point φ(0) = 0, the correct roots are

φ < 0 : φ′ =
1

2
(φ+

√

4− 3φ2) , φ > 0 : φ′ = −1

2
(φ−

√

4− 3φ2). (55)

Further, positive and negative φ regions give exactly the same contribution to the total
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energy, therefore the soliton energy can be calculated to be

E(−1,1) = 2

∫ 0

−1

dφ

(

6

5
[
1

2
(φ+

√

4− 3φ2)]5 − 8

3
[
1

2
(φ+

√

4− 3φ2)]3 + φ+
√

4− 3φ2

)

= 2

[

φ6

10
− φ4

12
+

(

φ

10
+

11

60
φ3 − φ5

10

)

√

4− 3φ2 +
2

3
√
3
arcsin

(√
3

2
φ

)]0

φ=−1

(56)

= 2

(

1

6
+

2π

9
√
3

)

=
1

3
+

4π

9
√
3
. (57)

For the kinks which interpolate between 0 and ±1, we choose the one which interpolates

between φ(−∞) = −1 and φ(∞) = 0, because then we may use exactly the same solution as

above for the region between φ = −1 and φ = − 1√
3
. For φ between − 1√

3
and 0, the correct

root is φ′ = −φ, therefore we get for the total energy of this kink

E(−1,0) =

[

φ6

10
− φ4

12
+

(

φ

10
+

11

60
φ3 − φ5

10

)

√

4− 3φ2 +
2

3
√
3
arcsin

(√
3

2
φ

)]− 1
√

3

φ=−1

+

[

−1

5
φ6 +

2

3
φ4 − φ2

]0

φ=− 1
√

3

=
1

6
+

2π

9
√
3
− 7

45
− π

9
√
3
+

4

15
=

5

18
+

π

9
√
3
. (58)

The remaining kinks, obviously, have the same energy. We remark that E(−1,1) > 2E(−1,0).

Therefore, the kink interpolating between −1 and 1 probably is unstable against the decay

into one kink interpolating between −1 and 0 plus one kink interpolating between 0 and

+1. Establishing this conjecture would, however, require a numerical integration of the

time-dependent system, which is beyond the scope of the present article.

C. Further examples of specific solutions

In this subsection we shall discuss two more examples which are similar to the theory

studied in the last subsection. In the first example, the main difference is that the kinks no

longer approach their vacuum values in an exponential fashion. Instead, two of the three

vacua are approached compacton-like (i.e. the field takes the corresponding vacuum value

already for finite x), whereas the third vacuum is approached in a power-like way (concretely

like φ ∼ x−1). In the second example, we will find that there exists a specific kink solution

which belongs to the class of C∞ functions. In both examples, we use the same values for

the αi like in (33). Besides, these examples are similar in many respects to the one discussed

above in detail, so the discussion which follows can be much shorter. Also the resulting

soliton energies can be calculated analytically, using exactly the same method like in the

above example, therefore we do not repeat this calculation.
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In the first example, we choose for F

F =
√

|1− φ2|. (59)

We already know that this model leads to the α-independent static field equations

φ′ = ±F = ±
√

|1− φ2| (60)

which have the compacton solutions (29) (the corresponding anti-compacton solutions for

the minus sign). The once integrated static field equation is

φ′6 − 2φ′4 + φ′2 = |1− φ2|3 − 2(1− φ2)2 + |1− φ2| = φ4|(1− φ2)| (61)

and might lead to further solutions, as in the previous subsection. Indeed, the potential

Ṽ = φ4|1 − φ2| has the three vacua φ = 0,±1. Further, the potential Ṽ behaves like

Ṽ ∼ |δφ| near the two vacua ±1 (i.e., for φ = ±(1 − δφ) and small δφ), whereas it behaves

like Ṽ ∼ δφ4 near the vacuum 0 (i.e. for φ = δφ and small δφ). The asymptotic field

equations for δφ are δφ′2 ∼ |δφ| near the two vacua ±1, with the asymptotic compacton-like

solution

δφ ∼ 1

2
(x− x0)

2 for x ≤ x0 ; δφ = 0 for x > x0.

The asymptotic field equation near the vacuum 0 is δφ′2 ∼ δφ4 with the solutions

δφ = ± 1

x− x0
+ o

(

1

x

)

, |x| → ∞

and, therefore, the algebraic, power-like localization announced above. It only remains

to determine whether it is possible to join a solution with this asymptotic behaviour to a

compacton-like solution, forming a kink of the semi-compacton type, which interpolates, e.g.,

between the vacuum φ(−∞) = 0 (with a power-like approach) and the vacuum φ(x1) = 1

(where x1 is the compacton boundary). For this purpose we note that Eq. (61) has, in

addition to the two roots (60), the four roots

φ′ = ± 1√
2

√

1 + φ2 +
√

1 + 2φ2 − 3φ4 (62)

φ′ = ± 1√
2

√

1 + φ2 −
√

1 + 2φ2 − 3φ4. (63)

The solution with the right behaviour (i.e., approaching the vacuum φ = 0) is the lower one,

Eq. (63). Now we just have to determine whether it is possible to join this solution with

the compacton solution such that both φ and φ′ coincide at the joining point. The result

is that this joining is indeed possible, as may be checked easily. For the kink interpolating

between φ(−∞) = 0 and φ(x1) = 1, e.g., the joining point is φ(x0) =
√

2
3
, φ′(x0) = 1√

3

where, as always, the joining point x0 in base space is arbitrary. Further, for joining point

x0, the compacton boundary of the semi-compacton is at x1 = x0 +
π
2
− arcsin

√

2
3
.
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We remark that in this example all kink solutions (both the compactons and the semi-

compactons) are solutions in the C1 class of functions, because the second derivative of the

field at the compacton boundary is not uniquely determined (its algebraic equation has three

solutions, corresponding to the vacuum, the compacton, and a third solution with infinite

energy, respectively). For the semi-compacton, the second derivative of the field at the

joining point obviously is not uniquely determined, as well, analogously to the kinks formed

by the joining procedure in the previous subsection.

For the second example we choose

F = 1− φ2 (64)

which leads to the following first order equation

φ′6 − 2φ′4 + φ′2 = (1− φ2)6 − 2(1− φ2)4 + (1− φ2)2 = φ4(1− φ2)2(2− φ2)2. (65)

Therefore, the resulting potential ˜̃V = φ4(1− φ2)2(2− φ2)2 has the five vacua φ2 = (0, 1, 2).

Further, the four vacua φ = ±1 and φ = ±
√
2 are approached quadratically and will,

therefore, lead to the usual exponential kink tail. The vacuum φ = 0, on the other hand, is

approached with a fourth power, ˜̃V ∼ δφ4, and will lead to an algebraic, power-like tail, like

in the last example. Concretely, we find near φ = 0, δφ′2 ∼ 4δφ4 and therefore

δφ ∼ ± 1

2(x− x0)
, |x| → ∞. (66)

The six roots of Eq. (65) are

φ′ = ±(1 − φ2) (67)

(which is just the first order equation for the standard φ4 kink) and the four additional

equations

φ′ = ±1

2

(

1− φ2 +
√

1 + 6φ2 − 3φ4
)

(68)

φ′ = ±1

2

(

1− φ2 −
√

1 + 6φ2 − 3φ4
)

. (69)

Here, equation (68) describes solutions which approach the two vacua φ = ±
√
2, whereas

equation (69) describes solutions which approach the vacuum φ = 0. By joining different

solutions, we may create kinks in the class C1 which interpolate between any two different

vacua of the model, as we did in the previous two examples. Two of the kinks belong,

however, to the class of C∞ functions. The first C∞ kink is just the standard φ4 kink

interpolating between the two vacua φ = −1 and φ = 1, and it respresents a generic solution

of the model. The second C∞ kink is the one interpolating between φ = −
√
2 and φ =

√
2, as

we want to demonstrate now. Indeed, equation (68) describes a solution which approaches

the two vacua φ = ±
√
2. Further, this equation (we choose the root with the plus sign, for

concreteness) is completely regular in the interval −
√
2 ≤ φ ≤

√
2 (the equation develops
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singularities at the two points φ2 = 1 + 2√
3
, but these points are outside the interval where

the kink takes its values). Therefore, we expect that this equation should describe a smooth

C∞ kink which interpolates between the two vacua. Both an exact, implicit integration

and a numerical integration precisely confirm this expecation. We display the result of a

numerical integration in Fig. (6).
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FIG. 6: The specific, regular kink solution interpolating between the two vacua φ = −
√
2 and

φ =
√
2 (left figure) and its first derivative (right figure).

We remark that this kink has the interesting feature that its first derivative (and, there-

fore, also the energy density) has a local minimum at the position of the kink center, whereas

the two local maxima are slightly displaced to the right and left of the center. We further

remark that this example demonstrated explicitly that C∞ kinks may exist not only among

the generic solutions but also among the specific solutions of our supersymmetric K field

theories (which was not obvious in the other two examples studied so far).

IV. FURTHER MODELS

A. Field-dependent αk

Here we want to construct further supersymmetric K field theories based on the observa-

tion that the models introduced in the last section remain supersymmetric when the factors

αk multiplying each power of the kinetic term depend on φ instead of being constants. In-

deed, a superfield which is just an arbitrary function α(Φ) of the basic superfield Φ has the

superspace expansion in the bosonic sector ψ = 0

(α(Φ))ψ=0 = α(φ)− θ2α′(φ)F (70)

(the prime α′(φ) denotes the derivative w.r.t. the argument φ). If this superfield is multiplied

by the superfield (DαΦDαΦ)ψ=0 which only has a θ2 component in the bosonic sector, then

in the product only the θ-independent component of α(Φ) contributes,

(α(Φ))ψ=0| = α(φ) (71)
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and the multiplication with the superfield α(Φ) corresponds to a multiplication with the

ordinary field α(φ) of the Lagrangian densities (15), i.e., to the new building blocks

(L(k,n))ψ=0 = −
(

D2[α(k,n)(Φ)(
1

2
DαΦDαΦ)(

1

2
DβDαΦDβDαΦ)

k−1(D2ΦD2Φ)n]|
)

ψ=0

= α(k,n)(φ)(F 2 + ∂µφ∂
µφ)kF 2n (72)

where again k = 1, 2, . . . and n = 0, 1, 2, . . .. The cancellation of the mixed terms

(∂µφ∂
µφ)iF 2j may again be achieved by calculating the sum analogous to (17) provided

all the α(k,n) in the sum are equal. Linear combinations of these Lagrangians are therefore

L(α,P )
b =

N
∑

k=1

αk(φ)[(∂
µφ∂µφ)

k + (−1)k−1F 2k] + P ′(φ)F (73)

just like in Section 2, but now with φ dependent coefficients αk(φ). Also, the field equation

for the auxiliary field F is the same and leads to the Lagrangian

L(α,F )
b =

N
∑

k=1

αk(φ)[(∂
µφ∂µφ)

k − (−1)k−1(2k − 1)F 2k] (74)

where F = F (φ) is an arbitrary function of φ, like in (19), but now with field dependent

coefficients αk(φ). This result provides us with a new class of supersymmetric K field theories

where now different powers of the kinetic term may be multiplied by functions of the scalar

field.

Now we shall discuss an explicit example, where we choose the functions αk(φ) and F (φ)

such that the resulting model possesses a simple defect solution. Concretely we choose the

nonzero αk

α3 =
1

24
, α2 =

1

4
(1− φ2)2 , α1 =

1

2
[1 + (1− φ2)4]. (75)

For non-constant αk(φ) positivity of the energy and the null energy condition become slightly

more involved. For the moment we only consider the null energy condition, which is satisfied

for this specific model. Indeed, the resulting Lagrangian is

L =
1

24
[(∂µφ∂

µφ)3−5F 6]+
1

4
(1−φ2)2[(∂µφ∂

µφ)2+3F 4]+
1

2
[1+(1−φ2)4](∂µφ∂

µφ−F ) (76)

and for LX we get

LX = X2 + 2(1− φ2)2X + (1− φ2)4 + 1 = (X + (1− φ2)2)2 + 1 > 0 (77)

(remember X ≡ 1
2
∂µφ∂

µφ), so the null energy condition holds. In order to have simple defect

solutions we now choose for F

F 2 = (1− φ2)2 (78)

such that the Lagrangian becomes

L =
1

24
[8X3−5(1−φ2)6]+

1

4
(1−φ2)2[4X2+3(1−φ2)4]+

1

2
[1+(1−φ2)4][2X−(1−φ2)2]. (79)
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The once integrated field equation for static solutions is equivalent to the condition that the

one-one component of the energy momentum tensor is constant (see, e.g. [16, 41]). Further,

for finite energy solutions this constant must be zero,

T11 = L − 2XLX = 0 (80)

where now X = −1
2
φ′2 because φ is a static configuration. For the concrete example this

equation reads

− 5

3
X3 − 3(1− φ2)2X2 − [1 + (1− φ2)4]X +

1

24
(1− φ2)6 − 1

2
(1− φ2)2 = 0. (81)

It may be checked easily that this equation is solved by X = −1
2
(1 − φ2)2, i.e., φ′2 =

(1−φ2)2 which is just the field equation of the φ4 kink with the solution φ(x) = ± tanh(x−
x0). Therefore, our concrete example has the standard φ4 kink as a defect solution (it was

specifically chosen to have this solution). Due to the nonlinear character of the above field

equation, the model probably has more solutions (like the ones of Section 3), but this issue

is beyond the scope of the present paper.

Finally, let us remark that, although for the above model (i.e., the choice (75) for the

αk) the energy density is not positive semi-definite, it is easy to find a small variation of

the model with positive semi-definite energy density. All one has to do is to increase the

relative size of α3 and (or) α1 as compared to α2. Choosing, for example, α1 and α2 as in

(75), and α3 =
1
3
, the resulting energy density is positive semi-definite for arbitrary F (φ), as

may be shown easily. If we further choose F 2 ∼ (1 − φ2)2 then the resulting potential will

have at least the two vacua φ = ±1, and a linearization of the model near these two vacua

shows that the vacua are approached exponentially, like in the case of the standard kink.

Therefore, the model most likely supports kinks which interpolate between the two vacua,

although the explicit kink solutions will be more complicated.

B. The models of Bazeia, Menezes and Petrov

The supersymmetric K field theories of Bazeia, Menezes and Petrov (BMP) [41] are based

on the superfield

∂µΦ∂
µΦ = ∂µφ∂

µφ+ 2θα∂µφ∂
µψα − 2θ2∂µφ∂

µF − θ2∂µψ
α∂µψα. (82)

Indeed, the bosonic component of the superfield DαΦD
αΦ only consists of a term propor-

tional to θ2, therefore multiplying this superfield by an arbitrary function of the above

superfield (82), f(∂µΦ∂
µΦ), only the theta independent term f(∂µφ∂

µφ) will contribute,

leading to the Lagrangian

LBMP = −
(

D2[f(∂µΦ∂
µΦ)

1

2
DαΦD

αΦ]|
)

ψ=0

= f(∂µφ∂
µφ)(F 2 + ∂µφ∂

µφ). (83)
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Obviously, these Lagrangians produce a coupling of the auxiliary field F with the kinetic

term ∂µφ∂
µφ. On the other hand, the auxilliary field only appears quadratically, implying

a linear (algebraic) field equation for F .

First of all, we want to remark that for functions f(∂µφ∂
µφ) which have a Taylor ex-

pansion about zero, the same bosonic Lagrangians may be constructed from the building

blocks (15) of Section 2 by taking a different linear combination (the fermionic parts of the

corresponding Lagrangians will in general not coincide)

L(k)
BMP ≡ (L(k,0))ψ=0 −

(

k − 1

1

)

(L(k−1,1))ψ=0 +

(

k − 1

2

)

(L(k−2,2))ψ=0 + . . .

. . .+ (−1)k−1

(

k − 1

k − 1

)

(L(1,k−1))ψ=0 = (∂µφ∂µφ+ F 2)(∂µφ∂
µφ)k−1. (84)

We may easily recover the Lagrangian (83) by taking linear combinations of these,

LBMP =

∞
∑

k=1

βkL(k)
BMP = (F 2+∂µφ∂

µφ)
∑

k

βk(∂µφ∂
µφ)k−1 ≡ (F 2+∂µφ∂

µφ)f(∂µφ∂
µφ). (85)

In order to have more interesting solutions, BMP added a potential term, as we did in

Section 2. The resulting theories can, in fact, be analyzed with methods very similar to the

ones employed in the previous sections. Concretely, they studied the Lagrangians

L(P )
BMP = f(∂µφ∂

µφ)(F 2 + ∂µφ∂
µφ) + P ′(φ)F (86)

which after eliminating the auxiliary field F using its algebraic field equation

F = −P
′

2f
(87)

becomes

L(P )
BMP = f(

P ′2

4f 2
+ ∂µφ∂

µφ)− P ′2

2f
= ∂µφ∂

µφf − P ′2

4f
(88)

where we suppressed the arguments of P and f in the last expression to improve readability.

The X derivative of this Lagrangian is

(L(P )
BMP),X = f,X

(

P ′2

4f 2
+ 2X

)

+ 2f (89)

(please remember that X ≡ 1
2
∂µφ∂

µφ and f = f(2X) such that f,X = 2f ′). The null energy

condition already imposes rather nontrivial restrictions on the function f . A sufficient

condition is f ≥ 0, f,X ≥ 0 and f ≥ |Xf,X| as may be checked easily. Finally, the once

integrated field equation (80) for static fields, after a simple calculation, leads to

1

4f 2
(f + 2Xf,X)(8Xf

2 + P ′2) = 0 (90)
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where now X = −1
2
φ′2 and f = f(−φ′2) and, therefore, to the two equations

2φ′(x)f(−φ′(x)2) = ±P ′(φ) (91)

where we reinserted the arguments in the last expression for the sake of clarity. For some

choices of f and P these equations lead to defect solutions. Finally, in the models of BMP the

energy of a kink may be calculated with the help of the first order formalism first introduced

in [16], in close analogy to the calculations presented in Section 3.A. It also remains true

that, like in Section 3.A, the prepotential P (φ) is equal to the integrating function W (φ).

The energy functional for static configurations (but without the use of the field equation)

may, in fact, be re-written in a BPS form (exactly like for the standard supersymmetric

scalar field theory), from which both the first order equations and the equality P = W

follow immediately. Indeed, the energy functional may be written like

E
(P )
BMP =

∫

dx

(

φ′2f +
P ′2

4f

)

=

∫

dx

(

1

4f
(2φ′f ∓ P ′)2 ± φ′P ′

)

(92)

and for a solution to the first order (or BPS) equation (91) (we take the plus sign for

definiteness) the resulting energy is therefore

E
(P )
BMP =

∫ ∞

−∞
dxφ′P ′ =

∫ φ(∞)

φ(−∞)

dφP ′ = P (φ(∞))− P (φ(−∞)) (93)

which proves the above statement. For a more detailed discussion we refer to [41] (we

remark that BMP use a slightly different notation in [41]: they use the notation h instead

of P for the prepotential, and their X is defined like X = ∂µφ∂
µφ instead of the definition

X = 1
2
∂µφ∂

µφ used in the present paper and in [16]).

V. DISCUSSION

We developed and described a method to construct general supersymmetric scalar K field

theories in 1+1 and 2+1 dimensions. Among these theories, we found a large class of models

which, in the purely bosonic sector, consist of a generalized kinetic term plus a potential,

where the vacuum structure of the potential is crucial for the determination of the topological

defect solutions, similarly to the standard case (i.e., kinetic term ∼ ∂µφ∂
µφ). Due to the

enhanced nonlinearity of these supersymmetric K field models there are, nevertheless, some

significant differences, like different roots of the first order field equations leading to a larger

number of kink solutions, or the possibility to join different solutions forming additional

kinks in the space C1 of continuous functions with a continuous first derivative [46]. These

results are new and are by themselves interesting, broadening the range of applicability

of supersymmetry to a new class of field theories and, at the same time, enhancing our

understanding of these field theories.
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As far as possible applications are concerned, the natural arena seems to be the area of

cosmology, as already briefly mentioned in the introduction. Indeed, if these scalar field

theories are interpreted as effective theories which derive from a more fundamental theory

with supersymmetry (like string theory), then it is natural to study the supersymmetric

versions of the effective models. If, in addition, the defect formation and phase transition

(e.g. from a symmetry breaking phase to a symmetric phase) relevant for cosmological

considerations occur at time or energy scales where supersymmetry is still assumed unbroken,

then also the defect solutions of the supersymmetric effective field theories are the relevant

ones.

At this point, several questions show up. The first one is the inclusion of fermions. It is,

e.g., expected that, as a consequence of supersymmetry and translational invariance, there

should exist a fermionic zero mode for each kink background where, in addition, the fermionic

zero mode is equal to the spatial derivative of the kink. This fact has already been confirmed

explicitly in some supersymmetric K field theories [41], [42]. The inclusion of fermions in the

Lagrangians studied in the present article does not present any difficulty on a fundamental

level, the only practical obstacle being that, for purely combinatorical reasons, the resulting

expressions will be rather lengthy. A second question is whether the SUSY algebra in a

kink background contains central extensions related to the topological charge of the kink,

as happens for the standard supersymmetric kink [32]. Again, this problem has already

been studied for some supersymmetric K field theories [42]. A further question concerns

the issue of quantization. If the SUSY K field theories are interpreted as effective theories,

as would be appropiate, e.g., in a cosmological context, then already the classical model

contains some relevant information of the underlying quantum theory, like spontaneous

symmetry breaking or the existence of topological defects. In this context, the quantization

of quadratic fluctuations about the topological defect is the correct procedure to obtain

further information about the underlying theory. Independently, one may, nevertheless, pose

the problem of a full quantization of the supersymmetric K field theory, where the enhanced

degreee of nonlinearity certainly implies further complications. One may ask, e.g.,. whether

the additional, non-quadratic kinetic terms may be treated perturbatively, like the non-

quadratic terms of the potential in the standard case. The answer will certainly depend on

the space-time dimension. A related question is whether supersymmetry simplifies the task

by taming possible divergences, as happens in the standard case. Here it is interesting to

note that, even at the classical level, supersymmetry implies some restrictions on possible

Lagrangians which are visible already in the bosonic sector. Indeed, as is obvious e.g. from

Eq. (19), there exists a relation between the kinetic and the potential terms (this relation

is responsible for the existence of the so-called generic solutions). One wonders what this

relation implies for the quantum theory, e.g., in the form of Ward-like identities. These and

related questions will be investigated in future publications.

Finally, we think that the supersymmetric models we found present some independent

mathematical interest of their own, given their high degree of non-linearity, on the one
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hand, and the possibility to obtain rather precise information on their solutions (e.g. all

kink solutions together with their exact energies), on the other hand. Further investigations

in this direction (e.g., time-dependent solutions, or the stability of topological solitons) will

be pursued, as well.
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