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Abstract

The left tail of the implied volatility skew, coming from qtes on out-of-the-money put options, can
be thought to reflect the market's assessment of the risk afja drop in stock prices. We analyze how
this market information can be integrated into the theoa¢framework of convex monetary measures
of risk. In particular, we make use of irftBrence pricing by dynamic convex risk measures, which are
given as solutions of backward stochastifetiential equations (BSDES), to establish a link between
these two approaches to risk measurement. We derive a th@zaton of the implied volatility in
terms of the solution of a nonlinear PDE and provide a smalktto-maturity expansion and numerical
solutions. This procedure allows to choose convex risk oreasin a conveniently parametrized class,
distorted entropic dynamic risk measures, which we intoeduere, such that the asymptotic volatility
skew under indference pricing can be matched with the market skew.

Keywords dynamic convex risk measures, volatility skew, stochasatlatility models, indiference pric-
ing, backward stochasticftiérential equations
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1 Introduction

Risk measurement essentially conveys information abdstdédistributions. However, that information
is also contained in market prices of insurance securitias dre contingent on a large (highly unlikely)
downside, if we concede that those prices are mostly rafeeofiprotection buyers’ risk aversion. Examples
are out-of-the-money put options that provide protectionasge stock price drops, or senior tranches of
CDOs that protect against the default risk of say-1¥% of investment grade US companies over a 5 year
period

A central regulatory and internal requirement in recentryea the wake of a number of financial
disasters and corporate scandals, has been that firms sepedsure of the risk of their financial positions.
The industry-standard risk measure, value-at-risk, iseWyiariticized for not being convex and thereby
penalizing diversification, and a number of natural proldemise:
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1. How to construct risk measures with good properties.
2. Computation of these risk measures under typical finanwalels.
3. Choice: what is the “right” risk measure?

The first issue has been extensively studied in the statie [§dSEH99,[FSOR] and recent developments in
extending to dynamic risk measures with good time-constst@ndor recursive properties are discussed,
e.g., in [BK09,[KS05[ MZ09, FS11]. However, concrete exampbf dynamic, time-consistent convex
risk measures are scarce, and they typically have to be dédibstractly, for example via the driver of a
backward stochastic flierential equation (BSDE) or as the limit of discrete timesistent risk measures
[Stal0]. As a result, intuition is lost, and there is at pnédigtle understanding what the choice of driver
says about the measure of risk. Or, to put it another way, feowtlee driver be constructed to be consistent
with risk aversion reflected in the market?

Let £ be a bounded random variable representing a financialfpaywse value is known at some
future timeT < oo. A classical example of a convex risk measure, the entragicreasure, is related to
exponential utility:

o(&) = 3 1og B [e7). )

wherey > 0 is a risk-aversion cdkcient. When extending tdynamicrisk measureg;(-) adapted to some
filtration (#7), a desirable property is (strong) time-consistency

os(—0t(é)) = 0s(é), 0<s<t<T.

This flow property is important if; is used as a basis for a pricing system. The static entraggianeasure
(@) generalizes to

o©) = ~log (5[e7 1 7). @

The flow property follows simply from the tower property ofnahtional expectations. However, finding
other directly-defined examples is not easy, and to havesmmnedle class of choices, we need to resort to
more abstract constructions.

In a Brownian-based model, time-consistent dynamic risksuees can be built through BSDEs, as
shown in [BK09, KS05], extending the work of Perig [Pen04].aflis, on a probability space withd
dimensional Brownian motiolV that generates a filtratiors{), the risk measure of thgt-measurable
random variable (€ R for simplicity) is computed from the solutiofR(, Z;) € R x RY of the BSDE

AR = otZ)dt-Z dw
RT = _é:’

wherex denotes transpose. Here the drigewhich defines the risk measure, is Lipschitz and convex in
and satisfieg)(t,0) = 0. The solution is a proce$s € R that matches therminal condition—£ on dateT
(when¢ is revealed and the risk is known), and a procgssRY that, roughly speaking, keeps the solution
non-anticipating. Thewp(¢) := R defines a time-consistent dynamic convex risk measure. iHawthe
possibility to dfset risk by dynamically hedging in the market needs to bewatea for. Setting aside
technicalities for the moment, this operation leads to aifitadion of the driver.

The left tail of the implied volatility skew observed in egumarkets is a reflection of the premium
charged for out-of-the-money put options. The bulk of thenwskeveals the heavy left tail in the risk-neutral
density of the stock pric&t at expiration, but the very far left tail, where investor tsment and crash-o-
phobia takes over, could be interpreted as revealing irdton about the representative market risk measure



and its driverg, if we assume prices are consistent with this kind of priaimgchanism. The question then
is to extract constraints on the driver from the observdd tdithe skew, an inverse problem.

To put our analysis into a broader framework, we observe tti@tunderlying structural question is
the inference of preference structures from observable. dette idea of using (at least in theory) observ-
able consumption and investment streams to reveal therpnee structure of a rational utility maximizing
investor dates back to Samuelson in the 1940s and Black iba®@s - for a recent overview on this “back-
ward approach” to utility theory we refer to [CHO11]. Ther#pof our presentation is a similar one, except
we deal with dynamic risk measures rather than utility fiomg, and the observable data are not given as
consumption and investment strategies but as readilyadlaimarket implied volatilities.

The main goal here is to utilize short-time asymptotics f@ inverse problem of using the observed
skew slope to calibrate the drivgr Berestyckiet al. [BBEQ4] presented short-time asymptotics for im-
plied volatilities forno arbitrage pricingunder stochastic volatility models. Further work in thisedtion
includes, among others, [FEE10, FO09, FJL10] and refesethegein. In Sectionl 2, we extend this analysis
to the nonlinear PDEs characterizing ifidrence pricing under dynamic convex risk measures.

We find (Theoreri 2.12) that the zero-order term in the shio-Bpproximation is the same as found in
no-arbitrage pricing by [BBF04]. The next order term is tb&uson of an inhomogeneous linear transport
equation that sees only a particular slope of the partiadigdndre-transformed driver, but is independent of
the size of the options position (see equatfod (25)).

Section[B illustrates the theoretical findings by focusimgaoparticular class of drivers, introducing
distorted entropic convex dynamic risk measures. First @eeldp explicit calculations for the small time
expansion in the Hull-White stochastic volatility modelilastrate the impact of the distortion parameter
on the implied volatility skew. Then we illustrate the rdsuh a numerical study (via the pricing PDE) of
arctangent stochastic volatility driven by an Ornsteirlddbeck process. Sectibh 4 contains the conclusions
and Sectionl5 gives the more technical proofs omitted in xipestion.

2 Heuristics and Statement of Results

We consider a model of a financial market consisting of afriek-bond bearing no interest and some stock
following the stochastic volatility model on the filteredopability space@, F, (), P)

dS; = u(Yy)Stdt+ o(Y) St dWE, So=S; 3)
dY; = m(Yy) dt+a(Ye)(o dWE + o’ dWR), Yo=y.
whereW?!, W? are two independent Brownian motions generatifig &ndp’ = /1 — p2.

Assumption 2.1. We assume that:

i) o,a¢€ Clﬁcﬁ (R), where Cé;f (R) is the space of gierentiable functions with locally Holder-continuous

derivatives with Holder-exponegt> 0;

ii) both o~ and a are bounded and bounded away from zero:
O<gog<o<o<o, and O<a<a<a<oo;

0+8
loc

i) u,meC_"(R), and|u| < u < oo.
The pricing will done via the indiierence pricing mechanism for dynamic convex risk measureigh

are introduced in the next subsection.



2.1 Dynamic Convex Risk Measures, Indference Pricing and BSDEs

Definition 2.2. We call the familyg; : L¥(Q, 71,P) —» L*(Q,F, P), 0 <t < T, a convex dynamic risk
measure, if it satisfies for ale [0, T] and all&, &1, £2 € L*(Q, F7, P) the following properties.

i) Monotonicity: &1 > £2 P-a.s impliesoy(¢Y) < o1(¢?);

i) Cash invarianceoi(¢ + ) = o(€) — m for all my € L*(Q, F+, P);
i) Convexity: o (€t + (1 — @)é?) < aoi(é?) + (1 - a)or(¢?) for all € [0, 1];
iv) Time-consistency(¢1) = oi(£2) impliesos(ét) = 0s(¢?) forall 0 < s< t.

We note that if the risk measure is additionally normaliziegl, o;(0) = O for all t € [0, T], then iv)
is equivalent to the stronger propey(—ot(¢)) = os(€) for all 0 < s < t [KS05, Lemma 3.5]. The risk
measurey(¢) should be understood as the risk associated with the pogitt timet.

If or Is normalized, this is nothing else than the minimal capéglirement at timeto make the position
riskless sincex (¢ + ot(£)) = 0. In this static setting, the certainty equivalent prica @iuyer of a derivative
¢ e L®(Q, ¥, P) at timet is just the cash amount for which buying the derivative hasakgsk to not
buying it.

In fact we are much more interested in the case where the lufiybe security is allowed to trade in
the stock market to hedge her risk. In describing admissitlgegies we follow the setting of continuous
time arbitrage theory in the spirit of Delbaen-Schachemngfor an overview, we refer to the monograph
[DSO06]). Denote therefore b§; the set of all admissible hedging strategies from tino@wards, i.e. all
progressive processes such that 0 and ftu 0s(u(Ys) ds+o(Ys) dWE) exists for allu €]t, T] and is uniformly
bounded from below, and set

.
%K = { ft Os(u(Ys) ds+ o (Ys) dW2) : f e @t}.

The set of all superhedgeable p#gds then given by := (%; — L?) N L=, whereL{ denotes the set of all
almost surely non-negative random variables.
The residual risk at timeof the derivativet € L*(Q, F, P) after hedging is given by

ou(§) = eﬁescitnfgt(g +h). (4)

Thus, assuming that the buyer’s wealth at tinsex, her dynamic indterence pricé;, which can be viewed
as the certainty equivalent after optimal hedging in theaulythg market, is given viai(x+ & — P;) = o6¢(X),
whence, using cash invariance,

Pt = a(0) - (). ()

We note, while restricting ourselves to the buyer’s ffatience price, all our considerations are easily adapt-
able to the seller’s indlierence price by a simple change of signg ahdP; in (5).

A convenient class of dynamic convex risk measures to whietwill stick throughout this paper are
defined from solutions of BSDEs. Assume tlgat Q x R? — R is a %7 ® B(R?)-measurable function
which is continuous, convex, and quadratic (i.e. boundeshddulus by a quadratic function) in tie-
component. (In what follows, we will not explicitly denotieet dependence of the drivgonw € Q.) Next,
let& € L*(Q, ¥, P) be a given bounded financial position. Then the BSDE

_—g+f oz, z2)ds- fzgdw_;{—fzgdwg (6)

admits a unique-adapted solutionR;, Z%, Z?), which defines a dynamic convex risk measuregy(X) :=
R: [BKQ9| Theorem 3.21].



The existence of a solution of the BSDE (6) in this quadratittirsg was first proved by Kobylanski
[Kob0Q, Theorem 2.3], with some corrections to their argotmegiven by Nutz[[NutO7, Theorem 3.6],
whereas the unigueness follows from the convexity of theedras shown in [BHO8, Corollary 6]. From a
financial perspective, the componeifs Z2 of the “auxiliary” proces< can be interpreted as risk sources,
describing the risk stemming from the traded asset and tlagility process respectively.

2.2 Transformed BSDE under Hedging

To assure the solvability of the BSDEs and PDEs that arisarise&iting, we have to restrict slightly the class
of admissible drivers. Throughout, subscripts of funaiamdicate in the PDE context partial derivatives
with the respect to the respective components.

Definition 2.3. We call aFt ® 8(R?)-measurable functiog : QxR2 — R an admissible driver (normalized
admissible driver) if it satisfies the following conditionsii) (resp. 0)-iii)):

0) g(0,00=0 P-as,;

i) geC?(R? P-as.;

i) Unz(z,2)>0 P-as. forall ¢,2) € R
iii) there exist constants, ¢, > 0 such that

cl(% -1+ zg)) <9(z1.2) <1+ Z+2) P-as. forall ¢,2) € R2
1
The normalization of the driver (condition 0)) correspotmhe normalization of the risk measure.

Remark 2.4. To ease the presentation, we only work with drivers that dodepend explicitly on time.
While any dependence on ®Rould destroy the cash invariance, it is noffdult to add an additional
dependence of g on time. The higher order expansions inoBEEH will then also depend on some partial
derivatives with respecttotat£ T.

In passing from the principal risk measure definedyltg the residual risk measure after hedging, as in
(), we will need the Fenchel-Legendre transforngaf its first component, namely
0(¢.22) = suf{z - 9(z1.22)),  [eR. (7)
71€R
Lemma 2.5. Given that g is a (normalized) admissible driver, then ttsi+adjusted driveg defined in(7)
is also a (normalized) admissible driver.

Proof. To showd satisfies condition iii) of Definitioh _2]3, we fix, and treat the function as classical
Fenchel-Legendre transform in one variable. Thereforeldhfor proper, continuous convex functions

f, g, thatf < gimpliesf > gandf = f, [HULO1B, Proposition E.1.3.1 and Corollary E.1.3.6]. Be't
statement is proved by noting that

slejp(gzl ~c(1+3+3))= c(% - (1+2))
for any positive constart.

To showi) andii) in Definition[2.3, we note that conditioiii) implies thatg is 1-coercive inzy, i.e.
0(z1, 2)/|1z1] — o0 asz; — +oo for fixed z. Now we can use the fact, that the Fenchel-Legendre transfor
of any 1-coercive, twice dierentiable function with positive second derivative iglitd-coercive and twice
differentiable with positive second derivative, ¢f. [HULOlar@lary X.4.2.10]. Thus it remains only to
prove the dfferentiability ofgwith respect ta, which is a consequence of theférentiability properties of
g: writing down the diference quotient and noting that the maximizer isedéntiable, the positive second
derivative with respect to the first component yields thetexice of a finite limit. Finallg(0, 0) = 0 follows
from the definition ifg(0, 0) = 0. m|



In other words, the class of admissible drivers is invariamtler the convex conjugation in the first
component and the class of normalized admissible driveas iavariant subclass thereof.

Remark 2.6. We note that it is important in our setting to stick to the ttyeaf quadratic drivers, since if g
would be a Lipschitz drivey would be no more a proper function. This fact is easily se@rte from the
Lipschitz condition it follows that

Uz1.2) < L1+ [ Z+B) < V2L(1 + [z1] + |22])

for some constant L and hence
8¢, 22) = su(z1 - 921, 22)) = su{z — V2L(1 + |2 + |22)))
4l Al

~ { co if |¢] > V2L
T =V2L@ +|z2)) if 12 < V2L

From now on we will assume thgiis convex as a function dk? and an admissible driver. Our next step
is to describe the dynamic hedging risk in terms of BSDEs.s&hresults are in essence due to Toussaint,
[TouQ7, Section 4.4.1]. Since his thesis is not easily atdl, we will nevertheless state the proofs here. It
is convenient to introduce a notation for the Sharpe ratio:

u(y)
Aly) = —=. 8
=5 ®)
Proposition 2.7. The risk of the financial positios € L*(Q, 7. P) under hedging i$,(¢) = R where
R¥) is given via the unique solution of the BSDE
T T T
RO = ¢~ [ 2+ o-av Zyds- [ Ziawd— [ 22w (9)

Moreover,g; is itself a dynamic convex risk measure.

Proof. It follows from the work of Kloppel and Schweizér [KS05, Tdrem 7.17] that the risk is given via

the BSDE - - T
K=+ [ gz yas- [ ziawd- [ Zawe
t t

t
wheregd’is given by the infimal convolution

§(z.7) = inf(g(z' + o (Y)V.2) + u(Y)v). (10)

To be precise, besides thdfdrences in sign between our convex risk measures and the#&targ concave
utility functionals, ourL* framework is in line with the main part of their paper whereyttwork inL* .
However, the resulf [KS05, Theorem 7.17] is stated in theéaork of L2-BSDESs with Lipschitz drivers.
Their detour toL? was due to their consideration that this is the natural fraonk for BSDEs. We have
motivated that we have to work with quadratic drivers, foiiattthere is yet nd.2-theory, but it is straight-
forward (though tedious) to check that their resulfl (10)pasl@o our setting due to the regularity enforced
by the admissibility conditions in Definitidn 2.3.

Next, we rewrite the infimum i .(10) to get

§(z1, 22) = inf(g(u, Z) = (2" = WAYY)) = ~Z'AY) = 8(=A(V), 2).

Finally, the uniqueness of the solution of the BSDE (9) fekoagain from[[BHOB, Corollary 6] using the
convexity of the driver, which is implied by the fact th@is"concave in the second component. Moreover,
this entails also that i5 a dynamic convex risk measure. m|
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Remark 2.8. We remark only in passing that in view of equat{@®hof the above proposition, the notion of
admissibility could be slightly extended: it is possiblegplace the lower bound in Definitidn 2.3, iii) by

a(f@) - (1+2)) < 9@, 2)

for an arbitrary real-valued, convex ardcoercive function f. This is enough to get existence angusai
ness of equatio@), however it would clearly destroy the nice invariance pmpef LemmaZb and we do
not adopt it in the following.

2.3 Indifference Valuation of European Claims

From the formula[(b) for the inffierence pricd®; and Propositiof 2]7, we have that
P =RY-RY. (11)

From now on we will restrict ourselves to particular boungegdfs, namely European put options with
strike priceK and maturity datd: £ = (K — St)*. Moreover, for the further treatment the substitutions

x = log (S/K), 7:=T -1, (12)

will be convenient and we introduce the following notatiobenote byLt the layer [QT] x R? and by
Q;,r the open cylinder above the digm, r) with midpointm, radiusr and height O< 79 < T: Qs =
10, 7o[xB(m, r). Since the location of the midpoint (once fixed) will play fusther role, we skip it in the
notation.

The following theorem characterizes the ifilience price of a European put with respect to the dynamic
convex risk measure with drivgrunder the stochastic volatility modéll (3).

Theorem 2.9. The buyer’s indference price of the European put option is given as

P(T’ X, y) = G(T’ X, y) - U(T’ y) (13)

where ue C*#/225(Qr ) N C(Lt) for every cylinder @, is the solution of the semi-linear parabolic PDE

—Ur +Lu= 2(-A(Y). p'Ka(y)uy);
{ u(0,xy) = E(1 — &9, (14)

with operator L given by

_ 1 o'z(y) prr(y)a(y)) (Uxx ny)] (_lO.Z(y)
Lu= 2Tr[(p0'(y)a(y) aZ(y) Uy Uy + %n(y)

and 0l denotes the (x-independent) solution(®fl), with altered initial conditionli(0,y) = 0. Moreover the
solution of the Cauchy proble(d4) (as well as that with the altered initial condition) is theigue classical
solution that is bounded intLtogether with its derivatives.

J- (&) - renaon,
Y

Proof. By Ladyzhenskayeat al. [LSU67, Theorem V.8.1 and Remark V.8.1], there exists aumigplution
v e CHP2245(Qr ) N C(Lt) to the semilinear parabolic PDE

Vor 50 5+ 22y + pr()A)Sy + (M) ~ pAANIY = A-A0). p'aA),  (15)



with terminal conditionv(T, S,y) = —(K — S)*. Applying Itd’s formula tov(t, St, Y;) and defining

Zt = o (Y)Swvs(t, St, Yr) + pa(Yo)vy(t, S, Yo)
Z_f = p'a(Yyw(t, St, Yb),
Ri = V(t, St, Y1)

shows thatR;, Z%, Z2) solves the BSDE{9) forR®, 21, 22) with £ = (K — St)*, and therefore we identify
Ii’t(f) = V(t, St, ;). The transformatiori(12), together witlr, x,y) = v(t, s, y)/K leads to the Cauchy problem
(T4) for u. Finally, taking zero terminal condition for the POE{15)dacalling the solutiorv(t, y) leads to
Iﬁﬁo) = U(t, ;). Therefore the indierence price in[(11) is given by = ¥(t,Y;) — v(t, St, ), which, in
transformed notation, leads fa {13). i

Hereu is the value function of the holder of the put option, arnd felated to the investment (or Merton)
problem with trading only in the underlying stock and monegrket account. The nonlinearity in the PDE
(I4) is in its “Greek’uy, that is, the Vega, and enters through the Legendre transfifrthe driverg in
its first variable. For the familiar entropic risk measunéz, z) = y(Z + 2)/2, wherey > 0 is a risk-
aversion parameter, we hag@’,’z) = (gz/y—yz%)/Z. In this case, the nonlinearity is aﬁ(see for example
[BKO5, [SZ05)).

Before we derive a PDE for the implied volatility, we give sem priori bounds on inélierence prices
and their associated implied volatilities.

Proposition 2.10. Denote by BS(z, x; o) the Black-Scholes price of the put calculated with constatatil-
ity o. Then
PS(r, ;o) < P(r, x.y) < PPS(r, ,7) (16)

and
o<l(t,xy) <0, (17)

whereo ando are the volatility bounds in Assumptipn.1.

The proof is given in Sectidn 5.

2.4 Implied Volatility PDE

Our main goal is to establish an asymptotic expansion ofrttiference price implied volatility in the limit
of short time-to-maturity. To do so, we now adapt the appncafcBerestycki et al.[[BBFEQ4] to establish
a PDE satisfied by the Black-Scholes volatilift, x, y) implied by the indfference pricing. Therefore we
note that in the Black-Scholes model with unit volatiliyetno arbitrage pricing PDE is given by

~U; + 3(Ux—Uy) =0;
{ U@O,x) =(1-e9*,

which can be represented explicitly as

where® is the cumulative density function of the standard normstiritiution. Using the scaling properties
of the Black-Scholes put price, the ifi@irence pricing implied volatilityl (r, X, y) is hence given by the
equation

P(r, x,y) = U(I%(, X, )7, X).

8



To derive the PDE for the implied volatility, we plug this inthe equation{13) and get after some calcula-
tions that the implied volatility is subject to the nonlinear degenerate parabolic PDE
- (T|2)T +H@ XY L ly) + 1LY 1 T, Dy, lyy) = 2rpa(y) A(Y)Hy
a(—=A(y), o’ Ka(y)ty) — 9(=A(y), o’ Ka(y)uy)

=27lly K@ ) : (18)
with
_ a2y poiay) o Ox @) 1012 Ly
ey lhoh) = Tr[(pO'(Y)a(Y) 2(y) )' [[(%)x&)y ¢y y) 2t ('x'y § )H
+1(por(y)aly) + 2my)y. (19)

and
'L(y’ I’ IXX’ Ixy, Iyy) =1Tr

a2(y)  po()ay))(Ix |Xy)]
(pa(y)a(y) a2(y) )(|Xy Wik (20)

To motivate an initial condition for the Cauchy problem, vend formallyr to zero in [I8). As the

“Vega” v = Uiy — uy tends also to zero as| O (this is shown in Lemmia 5.2), we observe that the quotient on
the right side of[(IB)

9(-A(y). p'Ka(y)ty) — §(=A(y), p’Ka(y)uy)
K(Ty — uy)

which is bounded by the definition of admissible driver andnbea[2.5. Dividing byi?, this leads to the
formal limit equation

— p'a(y)8z,(=A(Y), 0),

oY) prr(y)a(y))( (03 (m)x(m)yﬂzl o1
(pa(y)a(y) W) ) (1 <o)y (o) ‘ @)

Remark 2.11. Our Cauchy problem is similar to that derived for no arbiteagricing implied volatilities
in [BBEO4], where they have the same equat{@®), but i) without the last term on the left side (which
here is due to the change in measure from physical to a risitraleone); and ii) without the right side term
(which here is due to the dynamic convex risk measure useaddigference pricing). However, our initial
condition (211), which does not depend d@nand the drift of the stochastic volatility model, is exadtie
same as theirs.

Now we turn this heuristic argument into a precise statement

Theorem 2.12. The implied volatility function(r, X, y) generated by the inglerence pricing mechanism is
the unique solution & C1*#/22%(Qr ) n C(Lt) to the following nonlinear parabolic Cauchy problem

— (@12 + HE XY 1L L 1) + 7L, 1 L s lyy) = 270a(y) A1y
a(=A(y), p’Ka(y)ty) — a(-=A(y), o’ Ka(y)uy)
K(Ty — uy)

=27lly (22)
where H andZ are given by(I3) and (20). The initial condition is given as’(x,y) = x/y(X,y) wherey is
the unique viscosity solution of the eikonal equation

r[( o(y) prr(y)a(y))( v wxwy)] Y
poaly) &) [\uxy ¥ ’
Y(xy) >0 forx>0.

(23)



The proof is given in Sectidd 5.

It is worthwhile to note that indiierence prices are not linear. Indeed, buying double the atmfu
securities will not lead to twice the price. In this way albe wolatility implied by indiference prices is
quantity-dependent as a consequence of the appearangeaofl Uy on the right side of equation {R2).
However, the nonlinearity in quantity is not observed in zleeoth- and first-order small time-to-maturity
approximation as we show in the following subsection. Muezpderiving the PDE for the infference
price implied volatility for buyingn put options results in the same Cauchy problem as in Thebrgs 2
where one has only to repla&eby nK in every appearance in equatiénl(22).

2.5 Small-Time Expansion

In the short time limit the implied volatility under infierence pricing is equal to the usual one as calculated
by Berestycki e.a[[BBF04], as the initial conditions are ame (see Remdrk 2111). The subtleties of the
indifference pricing appear only away from maturity. Thus we mhkéhsatzof an asymptotic expansion
of the implied volatility:

I(r, %, y) = 1°0¢ Y)(1 + 711(x, y) + O(F?)). (24)

As seen above, the tert is given via solution of the eikonal equatidn{23). To find ®RE for |1, we
plug in the expansior_(24) into the equatiénl(22) and compedirst order terms for — 0. This leads to
the inhomogenuous linear transport equation

0 0
2%+ Z900 15 1) = FY0) - pa0)A0) 5 - a0} 8a(-109). ) (25)

with
Fi(y) =

and operator

1 (Tr[ oY) pa(y)a<y))(li’x ISy)
210 oy)aly) — ay) "

12|+ 2orta) + 2mopg)
Xy Yy

Ty 1191y — V) PO'(Y)a(y))( 20ylx l//yl)%"'l//x'):,[)]
74(y"X"y)‘Tr[(pdy)a(y) 2) vl 2t )|

wherey is again the solution of the eikonal equatiénl(23). It is imi@ot to observe that the dependence
of this first order approximation on the risk measure (viadiiger g) is given merely by the evaluation at
2 = 0 of the derivative of its Fenchel-Legendre transfarmith respect to the second component.
Comparing our PDE to the analogous equation in the arbipaigeng setting of [BBEO4] (who, how-
ever, prescribe only the methodology in general and makkcégalculations just in one example), we note
the additional presence of the last two terms of the righe: sid(23): here again the first one is due to the
change to a risk-neutral probability measure and the secnad consequence of iffidirence pricing with
a dynamic convex risk measure.
Furthermore we can obtain an interior boundary conditiarttie PDE atx = 0 by sendingx formally
to zero in [26). Imposing higher regularity on the ffagents and org one can obtain also higher order
terms in the expansion of the implied volatility. This is @dny using Taylor expansions gf(ih the second
component) andy anduy (in 7).

3 Examples & Computations
In this Section, we introduce a family of dynamic risk measuwithin which to present thefect of risk

aversion on implied volatilities, first using the asympt@tpproximation in the Hull-White stochastic volatil-
ity model, and later using a numerical solution of the quresdr option pricing PDE.

10



3.1 Distorted Entropic Dynamic Convex Risk Measures

To study the impact of the driver on the implied volatilityewvill now turn to a nicely parametrized family
of risk measures. Therefore we define the following classrveds, generating distorted forms of the
entropic risk measure:

2
9"(21,2) = %(Zﬁ +2) +nyaz+ %22 = %((zl +n2)* +2). (26)

Itis clear, that in the casg= 0 this is the driver connected to the classical entropicmiglasure, whereas

can be seen as a parameter which describes in which waylitplask increases also the risk coming from

the tradable asset. As we will see later in SediiohBeectively plays the role of golatility risk premium

In the case of the usual entropic risk measure the driveritbesca circle whose radius is governed by the

parametety. In the distorted case it is now an ellipse whemetermines additionally the eccentricity.
Turning to the Fenchel-Legendre transform, we have

R 1 Y
1,y - 2_ L2 _
§7(2) =3¢ 5512 (27)
Plugging this into[(2R), we see that the right hand side nasse

7lly(2nA(y)aly) - yKp'%a(y)? (@ + uy))

and we remark in particular thatscales withK and hence also with the number of securities bought (as
mentioned at the end of Sectibn12.4). In particular we seendbat the term appearing in the first order
approximation of the implied volatilityg?;’ (—A(y), 0) = nA(y), is independent of.

3.2 Short-Time Asymptotics for the Hull-White Model

In the following we look at an example which is an adaption ehfple 6.16.3 of [BBF04]. Let the
stochastic volatility model be given as the Hull-White miode

{ dSt = u(Yy)Sdt+ bY;S; dW, So=§ (28)
dY; = «Y;dW2, Yo =Y.
for two independent Brownian motion?, W2, Obviously the model does not fall in the class considered
above because the volatility(Y) = bY is a geometric Brownian motion that is not bounded above @yaw
from zero. Nevertheless, by a change of variables we wiltlsaethe results hold.

Writing down the pricing PDE in the case of the distorted @pitr risk measurd (26), we get

1 uy)?  yKe®
2yKb?2 2 2

1 1
e+ S0P+ ) — SEAU, = VG + )y

and one sees that by the time chamge 7y? (the boundary = 0 is not hit when we start wity > O given
that; is a geometric Brownian motion) and settimgy):= u(y)/y? the equation becomes

w4 2 20y~ Lz = L a2 YKE o s
Ur + 5 (bUxx + KUyy) = Sb Ux—zysz,U(Y) 5 Uy + A

This equation has a solution (again by [LSU67, Theorem \é8d Remark V.8.1]), at least in the case that
[i is locally B-Holder continuous (which in turn implies thaty) = O(y?) asy — 0) .

11



In absence of global bounds on the volatility we are not ableldrive results about existence and
uniqueness of solutions for the POE22) for the implied tiitya. Nevertheless we can postulate the small-
time expansion to get

by + kg = 1/y?
¥(0y) =0 (29)
Y(xy) >0 forx>0

as the PDE characterizing the zeroth oder term and

0 IO IO
{ 0 =2t b2(3;2¢/¢/x|§ + K2y |} — S02Y2 38 — 3k 3R () s (30)
1MOy) =4 +ny

for the first. As derived in[BBFEQ4], the zeroth order termlod £xpansion is given via the solution pf}29),

1. (kX / K2X2
l//(X,y)— ;In(b—y+ 1+ b2_y2)

aslo(x,y) = x/y(xy), whereas for[{30) we can guarantee only a solution in the edmreu(y) = OY°)
sincel$/1° = —yy/ ~ 1/y asx — 0. Obviously this means practically that we need an extrerifieini the
Hull-White model to compensate the very volatile volagilirocess. However, setting e g(y) = uy® for
some constani, we are able to solve the PDE{30) explicitly by the methodhafracteristics to get

2,2 1 2
(In(b—xyz//(x, y(1+ ’;2—;)4) X )

1
1 _ -
I (X’ y) - wz(x, y) n 2b2

In the following graphic we rely on the parameter set
u=6; k=T, b=1; Vo = 0.3; =01

Whereas the parameteidoes not appear in the first order approximation, the distogarameter, has
a double &ect. On the one hand side it shifts the smile at the money d smmalunt, on the other hand it

changes more significantly the wing behavior of the smilelirsglto the asymptotics the temﬁéﬁ

(sincex?/y? ~ k2x?/(In|x|)? asx — =+co). This changes the whole wing behavior, sine~ K% and
I1 - 0fory = 0asx — +co. Of coursey = 0 corresponds to the first order term of martingale pricing as
[BBEOD4]. Positiven; (hence a positive impact of the volatility risk on the risktbé traded asset) increases

the implied volatility and steepens the wings.

3.3 Numerical Study

We consider the buyer’s indierence price of one European put option with respect to théyfaf distorted
entropic risk measuredefined by [[26). We work within the stochastic volatility nedq3) and, for the
numerical solution, we return to the primitive variables(y). Denote by/y the generator of the Markov
processy:

>

1., 50 0
Ly = Ea(y) 6_y2 + m(Y)@
and by Lsy the generator ofg, Y):

2

Lsy=2L +E ()2326—2+ a(y)o(y)S 0 + ()i

S aSay

12



1.0

i

Implied Vol in Log—Moneyness
— Oth—order
— 1st-order,n=0
1st-order,n=-0.2
1st-order,n=0.2
1st-order,n=0.5

Figure 1: Implied volatility in terms of log-moneyness fdretHull-White model: zeroth and first order
approximation in dependence mf

From [11), the buyer’s inflierence price of a put option with striké and expiration datd@ at timet < T
whenS; = S andY; =, is given by:

P(t’ S’ y) = QD(t, S’ y) - ‘PO(t, y)’

wherep solves

o+ (Ls,y - pa(y)/l(y)%) ¢ =0(=A(y), —p"aly)ey), (31)
SD(T’ S’ y) = (K - S)+,

and ¢o(t, y) solves the same PDE without tisderivatives and with zero terminal condition. Note that
¢ = -V, wherev was the solution to the PDE problem [n115), amgd= -V which was introduced in the
proof of Theoreni 219.

As §is given by [2T), we can re-write (B1) as

2
o + (Ls,y —(o+ np’)a(y)/l(y)%) o= —2—;” + %(1 - p?)ya(y)’ey. (32)

This shows that; plays the role of avolatility risk premiumin that it enters as a drift adjustment for the
volatility-driving processY. However the nonlinearity of the PDE is through a quadrarentin ¢y, as in
the case of the entropic risk measure.

Moreover, introducing the transformation

eo(t,y) = - log f(t,y),

_1
y(1-p?)
leads to thdinear PDE problem forf:

I
o

(33)
(34)

e (4= 04 a0 ) - 3PN 1
f(T.y)

Il
=
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Therefore the indference price is given by

P(t.S,y) = ¢(t.S,y) + y log f(t.y).

_ 1
(1-p?)
In the numerical solutions, we take the volatility-drivipgocess Y;) to be an Ornstein-Uhlenbeck pro-
cess with the dynamics:
dY; = a(m- Yy dt + v V2a (0 AW + p” dWP),

and we choose a functian(Y) that gives realistic volatility characteristics. For A& processY;), the rate
of mean-reversion ig, the long-run mean-level im and the long-run variance ig. For the computations,
we will takee =5,m=0,v* = 1,p = -0.2 and

oly) = 077 (arctany — 1) + 7/2) + 0.03,

so thato(m) = 0.2050. The parametermeasures approximately the standard deviation of vdiafilictu-
ations. The values are chosen such that the one standaatiole\ionfidence interval for is (-1,1) and
this translates roughly to the confidence interval $30.38) for volatility . The two standard deviation
interval for volatility is approximately (A0, 0.56).

We first solve the quasilinear PDE_{32) ferusing implicit finite-diferences on the linear part, and
explicit on the nonlinear part. Then we solve the linear PEdbfem [33) forf. We do this for fixed current
stock priceSg = 100 ando(Yp) = 0.223. and for various strikds € [70, 110] and for a range of distortion
parameterg and risk-aversiong > 0. The put option is three months from expiration. Fidure\2aés a
more complex picture regarding th&ext ofy away from the short maturity asymptotic approximation. We
see, as in Figurg 1 from the asymptotics, increagingcreases the skew slope; however it also shifts down
the levels of implied volatility around the money (as opmbs®the oppositeféect we saw in Figurgl1).

Figure[3 shows, as we would expect, that increasing risksaney decreases the implied volatility skew
which comes from the inflierence price of the buyer who is willing to pay less for thé& 0§ the option
position. It also has a secondaryest of flattening the skew out of the money.

4 Conclusion

We have derived a nonlinear PDE for the implied volatilityrfrindifference pricing with respect to dynamic
convex risk measures defined by BSDEs undg&usiion stochastic volatility models. Our asymptotic anal-
ysis has highlighted the principaffect of the risk measure on option implied volatility at showturities,
namely through the appearanceggfin the first order correction solving_(R5).

In the example of Sectidn 3.2, this translates explicithatsteepeningfiect on the implied volatility
smile from the distortion parametgr Numerical computations confirm this away from short maguoo,
as well as quantifying thefiect of risk aversion on the level of implied volatilities.

In principle, the analysis could be used to infer some ingttiam about the driver, for exampieandy
in the family [26), from market implied volatilities; caliition is beyond the scope of the current paper.
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5 Proofs

Price- and Volatility Bounds

Lemma 5.1 (First Price Comparison). Suppose that P- i —u and P = T - T for some uil, U, U €
CY2(Qror) NC(Qroyr), 0 < 7o < T, satisfy

= _~= 1/, , ~ , _ .
Pr 2 [P - (8(-2(). p'Kay)Th) ~ §(-A(Y).p'Ka@)Ty)). in Qeys (35)
i 1. ’ ~ A ’ ;
P, < [P - 2(8(-10).p'Kay)d,) - 8(-A(y).p'Kay)y,)). i Qe (36)
as well as
P>P on {0)xR?’NQ,, and ]0,70] xR%NIQy,;. (37)

ThenP > P on Q.

Proof. Even if the form of this comparison principle for sub- andeygices seems to be quite unusual, the
proof follows directly along the lines of Friedmé&n [Fri64hdorem 2.16] since the functiogscontains no
second derivatives. To be precise: this argument leadssaéowawhere the inequalities in_(35]), (37) and the
conclusion are strict. But setti®8 = P + &(1 + 7) one gets a strict superprice and sendirg zero yields
the stated version. m]

Proof of Proposition[2.10:

Proof. To prove [16), we intend to invoke the above comparison jpiador the price process given in

Theoren{ 2P since it is clear that the Black-Scholes pridimgtions are sub- resp. supersolutions of the

PDE. Unfortunately we have the irftkrence price only as solution of a Dirichlet problem whiclesloot

give rise to directly comparable lateral boundary condgiothus we have to alter the argument a bit.
Denote forN € N by uN-< the solution of the initigboundary-value problems

U+ BT = 2g(-A0). o' Kaly)uy D),
uN’g(o’ X, y) = _(l - eX)+,
uNg (7, X, y)|aB(o,N) = —PBS(r, x; o).

By a classical argumerit [LSUB7, Sectior§8)}, we can extract a subsequent&< of uN< such thatMN<

converges together with its derivativesuand it's derivatives pointwise iht. The same is true fou™”
given by

-+ LN = L

NO.xy) = 0

N, x, y)|aB(o,N) = 0

ThusPN<(z, x, y) = uN<(7, x,y) — U(r, X, y) satisfies

G(=A(y). o' Kay)a)');

—PY 4 EPNE = Lg(-a(y), o Kay)d)) - 2a(-A(y), o’ Kay)uy);
PNZ(O,x,y) = (1-e9*; (38)
PNE(T, X Y)|pony = PP X ).

andPNZ — P along a subsequence.

Noting thatPBS(r, x; o) is a subprice on every cylindé&pr y by writing it in the odd formPBS(z, x; o) =
0 — (-PBS(z, x; o)) to satisfy the comparison principle of Lemmal5.1, we ha%&(r, x; ) < PN on Qr n
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and hence in the limiPBS(r, x; ) < P. The other direction of Theorem 2.9 is proved, of course,Hay t
same argument usirePS(r, x; &) as superprice.
Finally a reformulation of the achieved result reads

U(c?r, X) < U(I(1, X, Y)°7, X) < U@, X)

and so the monotonicity df yields [17). i

Vanishing Vega
Lemma 5.2. It holds thatv = {iy — uy — 0 uniformly on compacts as— 0.

Proof. Choose the cylinde®r such that the compact set is contained. Tiise C**#/22+#(Qr)nC(Lt)
implies thatuy anduy are/2-Holder continuous with some Holder constant ¢, whence

V(@ X Y)I = [Oy(r, X ¥) = Uy(z. X Y)
< |Uy(Ta X, y) - E:Iy(oa X, y)l + |Uy(Ta X, y) - uy(oa X, y)l < ZCTI% - O

ast — 0 sincediy(0, X, y) anduy(0, x, y) exist and are equal to zero by the definition of the initialditions.
o

Implied Volatility - Proof of the Main Theorem

Lemma 5.3(Second Price Comparison).Recall that u is the solution of the Cauchy problEd) and Ui of
the same problem with initial condition equal to zero. SiugepthatP, P € C2(Q,,)NC(Qror), 0 <70 < T,
satisfy

P 2 [P {a(-A0). p'Kaly)ih) - G-A0). p'Kab)y).  in Qs (39)
P, < [P~ (8(-10).'KaO)E) - 8(-10).//Kab))).  in Quyg (40)
as well as
P>P>P on ]0,70] xR*NQ,,,, (41)
and

P(0,x,y) = P(0, x,y) = P(O, x,y) = (1L - )"
thenP > P> Pon Q.

Proof. We note that inequality(39) implie®(- P), > (P - P) which implies together with the lateral
bound P — P) > 0 on ]Q 7o] X R? N dQ,, and the initial conditiorP(0, x,y) — P(0, x,y) = 0 thatP > P on
Q-,r by the classical comparison principle. The second inetyialiproved in the same way. m|

Lemma 5.4 (Volatility Comparison). Suppose thal, | € C%?(Qy,r) N C(Qyor), 0 < 70 < T, satisfy
(T1%)e SH@ XY, L L) + 7L Lo Ly 1)

geawm«awmraeawm«awww
K@, - )

— 211, | pa(y)A(y) +
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resp.

(e SHE % Y. T Ty) + 7L, Ty Ty Tyy)
A(=A(y), o’ Ka(y)lly) - @(—ﬂ(y),p'Ka(y)uy))
K (@G — uy)

~ 21Ty pa(y)A(y) +
in Q. together with the lateral comparison
I(mxy) <Imxy) <T(rxy) on ]0,70] X R?NdQ,,
and the initial growth condition
liToT'—z(T’ X,y) = ler})rTZ(r, xy)=0 on {0}xR>NQ,,. (42)

Then it holds that _
I_(T’ X, y) < I (T’ X, y) < I (T’ X, y) in QTo,I’-

Proof. Define firstP(r, x, y) := U(|_2(T, X, Y)7, X) andP(r, X, y) := U(1%(r, X, y)t, X). Then by the same calcu-
lation as in the derivation of the PDE{22) of the implied viity we get by Lemma5.3

ol

D 1 A ’ ~ P ’ :
TzLP—R@GMWmewW%QGMWdeWW» iN Qror
~ 1, , oy A , :
P, < [P - 2(8(-10).p'Ka(y)dy) - 8(-A(y). p'Kay)y)). i Qe
as well as the lateral boundary condition

P, xy) < P(r,xy) <P(t,xy) in  Qur.

Moreover, the growth conditiof (#2) implies by the contigwof U th_atl_:’(o, xY) = P(0,xy) = P(0,x,y) =
(1-€9*. Thus we can use Lemrhab.3 to infr, x,y) < P(z, X, y) < P(, x,y) in Q. and the monotonicity
of the functionU in the first component yields the result. m|

Proof of Theorem[2.12:

Proof. Remark first that if there exists a solution to the PDE with sdiimed initial condition, it has
to be unique by the smoothness and monotonicityofand the boundedness bf since otherwise the
solution of the pricing PDE (Theorei 2.9) would not be unigugy the same reasoning we get also
| € C¥*8/22+8(Qr ) N C(Lt). Moreover, the eikonal equation {23) has a unique visgasilution as proved
in [BBEO4, Section 3.2]. To prove the theorem we will hencevsithat the solution of the eikonal equation
is the only possible initial condition, i.e. that any sodutiof the PDE[(ZR) has the eikonal equation as it's
small time limit. More precisely we will show that there eximrametrized families of (time-independent)
local super- and subsolutions 6 {22) which converge lgaatiformly to the eikonal equation. This is done
quite similar as in[[BBFO4, Section 3.4.], using an adaptaxishing viscosity method. However, in our
setting the bounds on the volatility enable us to simplify the proof and circumvent some obdegrih the
local volatility argument in[[BBEQ4].

Definel”’(x,y) for &, § > 0 as the solution of

—&,0 —£,0 —&,0 —&0 —&,0
5= —(I)2+H@O,xy,1 1,1+ eA(n (1))
{rﬁﬁ ()2 + HOxy, T 1T + 2An (7)) 43)

|6B(m,r) =
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whereB(m, r) is an arbitrary disk. We will show that far, §, € > 0 there exists a solution to this equation
and for fixedr andé there existeg > 0, 79 > 0 such that for all < & < &g this is a supersolution of (22) in

Qq,.r- Moreover, we show that”’ — 10 locally uniformly as we send figtand thers to zero.
First step: Making the change of variableg:= In (I_s"s) one gets

(aZ(y) pa(y)a<y>)|2[ - Oy
poy)aly) — a(y) O3, 3%

Tt [(p o2(y) ,ocr(y)a(y))( (1-xw)?  —x(1- Wx)wy)]
oy)aly)  ay) J\-x(1-wwy, N2

y
=1 H(X, Y, Wy, W)

H(O, x,y, | id, ;6)—Tr

and the equatiori (43) becomes

—5= —+ H(X Y, Wy, W) + eAW;
WioBmr) = C.

which admits a solutionv € C>*#(B(m, r)) [LU68, Theorem 4.8.3] which is unique for ficiently smallr
[CU68| Theorem 4.2.1].
Second StepBy the Holder property of the derivatives of (as well as that ofy, and Uy and the
differentiability ofg) we can conclude that there exists constagtss solely depending onsuch that
—£,0 86 86 —£,0 —£,0 —i
|H(T5Xaya| > X 2 y )_H(Oxy5 5IX > y )|<Cl(r)T+C2(r)T

—£,0 86 —£,0 86
Ly, 1, | x s Ixy yy) <cg(nr

8(-A(y). o' Ka(y)ly) — §(-A(y). o’ Ka<y>Uv>) < c(r)r

K@~ )
—eA(In (7)) < eos(r)

=2tl1y| pa(y)A(y) +

in B(m, r). We can conclude that

—&,0 —&,0 86 86 86
(), =2 =6 + HO. x ¥, T, T 1,%) + eA(In (17 )
86 86 86 —£,0 86 —£,0 86

ZHE XY, D L L)+ 7L s Ly Lyy)
m -A(y), 'K pi ,,K
—Zrlly(pa<y>a<y) , 9A0)-p aWLU(véy _gﬁy : V)0 a(y)uy))

= (Car)T + Co(r)7? + ca(r)T + Ca(r)T + £05(1)),

for ¢, r small enough - thus for givehi> 0 andr > 0 we can find indeed positive bounds &) 7o such that
™ isa supersolution of (22) for @ & < o in Q. In the same way one proves that we getl_ﬁ’)ﬁr of

{ 5= (%) + H(O, %y, 1%, 15, 129) + eA(In (1)) = (17°)%;
—£,0

[ o

|OB(m,r) - <

subsolutions.
Third Step:Having now super- and subsolutions, we can invoke now thepaoison principle Lemma
to conclude that

199 y) < 1T xy) < T°(xy)  in - Quyy
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for all 0 < & < &g, &g andtrg chosen as above. Thus we have

129(x,y) < lim inf (7. x.y) < limsupl(z. x.y) < (%, y).

-0

Next we want to send to zero. Therefore we note that the families of solutid_)sri% 129 are bounded and
equicontinuous i (since Holder-continuous with the same Holder consjaritbus by the Arzela-Ascoli

theoreml ™ converges along a subsequence uniformly on compacts tolgitiinction T° ¢ C™B(Qqor)-
This function is the unique viscosity solution of the PDE

{ 5= ~C2+HO.xy.T.TLT):;
—£,0
l |aB(mr) = 0

compare[[Evad8, Section 10.1]. An analogous result holds for the subsolutions. now senditig— 0O,
this gives by the same argument a solution of the PDE

(192 = H(O, x y, 1°,12,19)

which satisfied (0,y) = 0. Thus forr — 0, I (7, x,y) converges locally uniformly t6° which is nothing else
then the unique viscosity solution of the eikonal equat@®) vithy = x/1°. i
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