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Abstract

We consider Gaussian ensembles of m N × N complex matrices.

We identify an enhanced symmetry in the system and the resultant

closed subsector, which is naturally associated with the radial sector

of the theory. The density of radial eigenvalues is obtained in the large

N limit. It is of the Wigner form only for m = 1. For m ≥ 2, the new

form of the density is obtained.
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1 Introduction

The Wigner semicircle distribution [1]

f(x) =
2

πR2

√
R2 − x2, −R < x < R; f(x) = 0, |x| > R ,

describes the density of eigenvalues of a gaussian ensemble of single large
hermitean, symmetric or quaternionic matrices [2], and finds applications in
the descripiton of systems in many areas of Physics, from Nuclear Physics to
Condensed Matter Physics.

The Gaussian ensemble of a single complex matrix, or equivalently, of
two hermitean matrices, is also described by a Wigner type distribution of
eigenvalues of a “radial” variable [3] [4], the definition of which will be made
precise in the following.

It is of great interest and importance to investigate if this continues to be
a general property of gaussian ensembles of more matrices, and in general, to
study the properties of systems with a finite number of matrices, particularly
in their large N limit [5].

The reason for this importance includes, for instance, the fact that, as it
has been established already some time ago [6], [7], [8], QCD can be reduced
to a finite number of matrices with quenched momenta.

Of more recent interest, the matrix description of D branes [9] has for
instance lead to the proposal that the largeN limit of the quantum mechanics
of the multi matrix description of D0 branes provides a definition of M
theory [10]. In the context of the AdS/CFT duality [11], [12], [13], due to
supersymmetry and conformal invariance, correlators of supergravity and 1/2
BPS states reduce to calculation of free matrix model overlaps [14], [15] or
consideration of related matrix hamiltonians [16]. For stringy states, in the
context of the BMN limit [17] and N = 4 SYM, similar considerations apply
[18], [19], [20]. A plane-wave matrix theory [21] is related to the N= 4 SYM
dilatation operator [22].

In this communication we will consider m complex N ×N matrices

ZA A = 1, ..., m ,

or equivalently, an even number 2m of N × N hermitian matrices and a
gaussian ensemble of such matrices:
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p[Z†
A, ZA] =

e−
w2

2
Tr(

∑m
A=1

Z
†
A
ZA)

Z
, Z =

∫

[dZA
†dZA]e

−w2

2
Tr(

∑m
A=1

Z
†
A
ZA). (1)

We will obtain the large N description of the system in terms of the
density of eigenvalues of the matrix

m
∑

A=1

Z†
AZA (2)

This matrix has a very natural interpretation as a matrix valued radial
coordinate.

We will establish that for m = 1 the density of eigenvalues of the radial
matrix is still described by a Wigner distribution, but that this is no longer
the case for m ≥ 2 and obtain the form of the new eigenvalue distribution.

In order to obtain these densities, we will first need to establish a new
result, the measure for the probability density (1) in terms of the eigenvalues
ρi = r2i , i = 1, ..., N of (2):

∏

A

[dZA
†dZA] = Cm

∏

i

dρiρ
m−1
i

∏

i>j

ρm−1
i ρm−1

j (ρi − ρj)
2

= Dm

∏

i

drir
2m−1
i

∏

i>j

r2m−2
i r2m−2

j (r2i − r2j )
2 (3)

= Cm

∏

i

dρiρ
m−1
i ∆2

RM (ρi) = Dm

∏

i

drir
2m−1
i ∆2

RM (r2i ),

where the antisymmetric product

∆RM (ρi) ≡
∏

i>j

ρ
m−1

2

i ρ
m−1

2

j (ρi − ρj)

generalizes the well known Van der Monde determinant ∆ =
∏

i>j(ρi − ρj),
and Cm and Dm are numerical constants.

This comunication is organized as follows: In Section 2 we restate the
problem, identify the enlarged symmetries of the gaussiand ensemble and
identify a complete subset of operators invariant under this enlarged symme-
try. In Section 3, based on the remarkable fact that this subset of invariant
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operators closes under Schwinger Dyson equations, the Jacobian of the trans-
formation to these invariant states and to the eigenvalues of (2) is obtained.
In Section 4, the large N density of states on the positive real line is obtained
for m ≥ 2. In this case, the effective potential contains a new logarithmic
term which keeps the support of the density of eigenvalues strictly positive,
i.e., 0 < ρ− ≤ ρ ≤ ρ+. In Section 5, the density is appropriately extended to
the whole real line, allowing for a common description of both the m = 1 and
m ≥ 2 cases. For m = 1, a (restricted) Wigner distribution emerges, whereas
for m ≥ 2 the required two cut solution is shown to agree with that of the
previous section, when suitably restricted to the positive real line. In Section
6, these densities are related to the density of zeros of certain polynomials.
Section 7 is left for a summary and brief discussion.

2 Gaussian ensemble and symmetries

As stated in the Introduction, we consider a gaussian ensemble of m complex
N ×N matrices

(ZA)ij , A = 1, ..., m.

The gaussian potential

Sg =
w2

2
Tr(
∑

A

Z†
AZA)

is invariant under the U(N)m+1 symmetry

ZA → VAZAV
† , A = 1, ..., m, (4)

with VA , A = 1, ..., m and V unitary matrices. The potential depends only
on the eigenvalues of the positive definite, hermitean matrix

∑

A

Z†
AZA , (5)

which are denoted

ρi = r2i , i = 1, ..., N , ρi ≥ 0.

In the context of a physical framework where the m complex matrices
are naturally associated with 2m hermitean matrix valued coordinates, as
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appropriate, for instance, in the description of the dynamics of branes, these
eigenvalues have a natural interpretation as the eigenvalues of a matrix valued
radial coordinate.

The purpose of this communication is to obtain the large N distribution
of these eigenvalues for the gaussian partition function

Z =

∫

∏

A

∏

ij

dZA
†
ijdZAije

−Sg

We will do so by “integrating out” the “angular matrix valued degrees
of freedom or equivalently, by obtaining the jacobian J (ρi) of the change of
variables to the “radial” eigenvalues:

Z =

∫

∏

i

dρiJ (ρi) e
−Sg(ρi)

In order to do so, we will consider correlators of operators that are in-
variant under the symmetry (4), i.e., in the subsector of the theory with this
enlarged symmetry. Such invariant operators can be built as the trace (sin-
gle traces) of powers of the matrix (5), and hence they depend again on the
eigenvalues of this matrix only.

A generating function for such opearators is given by

Φk = Treik
∑

A Z
†
A
ZA =

∑

i

eikρi =
∑

i

eikr
2
i ,

or its fourier transform, the density of eigenvalues:

Φ(ρ) =

∫

dk

2π
e−ikρΦk =

∑

i

δ(ρ− ρi) =
∑

i

δ(ρ− r2i ).

It turns that these correlators close in this subsector, as it will be shown
in the following by use of Schwinger Dyson equations

3 Jacobian

Schwinger Dyson equations can be obtained from the identity:

∫

∏

A

∏

ij

dZA
†
ijdZAij

∂

∂(ZA)ji

(

∂Φk

∂(ZA)
†
ij

F [Φ]e−Sg

)

= 0, (6)
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where F [Φ] is an arbitrary product of invariant operators. This yields:

<
∂2Φk

∂(ZA)
†
ij∂(ZA)ji

F [Φ] > + <
∂Φk

∂(ZA)
†
ij

∂F [Φ]

∂(ZA)ji
>

− < F [Φ]
∂Φk

∂(ZA)
†
ij

∂Sg

∂(ZA)ji
> = 0. (7)

We denoted in the above:

< G[Φ] >≡
∫

∏

A

∏

ij

dZA
†
ijdZAij G[Φ] e−Sg =

∫

[dΦ]J(Φ) G[Φ] e−Sg .

Following [23], we now consider the identity

∫

[dΦ]

∫

dk′ ∂

∂Φ′
k

([

∂Φk

∂(ZA)
†
ij

∂Φk′

∂(ZA)ji

]

J(Φ) F [Φ] e−Sg

)

= 0.

Then

∫

dk′ <
∂

∂Φ′
k

[

∂Φk

∂(ZA)
†
ij

∂Φk′

∂(ZA)ji

]

F [Φ] >

+

∫

dk′ <

[

∂Φk

∂(ZA)
†
ij

∂Φk′

∂(ZA)ji

]

∂ ln J(Φ)

∂Φ′
k

F [Φ] > (8)

+ <
∂Φk

∂(ZA)
†
ij

∂F [Φ]

∂(ZA)ji
> − < F [Φ]

∂Φk

∂(ZA)
†
ij

∂Sg

∂(ZA)ji
>= 0

where in the last two terms we used the chain rule.
Comparing (7) with (8), which are equivalent for arbitrary F [Φ], it follows

that:

∫

dk′

[

∂Φk

∂(ZA)
†
ij

∂Φk′

∂(ZA)ji

]

∂ ln J(Φ)

∂Φ′
k

(9)

+

∫

dk′ ∂

∂Φ′
k

[

∂Φk

∂(ZA)
†
ij

∂Φk′

∂(ZA)ji

]

=
∂2Φk

∂(ZA)
†
ij∂(ZA)ji

6



Fourier transforming, and defining

Ωρρ′ =

∫

dk

2π

∫

dk′

2π
e−ikρe−ik′ρ′

[

∂Φk

∂(ZA)
†
ij

∂Φk′

∂(ZA)ji

]

(10)

wρ =

∫

dk

2π
e−ikρ ∂2Φk

∂(ZA)
†
ij∂(ZA)ji

,

the differential equation for the jacobian then takes the form

∫

dρ′Ωρρ′
∂ ln J(Φ)

∂Φ(ρ′)
+

∫

dρ′
∂Ωρρ′

∂Φ(ρ′)
= wρ. (11)

Ωρρ′ and wρ have been obtained in [4]:

Ωρρ′ = ∂ρ∂ρ′ [ρΦ(ρ)δ(ρ− ρ′)] (12)

wρ = −∂ρ

[

ρΦ(ρ)

(

2−
∫

dρ′Φ(ρ′)

ρ− ρ′
+

N(m− 1)

ρ

)]

(13)

As a result, the second term in (11) vanishes and the Jacobian satisfies:

∂ρ
∂

∂Φ(ρ)
ln J = 2−

∫

dρ′Φ(ρ′)

ρ− ρ′
+

N(m− 1)

ρ

This equation was previously obtained in [4], using collective field theory
methods [24]. The solution is

ln J =

∫

dρΦ(ρ)−
∫

dρ′Φ(ρ) ln |ρ− ρ′|+N(m− 1)

∫

dρΦ(ρ) ln ρ

In terms of the eigenvalues,

J =
∏

i

ρm−1
i

∏

i 6=j

ρ
m−1

2

i ρ
m−1

2

j |ρi − ρj | =
∏

i

ρm−1
i

∏

i>j

ρm−1
i ρm−1

j (ρi − ρj)
2

Since, up to a constant,
∫

[dΦ] ∼
∫
∏

i dρi, we have obtained the result
that we sought to establish:
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∫

∏

A

∏

ij

dZA
†
ijdZAije

−S =

∫

∏

i

dρiJ (ρi) e
−S(ρi) =

∫

∏

i

dρiJ(ρi) e
−S(ρi)

= Cm

∫

∏

i

dρiρ
m−1
i

[

∏

i>j

ρm−1
i ρm−1

j (ρi − ρj)
2

]

e−S(ρi),

for potentials invariant under (4).
A couple of comments are in order. Whenm = 1, the above result reduces

to the result first obtained in [4], where an explicit parametrization of the
2N degrees of freedom of two hermitean matrices was obtained, in terms of
radial and angular matrix valued coordinates. There is a classic result [25]
[2] parametrizing a single complex matrix in terms of its complex eigenvalues
and upper diagonal matrix. This parametrization of degrees of freedom,
useful for holomorphic projections, is different from the one considered in this
communication. For m = 1, the existence of a closed hermitean subsector
has also been identified in [26].

Gaussian ensembles of rectangular M × N matrices have also been dis-
cussed in [27], [28] and [29]. They can be related to the ensembles discussed in
this communication when M = mN . In this context, the approach followed
is equivalent to using the symmetries of the system to set m−1 of the N×N
matrices to zero. This corresponds to a ”gauge fixed” treatment, as opposed
to the gauge invariant approach described in this communication, for which
the eigenvalues ri have a natural identification as a radial coordinate.

4 Large N density of the eigenvalues

Writing

Z =

∫

∏

i

dρiJ (ρi) e
−Sg(ρi) =

∫

∏

i

dρie
−Seff ,

we have
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Seff =
w2

2

∫

dρΦ(ρ) ρ (14)

−
∫

dρΦ(ρ)−
∫

dρ′Φ(ρ′) ln |ρ− ρ′| −N(m− 1)

∫

dρΦ(ρ) ln ρ ,
∫

dρΦ(ρ) = N .

In order to exhibit explicitly the N dependence, we rescale ρ → Nρ and
Φ → Φ, so that

Seff = N2[
w2

2

∫

dρΦ(ρ) ρ (15)

−
∫

dρΦ(ρ)−
∫

dρ′Φ(ρ′) ln |ρ− ρ′| − (m− 1)

∫

dρΦ(ρ) ln ρ] ,
∫

dρΦ(x) = 1

The large N → ∞ configuration is then determined by the stationary
condition ∂ρ

∂Seff

∂Φ(ρ)
= 0, or

−
∫

dρ′Φ(ρ′)

ρ− ρ′
=

w2

4
− (m− 1)

2ρ
(16)

We note a major difference between the case of one complex matrix (m =
1) and the case of more than one complex matrix: for more than one complex
matrix, an additional logarithmic potential is present, in addition to the
standard Van der Monde repulsion amongst the eigenvalues. As a result, the
eigenvalues are “pushed away” from ρ = 0.

The m = 1 solution will be described in the next section, where the range
of the density of eigenvalues is extended to the full real line. In this section,
we obtain the the density of eigenvalues for m ≥ 2.

The solution to the integral equation (16), generalizing that associated
with Penner potentials [30], is obtained using standard methods [31], together
with a careful treatment of the ρ → 0 behaviour, following Tan [32]. One
introduces the function G(z) in the complex plane

G(z) =

∫ ρ+

ρ−

dρ′Φ(ρ′)

z − ρ′

9



where Φ(ρ) has support only in the interval [ρ−, ρ+], ρ+ > ρ− > 0. For large
|z|, G(z) ∼ 1

z
, and as z approaches the support of Φ(ρ),

G(ρ± iη) = −
∫ ρ+

ρ−

dρ′Φ(ρ′)

ρ− ρ′
∓ iπΦ(ρ) =

w2

4
− (m− 1)

2ρ
∓ iπΦ(ρ).

Therefore, this suggests the single cut anzatz

G(z) =
w2

4
− (m− 1)

2z
− w2

4z

√

(z − ρ−)(z − ρ+)

One also requires [32] that G(z) has no pole as z → 0. These conditions fix:

ρ± =
2

w2
(m+ 1)± 4

w2

√
m (17)

It follows that the density of eigenvalues is given by

Φ(ρ) =
w2

4πρ

√

(ρ+ − ρ)(ρ− ρ−) , ρ− ≤ ρ ≤ ρ+

=
w2

4π

√

(
ρ+
ρ

− 1)(1− ρ−
ρ
) (18)

=
1

πρ

√

1− w4

16
(ρ− 2

w2
(m+ 1))2 ,

no longer of the Wigner form.

5 Symmetric solutions

In this section, we extend the domain of definition of the density of eigenval-
ues, allowing us to provide a unified description of the single complex matrix
case (m = 1) and that of more than two complex matrices (m ≥ 2).

With ρ = r2, r > 0, define

2rΦ(r2) ≡ φ(r) ≡ φ(−r)

In this way, for an arbitrary function f(r2)

∫ +∞

−∞
drf(r2)φ(r) = 2

∫ +∞

0

dρf(ρ)Φ(ρ). (19)

10



Returning to (16), we remark that (ρ = r2)

−
∫ ∞

0

dρ′Φ(ρ′)

ρ− ρ′
= −

∫ ∞

0

2r′dr′Φ(r′2)

r2 − r′2
=

1

2r
−
∫ ∞

0

dr′φ(r′)(
1

r − r′
+

1

r + r′
)

=
1

2r
−
∫ ∞

−∞

dr′φ(r′)

r − r′
(20)

As a result, (16) is equivalently written as

−
∫ ∞

−∞

dr′φ(r′)

r − r′
=

w2

2
r − (m− 1)

r
,

∫ +∞

−∞
drφ(r) = 2 (21)

Whenm = 1, this integral equation has the well knowWigner distribution
as a solution:

φ(r) =
w2

2π

√

8

w2
− r2 , −

√
8

w
≤ r ≤

√
8

w

We can now write

Φ(ρ) =
w2

4π

√

8

w2ρ
− 1 , 0 ≤ ρ ≤ 8

w2

The symmetric solution of (21) for m > 2 has been discussed in [32] [33].
It is a two cut solution, with generating functional

G(z) =
w2

2
z − (m− 1)

z
− w2

2z

√

(z2 − r−2)(z2 − r+2).

The cuts are in the intervals [−r+,−r−] and [r−,−r+], with r+ > r− > 0.
The asymptotic condition and the absence of a pole at z → 0 fix

r2± =
2

w2
(m+ 1)± 4

w2

√
m ,

in perfect agreement with (17). The density is then [33]:

φ(r) =
w2

2π|r|
√

(r+2 − r2)(r2 − r−2) , r−
2 ≤ r2 ≤ r+

2 .

This agrees with (18), recalling that 2rΦ(r2) ≡ φ(r) ≡ φ(−r).
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6 Density of eigenvalues and zeros of polyno-

mials

It turns out that it is possible to relate the densities obtained in the previous
section to the density of zeros of certain Laguerre or Hermite polynomials
[33] [34].

We use the results of Calogero’s work [35], based on the classical results
of Stieltjies [36]. They show that the zeros of the Laguerre polynomial Lα

N(x)
satisfy

N
∑

j=1,j 6=i

1

xi − xj

=
1

2

(

1− 1 + α

xi

)

(22)

In terms of eigenvalues, equation (16) takes the form:

N
∑

j=1,j 6=i

1

ρi − ρj
=

w2

4
− (m− 1)

2ρi
(23)

Comparison of these equations shows that the solutions of (23) are the zeros
of Lm−2

N (w
2

2
ρ) , m ≥ 2 .

It has also been established [35] [36] that the zeros of the Hermite poly-
nomial H2N(r) satisfy

N
∑

j=−N,j 6=i

1

ri − rj
= ri (24)

For simplicity, we have chosen an even polynomial. Comparison of the
above equation with (21), considered when m = 1 and is expressed in terms
of eigenvalues, shows that its solutions are the zeros of H2N(

w√
2
r) [34].

The usual relationship between Hermite and Laguerre polynomials is ob-
tained, in the discrete, by noting that, with xi > 0, and since x−j = −xj ,
the left hand side of (24) can be rewritten as

N
∑

j=−N,j 6=i

1

ri − rj
=

N
∑

j=1

1

ri + rj
+

N
∑

j=1,j 6=i

1

ri − rj

=
1

2ri
+

N
∑

j=1,j 6=i

2ri
r2i − r2j

, (25)
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and comparing with (22).

7 Summary and discussion

In this communication, we considered gaussian ensembles of m complex N ×
N matrices and identified a closed subsector that is naturally associated with
the radial sector of the theory. In the large N limit, the ensemble is described
in terms of the density of radial evenvalues, and these have been obtained:

m = 1 m ≥ 2

Φ(ρ) = w2

4π

√

8
w2ρ

− 1 Φ(ρ) = w2

4π

√

(ρ+
ρ
− 1)(1− ρ−

ρ
)

0 ≤ ρ ≤ 8
w2 ρ− ≤ ρ ≤ ρ+

ρ± = 2
w2 (m+ 1)± 4

w2

√
m .

Extending to the full line with Φ(ρ)dρ = φ(r)dr , ρ = r2, the densities
take the form:

m = 1 m ≥ 2

φ(r) = w2

2π

√

8
w2 − r2 φ(r) = w2

2π|r|
√

(r+2 − r2)(r2 − r−2)

−
√
8

w
≤ r ≤

√
8

w
r−

2 ≤ r2 ≤ r+
2

r2± = 2
w2 (m+ 1)± 4

w2

√
m .

A (restricted) Wigner distribution is present only for m = 1.
The existence of this closed sector is related to an enhanced U(N)m+1

symmetry, and the measure in this subsector has been obtained, with a result
that generalizes the well known single hermitean matrix Van der Monde
determinant.

There are several further areas of study that arise naturally from the
study presented here. Perhaps of most interest is an investigation of fur-
ther systmes, such as Hamiltoniand and/or interacting systems, where this
symmetry is present or where the subsector with this symmetry may pro-
vide physically relevant truncations. It is also of interest to estabish if the
results described in this communication extend smoothly to an odd number
of matrices.
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