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Abstract

This letter aims at resolving the issues raised in the recent short com-
munication [1] and answered by [2] by proposing a systematic approxima-
tion scheme based on non-mapped shape functions, which both allows to
fully exploit the unique advantages of the smoothed finite element method
(SFEM) [3, 4, 5, 6, 7, 8, 9] and resolve the existence, linearity and posi-
tivity deficiencies pointed out in [1].

We show that Wachspress interpolants [10] computed in the physical
coordinate system are very well suited to the SFEM, especially when
elements are heavily distorted (obtuse interior angles). The proposed
approximation leads to results which are almost identical to those of the
SFEM initially proposed in [3].

These results that the proposed approximation scheme forms a strong
and rigorous basis for construction of smoothed finite element methods.

keywords: Smoothed Finite Element Method, boundary integration, Wach-
spress Interpolants, strain smoothing, rational basis finite elements, SFEM,
isoparametric

1 INTRODUCTION

The smoothed finite element method (SFEM) was first proposed in [3]. This new
numerical method, based on gradient (strain) smoothing, is rooted in meshfree
stabilized conforming nodal integration [11] and was shown to provide a suite of
finite elements with a range of interesting properties. Those properties depend
on the number of smoothing cells employed within each finite element (see [12]
for a review of recent developments and properties) and include:

• improved dual accuracy and superconvergence;

• relative insensitivity to volumetric locking;

• relative insensitivity to mesh distortion;

• softer than the FEM.

A rigorous theoretical framework was provided in [5, 8] and the method was
extended to plates [9], shells [6] and coupled with the extended finite element
method [12].
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Table 1: Shape function value at different sites within an element (Figure (1))
Site Node 1 Node 2 Node 3 Node 4 Description
1 1.0 0.0 0.0 0.0 Field node
2 0.0 1.0 0.0 0.0 Field node
3 0.0 0.0 1.0 0.0 Field node
4 0.0 0.0 0.0 1.0 Field node
5 0.5 0.5 0.0 0.0 Side midpoint
6 0.0 0.5 0.5 0.0 Side midpoint
7 0.0 0.0 0.5 0.5 Side midpoint
8 0.5 0.0 0.0 0.5 Side midpoint
9 0.25 0.25 0.25 0.25 Intersection of two bimedians
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Figure 1: A four-node element divided into four smoothing cells.

The essential feature of the SFEM is that no isoparametric mapping is re-
quired, which implies that the approximation can be defined in the physical
space directly, thereby providing freedom in the selection of the element geom-
etry.

In the initial paper [3] (Eq. (22) and reproduced here for simplicity Equation
(1)), non-mapped Lagrange shape functions are proposed as a possibility to
calculate the shape functions at an arbitrary point within a smoothed finite
element. It is then stated in the same paper (p863 last paragraph) that “unless
state otherwise, we still use the averaged shape functions [3] for convenience.”
These shape functions are recalled in Table 1 and Figure (1), for ease of reading.
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In fact, in our work on the SFEM [4, 6, 7, 8, 9], and, to our knowledge, in
all other work published to date [3, 4, 5, 6], these “averaged shape functions”
have been used, with good results.
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Yet, [1] provides a critique of the SFEM stating that the approximation
provided by Equation (1) are inadequate because:

• they do not always exist (as described in the 1975 book [10]);

• they may not be positive everywhere in the element;

• they may not be linear everywhere in the element.

Because of this [1] disqualifies the current version of the SFEM and discredits
the existing results of [3, 4, 5, 6, 7, 8, 9], despite the fact (also noted in [2]) that
those non-mapped Lagrange shape functions of Equation (1) were in general
not used in the aforementioned papers.

In this contribution, we show that it is possible to resolve the three issues
mentioned by [1] about the Lagrange non-mapped shape functions while re-
taining the advantageous features of the smoothed finite element method, in
particular its ability to deal with extremely distorted meshes.

2 WACHSPRESS INTERPOLANTS

Wachspress [10] presented a rigorous formulation for generating shape functions
on arbitrary polygons, based on projective geometry. The Wachspress shape
functions are unconventional compared to the polynomials used in the finite
element literature, as they are in general rational functions, i.e, the ratio of two
polynomials [13]. These shape functions have the following essential features of
interpolants (for arbitrary n-sided polygons):

• The Ni satisfy the partition of unity and Kronecker Delta properties;

• Shape function, Ni is linear on sides adjacent to node i.

• The Ni are linear complete.

These properties make Wachspress interpolants effective to build approxima-
tions on arbitrary n-gons, quadrilaterals in particular. Consider the quadrilat-
eral (Q4), on which Wachspress interpolants will be formulated, shown in Figure
(2). Let l1, l2, l3 and l4 be the equations of the lines corresponding to each of
the four sides of the quadrilateral, (1− 2, 2− 3, 3− 4 & 4− 1) respectively, and
written in parametric form as:

l1(x, y) = a1x+ b1y + c1 = 0 (2a)

l2(x, y) = a2x+ b2y + c2 = 0 (2b)

l3(x, y) = a3x+ b3y + c3 = 0 (2c)

l4(x, y) = a4x+ b4y + c4 = 0 (2d)
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Figure 2: A sample quadrilateral.

where ai, bi and ci for i = 1, 2, 3, 4 are real constants. The wedge functions
corresponding to each node, wi, are defined so that they vary linearly along the
edges adjacent to each node and vanish at the remaining nodes as [10]:

w1(x, y) = κ1 l2(x, y) l3(x, y) (3a)

w2(x, y) = κ2 l3(x, y) l4(x, y) (3b)

w3(x, y) = κ3 l4(x, y) l1(x, y) (3c)

w4(x, y) = κ4 l1(x, y) l2(x, y) (3d)

where the κi are constants. In order that the Wachspress interpolantsNi, satisfy
the partition of unity requirement, it is defined as:

Ni(x, y) =
wi

∑

wi

(x, y) (4)

Remark 1 For a 4-sided polygon, the Wachspress rational basis interpolants
degenerate to regular polynomials, i.e.

∑

wi(x, y) is a constant.

To illustrate the Wachspress interpolants for arbitrary quadrilaterals and to
answer Zhang et al., [1]’s queries on

• the existence of shape functions for arbitrary quadrilaterals;

• positivity of the shape functions;

• linearity of the shape functions,
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Figure 3: A parallelogram shaped element

we choose the same parallelogram element as used in [1] (cf. page 1292, Figure
2). This element is shown in Figure (3) for ease of reading.
The shape functions for the parallelogram shaped element (see Figure (3)) based
on Wachspress interpolation write:

N1(x, y) = (y − 1)

(

x−
1

2
y − 1

)

(5a)

N2(x, y) = (1− y)

(

x−
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2
y

)

(5b)

N3(x, y) = y

(

x−
1

2
y

)

(5c)

N4(x, y) = −y

(

x−
1

2
y − 1

)

(5d)

From the above equations, it can be easily verified that the shape functions
derived using the Wachspress approach satisfy all the required properties (posi-
tivity, Kronecker delta property, linear completeness) as shown in the book [10].
What is more, the quality of these functions is independent of the shape of the
element, which make them ideal candidates for use in the context of the SFEM
where highly distorted meshes are of interest given the absence of isoparametric
mapping.

For the mid-point of side 1-4, i.e., the point Q with coordinates
(

1

4
, 1

2

)

(see
Figure (3)), the shape function values are:
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(6)
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as opposed to
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as described in [1] (cf. page. 1293).

Remark 2 By a systematic approach using rational basis functions, the shape
functions on arbitrary n-gons, in particular Q4’s can be derived in the physical
coordinate system, without the need for isoparametric mapping, and without the
negative side effects of non-mapped Lagrange shape functions described in [1].

Remark 3 The form of the Wachspress shape functions depend on the ele-
ment geometry and hence have to be recomputed for each element in the mesh,
which is computationally expensive. However, an important advantage is that
their quality does not deteriorate for highly distorted elements, including con-
cave domains. Interested readers are referred to [10, 13, 14] for advances in this
direction.

3 NUMERICAL RESULTS

3.1 Patch Test

It is straightforward to check that the linear patch test is satisfied down to
machine precision. The interested reader is referred to the corresponding author
to obtain a MATLAB code including this and other test cases.

3.2 Bending of a cantilever beam

As a second example, bending of a thick cantilever subjected to a parabolic load
at the free end is examined as shown in Figure (4). The geometry is: length
L=8, height D=4 and thickness t=1. The material properties are: Young’s
modulus E=3×107, and the parabolic shear force P=250. The exact solution
of this problem is available in [15].

In this problem, two types of mesh are considered: one is uniform and regular
and the other is an irregular mesh, with the coordinates of interior nodes given
by:

x′ = x+ (2rc − 1)αir∆x (8a)

y′ = y + (2rc − 1)αir∆y (8b)

(8c)
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Figure 4: Geometry and loads for a cantilever beam.

where rc is a random number between 0 and 1.0, αir ∈ [0, 0.5] is an irregularity
factor that controls the shapes of the elements and ∆x and ∆y are the initial
regular element sizes in the x− and y− directions respectively.

The domain is discretized with quadrilateral elements and two quadrilateral
subcells for each element are used for the current study, denoted by SCkQ41.
Figure (6) shows a discretization of the cantilever beam with quadrilateral el-
ements using an irregular mesh. A value of αir = 0.5 is used to generate the
irregular mesh. Under plane stress conditions and for a Poisson ratio ν=0.3, the
exact strain energy is 0.0398333. Figure (5) illustrates the convergence of the
strain energy and the rate of convergence in the energy norm of the elements
built using the Wachspress interpolants compared with those of the SFEM re-
sults ([8]) for regular quadrilateral meshes. The total strain energy and the
rate of convergence for different irregular meshes (αir = 0.2 and αir = 0.5) are
shown in Figures (7), (8) and (9).

It is seen that for regular meshes, the results are identical and for irregular
meshes, there is a small difference, but the rate of convergence is not affected
significantly. It is seen that with increase in mesh index2, both methods converge
to the exact solution. With the use of Wachspress interpolants, the question
of positivity of the shape functions and existense of the shape functions for
arbitrary quadrilaterals is resolved yet preserving the true essence of the SFEM.

4 CONCLUSIONS

This letter showed that it is possible to both retain the highly desirable features
of the smoothed FEM (SFEM), and its true essence, i.e. strain smoothing and
boundary integration, without sacrificing a rigorous approximation where the
shape functions are known explicitly at any point of the smoothed finite element.

The proposed interpolation scheme, known as Wachspress interpolation, pro-
vides a suitable means to suppress the problems of definition, positivity and lin-
earity associated with non-mapped Lagrange shape functions. It also provides a
general framework to define approximation over arbitrary (possibly non-convex)

1SCkQ4 implies k quadrilateral subcells for 4 noded quadrilateral elements
2Mesh index = number of elements in the x-direction

length of the cantilever beam
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Figure 5: The convergence of the numerical energy to the exact energy and
convergence rate in the energy norm with regular meshes for the cantilever
beam problem: (a) strain energy and (b) the convergence rate.
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Figure 6: Cantilever beam:(a) irregular mesh with extremely distorted elements
and (b) zoomed view of the mesh.
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Figure 7: The convergence of the numerical energy to the exact energy with
irregular meshes (αir = 0.2) for the cantilever beam problem.

polytopes including curved edges or surfaces.
The Wachspress approximation was conclusively tested within the context

of the smoothed FEM, showing that it yields a method which passes the patch
test and provides, even for very high element distortion, accurate and optimally
convergent results in linear elasticity.

The results also showed that utilizing the proposed Wachspress shape func-
tions to build the approximation in the smoothed FEM leads to no significant
difference in results compared to the widely used technique of “averaged shape
functions” preconized in the original paper [3] and used in all the smoothed
FEM work published to date [4, 6, 7, 8, 9, 5, 6].

This finding reinforces the claim made in [2] that the approximation need
not be known explicitly to build an optimal SFEM and dispels, also, the mis-
conception of [1], whose detraction of the smoothed FEM rests on the misun-
derstanding that this method requires the use of non-mapped Lagrange shape
functions.

It will be most interesting to investigate the behavior of the smoothed FEM,
especially the choice of approximation, in the context of higher-order methods
as well as non-polynomial enrichments [12].
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Figure 8: The convergence rate in the energy norm with irregular meshes (αir =
0.2) for the cantilever beam problem: (a) SC2Q4 and (b) SC4Q4.
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Figure 9: The convergence of the numerical energy to the exact energy and
convergence rate in the energy norm with irregular meshes (αir = 0.5) for the
cantilever beam problem: (a) strain energy and (b) the convergence rate.
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