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1 Introduction

The Einstein-Rosen bridge is the prototype example of a wormhole in gravita-
tional physics. It was proposed by Einstein and Rosen [1] in 1935 as a possible
geometric model of particles that avoided the singularities of points with infinite
mass or charge densities. While not successful as a model for particles, it gained
attention after properties of black holes were clarified, and eventually led to the
study of traversable wormholes (see, e.g. [2, 3]).

It was not realized until the work of Oppenheimer and Snyder [4] in 1939 that
black holes could actually exist, and that they might result from the collapse
of sufficiently massive stars. Subsequently in 1962 it was shown by Fuller and
Wheeler [5] that the Einstein-Rosen bridge, also called the Schwarzschild worm-
hole, is part of the geometry of the maximal extension of Schwarzschild space-
time discovered by Kruskal [6] and Szekeres [7], and is non traversable. Refer-
ence [5] includes sketches of a sequence of wormhole profiles for various spacelike
slices, illustrating the collapse, or “pinching-off”, but the calculations for the
embeddings were not included. The main goal of that paper was to demonstrate
the impossibility of even a photon passing through the wormhole.

Later in reference [8] essentially the same figures as in [5] were included with
some additional variations, and although some hints about the embeddings were
given [9], the calculations were again not explained. Two other references, [10]
and [11], also provide insights into Schwarzschild wormhole embeddings, but
again the mathematical arguments and associated numerical calculations for
the dynamics of the wormhole are not presented there, and to our knowledge,
are not available in print [12].

In this article, using elementary methods, we show how to embed space slices
of the Schwarzschild wormhole in R3. The calculations and examples, apart
from supplying the missing material to interested physicists, may be useful in
general relativity and differential geometry courses. In Sec. 2, we review Kruskal
coordinates for the maximal spacetime extension of Schwarzschild spacetime
and display the Schwarzschild metric in this coordinate system. In Sec. 3, we
develop a general method for embedding space slices as surfaces of revolution
in R3. Section 4 applies that method to embeddings of constant Kruskal times
between −1 and 1 in order to reveal the full dynamics of the wormhole from
formation to collapse. At Kruskal times v > 1, the two universes, connected
by the wormhole at earlier times, |v| < 1, have separated into two connected
components. In Sec. 5 we show how to deal with a technical issue in order to
embed space slices of nearly constant Kruskal time v > 1 (or v < −1). Then in
Sec. 6 we show by example how more general embeddings can be carried out,
including an embedding consisting of three separated components. Concluding
remarks are given in Sec. 7.
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2 Kruskal coordinates

Kruskal coordinates u, v and Schwarzschild coordinates are related by,

u2 − v2 =
( r

2m
− 1
)
e

r
2m , r ≥ 0 , (1)

and,
2uv

u2 + v2
= tanh

(
t

2m

)
, (2)

where t and r are the time and radial Schwarzschild coordinates respectively, and
the angular coordinates are unchanged. Coordinate v is timelike and it follows
from Eq. (2) that constant ratios v/u correspond to constant Schwarzschild t.
In Kruskal coordinates, the Schwarzschild metric becomes,

ds2 =
32m3

r
e−

r
2m

(
−dv2 + du2

)
+ r2

(
dθ2 + sin2 θdφ2

)
, (3)

where r = r(u, v) is determined implicitly by Eq. (1), and may be expressed in
terms of the Lambert function [13] as follows. Dividing both sides of Eq. (1) by
e we may write

ζ = W (ζ)eW (ζ) , (4)

where in the present case,

ζ =
u2 − v2

e
. (5)

The Lambert function, W (ζ) is defined to be the function satisfying Eq. (4),
i.e., it is the inverse function to ζ(x) = xex. Then,

W

(
u2 − v2

e

)
=
r(u, v)

2m
− 1 , (6)

and

r(u, v) = 2m

[
1 +W

(
u2 − v2

e

)]
. (7)

In Fig. 1 we show the maximally extended Schwarzschild spacetime in terms
of Kruskal coordinates, with the angular coordinates suppressed, so that each
point in the diagram represents a 2-sphere.

The original Schwarzschild coordinates cover only regions I and II in Fig. 1.
Region II is the interior of the black hole. Region III is a copy of region I, and
region IV is the interior of a white hole. The singularity at r = 0 is given by the
“singularity hyperbola,” vs(u) = ±

√
1 + u2. Additional details may be found,

for example, in [8] and [14].
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Figure 1: Kruskal diagram of the Schwarzschild geometry.

A particular choice of v = v(u) as a function of u, with | dv/du |< 1, selects a
spacelike hypersurface (or a slice) through spacetime, and the projection of the
metric of Eq. (3) onto this hypersurface is,

ds2 =
32m3

r
e−

r
2m

[
1−

(
dv

du

)2
]
du2 + r2

(
dθ2 + sin2 θdφ2

)
. (8)

Without loss of generality we shall consider slices with v(u) ≥ 0. For example,
choosing v(u) = constant, for a range of constants, reveals much of the dynamics
of the wormhole, but this simple form for v(u) is too limiting. As we shall see
below, slices with spacetime points with coordinate v > 1, require special care
near the singularity.

3 Embedding wormholes as surfaces of revolu-
tion in R3

In order to produce embeddings of two dimensional space slices of the wormhole
in R3, we make the restriction θ = π/2. Specializing to the equatorial plane re-
sults in no loss of generality because of the spherical symmetry of Schwarzschild
spacetime. With this constraint the metric of Eq. (8) becomes,

ds2 =
32m3

r
e−

r
2m

[
1−

(
dv

du

)2
]
du2 + r2dφ2 . (9)

Our strategy is to identify Eq. (9) as the metric of a surface of revolution
in R3 induced by the Euclidean metric. To that end, consider the profile (or
generating) curve, α(u) = (f(u), 0, g(u)), and the associated chart for a surface
of revolution,

x(u, φ) = (f(u) cosφ, f(u) sinφ, g(u)) . (10)
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The induced metric [15] on the surface of revolution is,

ds2 =
[
(f ′(u))

2
+ (g′(u))

2
]
du2 + f2(u)dφ2 . (11)

Comparing Eqs. (9) and (11), we make the identifications,

f(u) ≡ f(u, v(u)) = r(u, v(u)) , (12)

and

(f ′(u))
2

+ (g′(u))
2

=
32m3

r
e−

r
2m

[
1−

(
dv

du

)2
]
. (13)

To find g(u), we begin by differentiating both sides of Eq. (1) to get,

2

(
u− v dv

du

)
du =

( r

4m2

)
e

r
2m dr , (14)

or

du =

(
r

8m2

)
e

r
2m(

u− v dvdu
) dr . (15)

Now, assuming that v(u) is chosen in such a way that u can be expressed as a
function of r (through Eq.(1)), we may rewrite the metric from Eq. (9) as,

ds2 =
32m3

r
e−

r
2m

[
1−

(
dv

du

)2
][(

r
8m2

)
e

r
2m(

u− v dvdu
) ]2 dr2 + r2dφ2 . (16)

The coefficient, grr, of dr2, simplifies to

grr =
( r

2m

)
e

r
2m

[
1−

(
dv
du

)2][
u− v dvdu

]2 . (17)

From Eq. (13), and choosing the positive square root, we find that

dg

du
=

[
32m3

r
e−

r
2m

[
1−

(
dv

du

)2
]
− (f ′(u))

2

] 1
2

, (18)

and from Eqs. (12), and (15) we have that

df

du
=
dr

du
=

8m2
(
u− v dvdu

)
e−

r
2m

r
. (19)

So Eq. (18) takes the form,

dg

du
=

32m3

r
e−

r
2m

[
1−

(
dv

du

)2
]
−

[
8m2

(
u− v dvdu

)
e−

r
2m

r

]2 1
2

. (20)
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Eqs. (13), (19), and (20), then give,(
g′(u)

f ′(u)

)2

=

(
dg

dr

)2

= grr − 1 . (21)

Thus, we require grr ≥ 1 (see [11] for a similar observation).

4 Constant Kruskal time embeddings before sep-
aration of the universes

In this section we consider space slices of the form v(u) = v0, for any constant
v0 ∈ [−1, 1]. This interval of Kruskal coordinate times captures the full evolu-
tion of the wormhole. The spacelike hypersurface at v0 = 0 may be thought
of as a throat, or bridge, joining two distinct, asymptotically flat Schwarzschild
manifolds, one depicted in Fig. 1 by regions I and II, and the other by regions III
and IV. At this instant, the wormhole has maximum width, with the observer
at u = 0 exactly on the event horizon, r = 2m. As v0 increases, the observer at
u = 0 enters the region r < 2m and the bridge narrows. When v0 = 1 the bridge
pinches off completely, and the two separating universes just touch at r = 0.
Since the extended spacetime is symmetric in v, the same evolution occurs in
reverse between v0 = −1 to v0 = 0.

For ease of exposition, here and below we will take m = 1. The embeddings
may be carried out using the machinery developed in the previous section. From
Eqs. (20) and (21),

g(u) =

u∫
0

dg

du
du =

r(u)∫
r(0)

dg

du

du

dr
dr , (22)

=

r(u)∫
r(0)

√
grr − 1 dr , (23)

=

r(u)∫
r(0)

[
2
(
e

r
2 − v20

)
re

r
2 − 2

(
e

r
2 − v20

)] 1
2

dr , (24)

where r(0) is given by Eq. (7), i.e.,

r(0) = r(0, v0) = 2

[
1 +W

(
−v20
e

)]
. (25)

The integral of Eq. (24) can be calculated in closed form for the slice v0 = 0.
This is the original Einstein-Rosen bridge, and it is typically the only example
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Figure 2: The wormhole embedding for Kruskal time v = v0 = 0.75.

Figure 3: The wormhole at the instant of pinching, i.e., v = v0 = 1.

treated in detail in textbooks [12]. The other embeddings require numerical
integrations, and for that purpose we find it convenient to use the first integral
in Eq. (22). For the limiting cases v0 = ±1, the slice meets the singularity
tangentially at u = 0, and that results in an improper integral for g(u), which,
however, as we show in the next section is convergent. Fig. 2 shows the embed-
ding of the wormhole at Kruskal time v0 = 0.75, and Fig. 3 shows it at v0 = 1,
the instant of pinching off.
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5 Separated universes at (nearly) constant Kruskal
times

In this section we consider the embedding of the wormhole for v(u) = v0 for
constant Kruskal time v0, but with v20 > 1. When v0 < −1, the wormhole has
not yet formed, and for v0 > 1, the wormhole has already formed, then pinched
off, and the two universes have separated. We will see that the restriction that
v(u) is constant must be relaxed at space-time points close to the singularity if
the embeddings are to include such points.

Since the singularity at r = 0 in Kruskal coordinates is given by the singularity
hyperbola u2 − v2 = −1, our function v(u) = v0 is defined only for the values
of u such that the pair (u, v0) (with the angular coordinates suppressed) lies
within the Kruskal coordinate chart, i.e, for values of u that satisfy u2 > v20−1.

However, the allowable values of u must be further restricted in order to satisfy
the inequality grr ≥ 1 that follows from Eq. (21). To see this, observe that
when v(u) = v0 Eq. (17) reduces to,

grr =
re

r
2

2u2
. (26)

Combining Eq. (26) with Eqs. (1) and (21) we obtain,(
dg

dr

)2

=
2
(
e

r
2 − v20

)
re

r
2 − 2

(
e

r
2 − v20

) . (27)

From this last equation we see that r must be restricted to those values for
which the right-hand side of Eq. (27) is non-negative. It is easily checked that
the denominator, D(r), of the right-hand side of Eq. (27) satisfies D(0) > 0
and D′(r) > 0 for r > 0. Therefore, D(r) > 0 for all r > 0, and the sign of the
right-hand side of Eq. (27) is determined solely by the numerator. Therefore
we must have r > 2 ln v20 . Then, using Eq. (1) again, we find that,

u2 ≥ v20 ln v20 ≡ u20. (28)

That is, the embedding for v(u) = v0 is possible for u2 ≥ u20 = v20 ln v20 only [16].

Our embedding can be extended to include smaller values of |u|, thus capturing
more of the Schwarzschild space-time, if we weaken the restriction that v(u) is
a constant function. To that end, we shall extend v(u) so that it is a linear
function of |u|, with positive slope, for values of u with u2 < u20. To avoid
restrictions of domain analogous to Eq. (28), we consider linear functions that
are tangent to the singularity hyperbola, vs(u), as illustrated in Fig. 4. We
proceed now to show that this choice enables us to include spacetime points
arbitrarily close to the singularity. For simplicity, we restrict our attention to
the portion of the spacetime with u ≥ 0. Since we will always take v(u) to be
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an even function, the extension to negative values of u is straightforward.

Let v1(u) = a1u+ b1 be a linear function that meets the singularity hyperbola,
vs(u) =

√
1 + u2, tangentially at u = u1 ≥ 0. Then a simple calculation shows

that,

a1 =
u1√

1 + u21
, b1 =

1√
1 + u21

. (29)

Figure 4: Typical intersections of spacelike slices with the singularity hyperbola
vs(u).

With the domain of v1(u) temporarily taken to be [u1,∞), we choose the an-
tiderivative, g(u) of Eq. (20), as,

g(u) =

u∫
u1

dg

du
du =

r(u)∫
0

dg

dr
dr =

r(u)∫
0

√
grr − 1 dr , (30)

where, (u1, v1), is the point of tangency. From Eq. (17), with v = v1(u), we
have that,

grr =
r

2
e

r
2

1 + u21
(u− u1)2

. (31)

It is easily verified that,

(u− u1)2

1 + u21
= u2 − v21(u) + 1 (32)

= 1 + e
r
2

(r
2
− 1
)
, (33)

where in the last step we made use of Eq. (1). Substituting Eq. (33) in Eq.
(31), we may write the last integral in Eq. (30) as,

g(r(u)) =

r(u)∫
0

[
2
(
e

r
2 − 1

)
r e

r
2 − 2

(
e

r
2 − 1

)] 1
2

dr . (34)
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Remark. The integral of Eq. (34) is the same as that in Eq. (24), when
v(u) ≡ v0 = 1, for which case v(u) is tangent to the singularity hyperbola at
r = 0.

To see that the integral in Eq. (34) converges and is real, we first note that the
same argument applied to Eq. (27) shows that(

dg

dr

)2

≡
2
(
e

r
2 − 1

)
re

r
2 − 2

(
e

r
2 − 1

) > 0 , (35)

when r > 0. A calculation using L’Hôpital’s rule shows that,

lim
r→0+

[
r ×

(
dg

dr

)2
]

= 4 , (36)

from which it follows that,

dg

dr
=

[
2
(
e

r
2 − 1

)
r e

r
2 − 2

(
e

r
2 − 1

)] 1
2

<
C√
r
, (37)

for 0 < r < δ, where C and δ are some positive constants. Since the right-hand
side of Eq. (37) is integrable, it follows that the integral in Eq. (34) converges.

We may now extend our original constant function v(u) = v0 by redefining v(u)
to be v1(u) for u1 < u ≤ u0, and v(u) = v0 for u > u0, for which an embedding
function g(u) may be well defined. However, this extended space slice, v(u),
fails to be differentiable at u0, where it has a kink. To remedy this, we may
construct spacelike slices consisting of a straight line segment, v = v1(u), tan-
gent to the singularity hyperbola, vs(u), at (u1, v1) and joined, with the desired
degree of smoothness, to another curve, v2(u), (satisfying the spacelike condi-
tion, |dv2/du| < 1), which in turn is joined to a constant function, v3(u). The
typical situation we have in mind is illustrated in Fig. 5, where the straight
line segment, v1(u), is joined to a parabola, v2(u), which in turn is joined at its
maximum to a horizontal straight line, v3(u) ≡ v0. In the composite slice the
joints are of class C1.

For this composite space slice, we have a well defined function g(u) given by
Eq.(30) for u ≥ 0, where as before, (u1, v1) is the point where v(u) meets the
singularity hyperbola. For u ≤ 0, g(u) is defined by

g(u) =

u∫
−u1

dg

du
du , u ≤ −u1 ≤ 0 . (38)

Note that since v(u) is an even function of u, it follows that r(u, v(u)) and
dg(u)/du are also even functions, and consequently g(−u) = −g(u), i.e., g(u) is
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Figure 5: A smooth, nearly constant space slice v(u) (for u > 0) tangential to
the singularity.

Figure 6: The collapsed wormhole corresponding to Fig. 5. The distance be-
tween the pinches is arbitrary.

odd. This observation simplifies the numerical calculations.

Fig. 6 shows an embedding for a space slice, v(u), consisting of the three parts
illustrated in Fig. 5. The straight line, v1(u) of Eq. (29), is tangent to the sin-
gularity hyperbola at u1 = 0.6. The parabola, v2(u) = v1(u), at u = u2 = 1.0
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and their slopes match there. The parabola, v2(u), is joined at its maximum,
u3 = 1.2, to the horizontal straight line, v3(u), whose constant value is approxi-
mately 1.424 (and thus the slopes match there also). We have ensured that the
joints are of class C1, i.e., continuously differentiable.

Another space slice serves both as an alternative to the previous example and
as a transition to the next section. Let,

vH(u) = k +
b

a

√
(u− h)

2 − a2 , (39)

where we choose a = 4, b = 1. The values h ≈ −3.5648, and k ≈ 0.84394
are then determined by our additional requirement that vH(u) is tangent to
the singularity hyperbola at u1 = 0.8, as shown in Fig. 7. This space slice is
infinitely differentiable, and analogous to the derivations of Eqs (36) and (37)
for the straight line tangent, it can be shown for the present example that,

dg

du
<

C√
u− u1

, (40)

for 0 < u−u1 < δ, where C and δ are some positive constants [17]. Therefore the
integral in Eq. (30) converges. The corresponding embedding of the collapsed
wormhole is shown in Fig. 8.

Figure 7: The hyperbola vH(u) slice for u > 0.
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Figure 8: The wormhole of the slice vH(u). The distance between the pinches
is arbitrary.

6 Three component embeddings

In the previous sections our focus was on embeddings of the Schwarzschild worm-
hole for constant, or nearly constant, Kruskal times. However, as illustrated in
the last example of the previous section, smooth embeddings are also readily
available for an unlimited choice of other non constant space slices. As a further
illustration, consider a family of space slices defined for all values of u, whose
graphs are again hyperbolae. Let,

v(u, v0) = v0 +
p

q

√
(u2 + q2) . (41)

where p and q are positive constants, and v0 is a parameter whose variation may
be regarded as representing the time evolution of this family of space slices. For
concreteness, we take p = q/2 and q = 0.1.

We may again use Eq. (20) to calculate g(u). The integrations present no spe-
cial difficulties, but must be done numerically. For the case that v0 ≡ v01 = 0.6,
the slice and corresponding wormhole are shown in Figs. 9 and 10.

Now let v0 increase until v(u, v0) has two points of tangency with the singularity
hyperbola, as shown in Fig. 9. This occurs when v0 ≡ v02 = 3

√
33/20. As v0

increases to this value, the cylinder gradually pinches off at two values of v. The
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Figure 9: The hyperbolae v(u, v0) slices.

Figure 10: The wormhole of the slice v(u, v0), with v0 = v01.

corresponding embedding displayed in Fig. 11 shows a separation of universes
into three components. A qualitatively similar model of a collapsing dust star
is discussed in detail in Box 32.1 of Ref. [8] (see figure on p. 856).
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Figure 11: The wormhole of the slice v(u, v0), with v0 = v02.

7 Concluding remarks

Using the Kruskal coordinates, which allow the maximal extension of the Schwarzschild
geometry, we have shown how to embed projections of the Schwarzschild worm-
hole as a surfaces of revolution in R3 for various spacelike slices v(u). A foli-
ation of spacetime by a collection of surfaces {v(u)} constitutes a definition of
simultaneity. A party of explorers of negligible mass, acting as a collection of
test particles, is free to make any such choice, subject only to the constraint,
|dv/du| < 1. For slices of constant Kruskal time, the embeddings trace the time
evolution of the wormhole within the Kruskal coordinate system, from its for-
mation at v = −1 to the pinching off at v = 1, and beyond in the sense of Sec. 5.

However, other choices of v(u) can push one region of space faster ahead in
coordinate time (i.e., Kruskal time) than others, at the option of the party
of explorers. In Sec. 6, we showed how one choice of evolving hypersurfaces
of simultaneity leads to a separation into three universes, in the limit as the
hypersurfaces approach the singularity tangentially. More generally, multiple
universes could arise through evolving hypersurfaces approaching r = 0 at mul-
tiple tangent points. Spacetime is four dimensional and the slices are only three
dimensional. There are no physically correct or incorrect choices. Each one
reveals only part of the intricate geometry of the wormhole.
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slice v(u), has the Taylor expansion about a point u1 given by, v(u) =
vs(u1)+[u1/vs(u1)] (u−u1)+[v′′(u1)/2] (u−u1)2+O

(
(u− u1)3

)
, and thus

meets the singularity hyperbola, vs(u), tangentially at u1, then dg/du ∼
C/
√
|u− u1|, in an open interval containing u1, where C is a positive

constant, provided v′′(u1) < 1/
(
1 + u21

)3/2
.
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